Three Dimensional Geometry

Short Answer Type Questions

1. Find the position vector of a point $A$ in space such that $\overrightarrow{{}OA}$ is inclined at $60^{\circ}$ to $OX$ and at $45^{\circ}$ to $OY$ and $|\overrightarrow{{}OA}|=10$ units.

Show Answer

Solution

Let $\alpha=60^{\circ}, \beta=45^{\circ}$ and the angle inclined to OZ axis be $\gamma$

We know that

$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$

$\Rightarrow \cos ^{2} 60^{\circ}+\cos ^{2} 45^{\circ}+\cos ^{2} \gamma=1$

$\Rightarrow \quad(\frac{1}{2})^{2}+(\frac{1}{\sqrt{2}})^{2}+\cos ^{2} \gamma=1 \quad \Rightarrow \quad \frac{1}{4}+\frac{1}{2}+\cos ^{2} \gamma=1$

$\Rightarrow \quad \frac{3}{4}+\cos ^{2} \gamma=1 \Rightarrow \cos ^{2} \gamma=1-\frac{3}{4}=\frac{1}{4}$

$\therefore \quad \cos \gamma= \pm \frac{1}{2} \Rightarrow \cos \gamma=\frac{1}{2}$

(Rejecting $\cos \gamma=-\frac{1}{2}$, since $\gamma<90^{\circ}$ )

$\therefore \quad \overrightarrow{{}OA}=|\overrightarrow{{}OA}|(\frac{1}{2} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}+\frac{1}{2} \hat{k})=10(\frac{1}{2} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}+\frac{1}{2} \hat{k})$

$=5 \hat{i}+5 \sqrt{2} \hat{j}+5 \hat{k}$

Hence, the position vector of $A$ is $(5 \hat{i}+5 \sqrt{2} \hat{j}+5 \hat{k})$.

2. Find the vector equation of the line which is parallel to the vector $3 \hat{i}-2 \hat{j}+6 \hat{k}$ and which passes through the point $(1,-2,3)$.

Show Answer

Solution

We know that the equation of line is

$ \vec{r}=\vec{a}+\vec{b} \lambda $

Here, $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $b \overrightarrow{{}3} \hat{i}-2 \hat{j}+6 \hat{k}$

$\therefore$ Equation of line is $\vec{r}=(\hat{i}-2 \hat{j}+3 \hat{k})+\lambda(3 \hat{i}-2 \hat{j}+6 \hat{k}) \Rightarrow$

$(x\hat{i} + y \hat{j}+ z \hat{k}) \neq (\hat{i}-2 \hat{j}+3 \hat{k})+\lambda(3 \hat{i}-2 \hat{j}+6 \hat{k})$

$\Rightarrow(x \hat{i}+y \hat{j}+z \hat{k})-(\hat{i}-2 \hat{j}+3 \hat{k})=\lambda(3 \hat{i}-2 \hat{j}+6 \hat{k})$

$\Rightarrow(x-1) \hat{i}+(y+2) \hat{j}+(z-3) \hat{k}=\lambda(3 \hat{i}-2 \hat{j}+6 \hat{k})$ Hence,

the required equation is

$(x-1) \hat{i}+(y+2) \hat{j}+(z-3) \hat{k}=\lambda(3 \hat{i}-2 \hat{j}+6 \hat{k})$

3. Show that the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=z$ intersect. Also, find their point of intersection.

Show Answer

Solution

The given equations are

$ \begin{aligned} & \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4} \text{ and } \frac{x-4}{5}=\frac{y-1}{2}=z \\ & \text{ Let } \quad \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\lambda \\ & \therefore x=2 \lambda+1, y=3 \lambda+2 \text{ and } z=4 \lambda+3 \\ & \text{ and } \quad \frac{x-4}{5}=\frac{y-1}{2}=\frac{z}{1}=\mu \\ & \therefore x=5 \mu+4, y=2 \mu+1 \text{ and } z=\mu \end{aligned} $

If the two lines intersect each other at one point,

then $2 \lambda+1=5 \mu+4 \Rightarrow 2 \lambda-5 \mu=3\quad …$(i)

$3 \lambda-2 \mu=-1 3 \lambda+2=2 \mu+1 \Rightarrow 3 \lambda-2 \mu=-1 \quad …$(ii)

and $4 \lambda+3=\mu \quad \Rightarrow 4 \lambda-\mu=-3 \quad …$(iii)

Solving eqns. (i) and (ii) we get

$\begin{aligned} \Rightarrow 6 \lambda-15 \mu=9 \\ 6 \lambda-4 \mu=-2 \\ (-) \quad (+) \quad (+) \\ \hline \quad -11 \mu =\quad 11 \\ \therefore \quad \mu=-1 \end{aligned}$

Putting the value of $\mu$ in eq. (i) we get,

$\lambda-5(-1) =3$

$\Rightarrow \quad 2 \lambda+5 =3$

$\Rightarrow \quad 2 \lambda =-2 \quad \therefore \lambda=-1$

Now putting the value of $\lambda$ and $\mu$ in eq. (iii) then

$ \begin{aligned} 4(-1)-(-1) & =-3 \\ -4+1 & =-3 \\ -3 & =-3 \text{ (satisfied) } \end{aligned} $

$\therefore$ Coordinates of the point of intersection are

$ \begin{aligned} & x=5(-1)+4=-5+4=-1 \\ & y=2(-1)+1=-2+1=-1 \\ & z=-1 \end{aligned} $

Hence, the given lines intersect each other at $(-1,-1,-1)$.

Alternately: If two lines intersect each other at a point, then the shortest distance between them is equal to 0 .

For this we will use SD $=\frac{( \vec{a} _2- \vec{a} _1)( \vec{b} _1 \times \vec{b} _2)}{| \vec{b} _1 \times \vec{b} _2|}=0$.

4. Find the angle between the lines

$ \begin{aligned} & \vec{r}=3 \hat{i}-2 \hat{j}+6 \hat{k}+\lambda(2 \hat{i}+\hat{j}+2 \hat{k}) \text{ and } \\ & \vec{r}=(2 \hat{j}-5 \hat{k})+\mu(6 \hat{i}+3 \hat{j}+2 \hat{k}) \end{aligned} $

Show Answer

Solution

Here,

$ \vec{b} _1=2 \hat{i}+\hat{j}+2 \hat{k} \text{ and } \vec{b} _2=6 \hat{i}+3 \hat{j}+2 \hat{k} $

$ \begin{aligned} \therefore \quad \cos \theta & =\frac{ \vec{b} _1 \cdot \vec{b} _2}{| \vec{b} _1| \vec{b} _2 \mid}=\frac{(2 \hat{i}+\hat{j}+2 \hat{k}) \cdot(6 \hat{i}+3 \hat{j}+2 \hat{k})}{\sqrt{(2)^{2}+(1)^{2}+(2)^{2}} \cdot \sqrt{(6)^{2}+(3)^{2}+(2)^{2}}} \\ & =\frac{12+3+4}{\sqrt{4+1+4} \cdot \sqrt{36+9+4}}=\frac{19}{\sqrt{9} \cdot \sqrt{49}}=\frac{19}{3 \cdot 7}=\frac{19}{21} \\ \therefore \quad \theta & =\cos ^{-1}(\frac{19}{21}) \end{aligned} $

Hence, the required angle is $\cos ^{-1}(\frac{19}{21})$.

5. Prove that the line through $A(0,-1,-1)$ and $B(4,5,1)$ intersects the line through $C(3,9,4)$ and $D(-4,4,4)$.

Show Answer

Solution

Given points are $A(0,-1,-1)$ and $B(4,5,1)$

$ C(3,9,4) \text{ and } D(-4,4,4) $

Cartesian form of equation $AB$ is

$ \frac{x-0}{4-0}=\frac{y+1}{5+1}=\frac{z+1}{1+1} \Rightarrow \frac{x}{4}=\frac{y+1}{6}=\frac{z+1}{2} $

and its vector form is $\vec{r}=(-\hat{j}-\hat{k})+\lambda(4 \hat{i}+6 \hat{j}+2 \hat{k})$

Similarly, equation of $CD$ is

$ \frac{x-3}{-4-3}=\frac{y-9}{4-9}=\frac{z-4}{4-4} \Rightarrow \frac{x-3}{-7}=\frac{y-9}{-5}=\frac{z-4}{0} $

and its vector form is $\vec{r}=(3 \hat{i}+9 \hat{j}+4 \hat{k})+\mu(-7 \hat{i}-5 \hat{j})$

Now, here $ \vec{a} _1=-\hat{j}-\hat{k}, \vec{b} _1=4 \hat{i}+6 \hat{j}+2 \hat{k}$

$ \vec{a} _2=3 \hat{i}+9 \hat{j}+4 \hat{k}, \quad \vec{b} _2=-7 \hat{i}-5 \hat{j} $

Shortest distance between $AB$ and $CD$

$ \begin{aligned} \text{ S.D. } & =|\frac{( \vec{a} _2- \vec{a} _1) \cdot( \vec{b} _1 \times \vec{b} _2)}{| \vec{b} _1 \times \vec{b} _2|}| \\ \vec{a} _2- \vec{a} _1 & =(3 \hat{i}+9 \hat{j}+4 \hat{k})-(-\hat{j}-\hat{k})=3 \hat{i}+10 \hat{j}+5 \hat{k} . \\ \vec{b} _1 \times \vec{b} _2 & = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 6 & 2 \\ -7 & -5 & 0 \end{vmatrix} \\ & =\hat{i}(0+10)-\hat{j}(0+14)+\hat{k}(-20+42) \\ & =10 \hat{i}-14 \hat{j}+22 \hat{k} \end{aligned} $

$ \begin{aligned} | \vec{b} _1 \times \vec{b} _2| & =\sqrt{(10)^{2}+(-14)^{2}+(22)^{2}} \\ & =\sqrt{100+196+484}=\sqrt{780} \\ \therefore \quad \quad \text{ S.D } & =\frac{(3 \hat{i}+10 \hat{j}+5 \hat{k}) \cdot(10 \hat{i}-14 \hat{j}+22 \hat{k})}{\sqrt{780}} \\ & =\frac{30-140+110}{\sqrt{780}}=0 \end{aligned} $

Hence, the two lines intersect each other.

6. Prove that the lines $x=p y+q, z=r y+s$ and $x=p^{\prime} y+q^{\prime}$, $z=r^{\prime} y+s^{\prime}$ are perpendicular, if $p p^{\prime}+r r^{\prime}+1=0$

Show Answer

Solution

Given that: $\quad x=p y+q \Rightarrow y=\frac{x-q}{p}$

and $ z=r y+s \Rightarrow y=\frac{z-s}{r} $

$\therefore$ the equation becomes

$\frac{x-q}{p}=\frac{y}{1}=\frac{z-s}{r}$ in which d’ratios are $a_1=p, b_1=1, c_1=r$

Similarly

$ x=p^{\prime} y+q^{\prime} \Rightarrow y=\frac{x-q^{\prime}}{p^{\prime}} $

and $ z=r^{\prime} y+s^{\prime} \Rightarrow y=\frac{z-s^{\prime}}{r^{\prime}} $

$\therefore$ the equation becomes

$ \frac{x-q^{\prime}}{p^{\prime}}=\frac{y}{1}=\frac{z-s^{\prime}}{r^{\prime}} \text{ in which } a_2=p^{\prime}, b_2=1, c_2=r^{\prime} $

If the lines are perpendicular to each other, then

$ \begin{matrix} a_1 a_2+b_1 b_2+c_1 c_2=0 \\ p p^{\prime}+1.1+r r^{\prime}=0 \end{matrix} $

Hence, $p p^{\prime}+r r^{\prime}+1=0$ is the required condition.

7. Find the equation of a plane which bisects perpendicularly the line joining the points $A(2,3,4), B(4,5,8)$ at right angles.

Show Answer

Solution

Given that $A(2,3,4)$ and $B(4,5,8)$

Coordinates of mid-point $C$ are $(\frac{2+4}{2}, \frac{3+5}{2}, \frac{4+8}{2})=(3,4,6)$

Now direction ratios of the normal to the plane

$ \begin{aligned} & =\text{ direction ratios of } AB \\ & =4-2,5-3,8-4=(2,2,4) \end{aligned} $

Equation of the plane is

$a(x-x_1)+b(y-y_1)+c(z-z_1) =0 $

$\Rightarrow \quad 2(x-3)+2(y-4)+4(z-6) =0 $

$\Rightarrow \quad 2 x-6+2 y-8+4 z-24 =0$

$\Rightarrow \quad 2 x+2 y+4 z =38 \quad \Rightarrow \quad x+y+2 z=19$

Hence, the required equation of plane is $x+y+2 z=19 \quad$ or $\quad \vec{r}(\hat{i}+\hat{j}+2 \hat{k})=19$.

8. Find the equation of a plane which is at a distance $3 \sqrt{3}$ units from origin and the normal to which is equally inclined to coordinate axis.

Show Answer

Solution

Since, the normal to the plane is equally inclined to the axes

$\therefore \cos \alpha=\cos \beta=\cos \gamma$

$\Rightarrow \cos ^{2} \alpha+\cos ^{2} \alpha+\cos ^{2} \alpha=1$

$\begin{aligned} \Rightarrow 3 \cos ^{2} \alpha =1 \Rightarrow \cos \alpha=\frac{1}{\sqrt{3}} \\ \Rightarrow \cos \alpha =\cos \beta=\cos \gamma=\frac{1}{\sqrt{3}}\end{aligned}$

So, the normal is

$ \overrightarrow{{}N}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k} $

$\therefore$ Equation of the plane is $\vec{r} \cdot \vec{N}=d$

$ \begin{aligned} & \Rightarrow \quad \vec{r} \cdot \frac{\vec{N}}{|\vec{N}|}=d \\ & \Rightarrow \quad \frac{\vec{r} \cdot(\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k})}{1}=3 \sqrt{3} \\ & \Rightarrow \quad \vec{r} \cdot(\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k})=3 \sqrt{3} \\ & \Rightarrow(x \hat{i}+y \hat{j}+z \hat{k}) \cdot \frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})=3 \sqrt{3} \\ & \Rightarrow \quad x+y+z=3 \sqrt{3} \cdot \sqrt{3} \Rightarrow x+y+z=9 \end{aligned} $

Hence, the required equation of plane is $x+y+z=9$.

9. If the line drawn from the point $(-2,-1,-3)$ meets a plane at right angle at the point $(1,-3,3)$, find the equation of the plane.

Show Answer

Solution

Direction ratios of the normal to the plane are

$(1+2,-3+1,3+3) \Rightarrow(3,-2,6)$

Equation of plane passing through one point $(x_1, y_1, z_1)$ is

$a(x-x_1)+b(y-y_1)+c(z-z_1) =0 $

$\Rightarrow \quad 3(x-1)-2(y+3)+6(z-3) =0 $

$\Rightarrow \quad 3 x-3-2 y-6+6 z-18 =0$

$\Rightarrow \quad 3 x-2 y+6 z-27 =0 \quad \Rightarrow 3 x-2 y+6 z=27$

Hence, the required equation is $3 x-2 y+6 z=27$.

10. Find the equation of the plane passing through the points $(2,1,0),(3,-2,-2)$ and $(3,1,7)$.

Show Answer

Solution

Since, the equation of the plane passing through the points $(x_1, y_1, z_1),(x_2, y_2, z_2)$ and $(x_3, y_3, z_3)$ is

$ \begin{aligned} & \Rightarrow \begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix} =0 \\ & \Rightarrow \begin{vmatrix} x-2 & y-1 & z-0 \\ 3-2 & -2-1 & -2-0 \\ 3-2 & 1-1 & 7-0 \end{vmatrix} =0 \Rightarrow \begin{vmatrix} x-2 & y-1 & z \\ 1 & -3 & -2 \\ 1 & 0 & 7 \end{vmatrix} =0 \\ & \Rightarrow(x-2) \begin{vmatrix} -3 & -2 \\ 0 & 7 \end{vmatrix} -(y-1) \begin{vmatrix} 1 & -2 \\ 1 & 7 \end{vmatrix} +z \begin{vmatrix} 1 & -3 \\ 1 & 0 \end{vmatrix} =0 \\ & \Rightarrow \quad(x-2)(-21)-(y-1)(7+2)+z(3)=0 \\ & \Rightarrow \quad-21(x-2)-9(y-1)+3 z=0 \\ & \Rightarrow \quad-21 x+42-9 y+9+3 z=0 \\ & \Rightarrow \quad-21 x-9 y+3 z+51=0 \Rightarrow 7 x+3 y-z-17=0 \end{aligned} $

Hence, the required equation is $7 x+3 y-z-17=0$.

11. Find the equations of two lines through the origin which intersect the line $\frac{x-3}{2}=\frac{y-3}{1}=\frac{z}{1}$ at angles of $\frac{\pi}{3}$ each.

Show Answer

Solution

Any point on the given line is

$ \begin{aligned} \frac{x-3}{2} & =\frac{y-3}{1}=\frac{z}{1}=\lambda \\ \Rightarrow \quad x & =2 \lambda+3, y=\lambda+3 \\ \text{ and } \quad z & =\lambda \end{aligned} $

Let it be the coordinates of $P$

$\therefore$ Direction ratios of OP

are

$(2 \lambda+3-0),(\lambda+3-0)$ and $(\lambda-0) \Rightarrow 2 \lambda+3, \lambda+3, \lambda$

But the direction ratios of the line PQ are 2, 1,1

$\begin{aligned}\cos \theta =\frac{a_1 a_2+b_1 b_2+c_1 c_2}{\sqrt{a_1^{2}+b_1^{2}+c_1^{2}} \cdot \sqrt{a_2^{2}+b_2^{2}+c_2^{2}}}\end{aligned}$

$\begin{aligned}\cos \frac{\pi}{3} =\frac{2(2 \lambda+3)+1(\lambda+3)+1 . \lambda}{\sqrt{(2)^{2}+(1)^{2}+(1)^{2}} \cdot \sqrt{(2 \lambda+3)^{2}+(\lambda+3)^{2}+\lambda^{2}}}\end{aligned} $

$\begin{aligned}\Rightarrow \quad \frac{1}{2} =\frac{4 \lambda+6+\lambda+3+\lambda}{\sqrt{6} \cdot \sqrt{4 \lambda^{2}+9+12 \lambda+\lambda^{2}+9+6 \lambda+\lambda^{2}}}\end{aligned} $

$\begin{aligned}\Rightarrow \quad \frac{\sqrt{6}}{2} =\frac{6 \lambda+9}{\sqrt{6 \lambda^{2}+18 \lambda+18}}=\frac{6 \lambda+9}{\sqrt{6} \sqrt{\lambda^{2}+3 \lambda+3}}\end{aligned}$

$ \begin{aligned} & \Rightarrow \quad \frac{6}{2}=\frac{3(2 \lambda+3)}{\sqrt{\lambda^{2}+3 \lambda+3}} \Rightarrow 3=\frac{3(2 \lambda+3)}{\sqrt{\lambda^{2}+3 \lambda+3}} \\ & \Rightarrow \quad 1=\frac{2 \lambda+3}{\sqrt{\lambda^{2}+3 \lambda+3}} \Rightarrow \sqrt{\lambda^{2}+3 \lambda+3}=2 \lambda+3 \\ & \Rightarrow \quad \lambda^{2}+3 \lambda+3=4 \lambda^{2}+9+12 \lambda \\ & \Rightarrow \quad 3 \lambda^{2}+9 \lambda+6=0 \quad \Rightarrow \lambda^{2}+3 \lambda+2=0 \\ & \Rightarrow \quad(\lambda+1)(\lambda+2)=0 \\ & \therefore \quad \lambda=-1, \lambda=-2 \\ & \therefore \text{ Direction ratios are }[2(-1)+3,-1+3,-1] \text{ i.e., } 1,2,-1 \text{ when } \\ & \lambda=-1 \text{ and }[2(-2)+3,-2+3,-2] \text{ i.e., }-1,1,-2 \text{ when } \lambda=-2 . \end{aligned} $

Hence, the required equations are

$ \frac{x}{1}=\frac{y}{2}=\frac{z}{-1} \text{ and } \frac{x}{-1}=\frac{y}{1}=\frac{z}{-2} . $

12. Find the angle between the lines whose direction cosines are given by the equations $l+m+n=0$ and $l^{2}+m^{2}-n^{2}=0$

Show Answer

Solution

The given equations are

$$ \begin{align*} l+m+n & =0 \tag{i}\\ l^{2}+m^{2}-n^{2} & =0 \tag{ii} \end{align*} $$

From equation $(i) n=-(l+m)$

Putting the value of $n$ in eq. (ii) we get

$ \begin{aligned} & l^{2}+m^{2}+[-(l+m)^{2}]=0 \\ & \Rightarrow \quad l^{2}+m^{2}-l^{2}-m^{2}-2 l m=0 \\ & \Rightarrow \quad-2 lm=0 \\ & \Rightarrow \quad l m=0 \Rightarrow(-m-n) m=0[\because l=-m-n] \\ & \Rightarrow \quad(m+n) m=0 \Rightarrow m=0 \text{ or } m=-n \\ & \Rightarrow \quad l=0 \text{ or } l=-n \end{aligned} $

$\therefore$ Direction cosines of the two lines are

$0,-n, n$ and $-n, 0, n \Rightarrow 0,-1,1$ and $-1,0,1$

$\begin{aligned}\therefore \quad \cos \theta =\frac{(0 \hat{i}-\hat{j}+\hat{k}) \cdot(-\hat{i}+0 \hat{j}+\hat{k})}{\sqrt{(-1)^{2}+(1)^{2}} \sqrt{(-1)^{2}+(1)^{2}}}=\frac{1}{\sqrt{2} \cdot \sqrt{2}}=\frac{1}{2}\end{aligned}$

$\therefore \quad \theta =\frac{\pi}{3}$

Hence, the required angle is $\frac{\pi}{3}$.

13. If a variable line in two adjacent positions has direction cosines $l, m, n$ and $l+\delta l, m+\delta m, n+\delta n$, show that the small angle $\delta \theta$ between the two positions is given by $\delta \theta^{2}=\delta l^{2}+\delta m^{2}+\delta n^{2}$.

Show Answer

Solution

Given that $l, m, n$ and $l+\delta l, m+\delta m, n+\delta n$, are the direction cosines of a variable line in two positions

$$ \begin{equation*} \therefore \quad l^{2}+m^{2}+n^{2}=1 \tag{i} \end{equation*} $$

$$ \begin{align*} & \text{ and }(l+\delta l)^{2}+(m+\delta m)^{2}+(n+\delta n)^{2}=1 \tag{ii}\\ & \Rightarrow l^{2}+\delta l^{2}+2 l . \delta l+m^{2}+\delta m^{2}+2 m . \delta m+n^{2}+\delta n^{2}+2 n . \delta n=1 \\ & \Rightarrow(l^{2}+m^{2}+n^{2})+(\delta l^{2}+\delta m^{2}+\delta n^{2})+2(l . \delta l+m . \delta m+n . \delta n)=1 \\ & \Rightarrow 1+(\delta l^{2}+\delta m^{2}+\delta n^{2})+2(l . \delta l+m . \delta m+n \cdot \delta n)=1 \\ & \Rightarrow l . \delta l+m . \delta m+n . \delta n=-\frac{1}{2}(\delta l^{2}+\delta m^{2}+\delta n^{2}) \end{align*} $$

Let $\vec{a}$ and $\vec{b}$ be the unit vectors along a line with d’cosines $l, m$, $n$ and $(l+\delta l),(m+\delta m),(n+\delta n)$.

$\therefore \vec{a}=l \hat{i}+m \hat{j}+n \hat{k}$ and $\vec{b}=(l+\delta l) \hat{i}+(m+\delta m) \hat{j}+(n+\delta n) \hat{k}$

$\cos \delta \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$

$\cos \delta \theta=\frac{(l \hat{i}+m \hat{j}+n \hat{k}) \cdot[(l+\delta l) \hat{i}+(m+\delta m) \hat{j}+(n+\delta n) \hat{k}]}{1.1}$ $\qquad [\because|\vec{a}|=|\vec{b}|=1]$

$\Rightarrow \quad \cos \delta \theta=l(l+\delta l)+m(m+\delta m)+n(n+\delta n)$

$\Rightarrow \quad \cos \delta \theta=l^{2}+l . \delta l+m^{2}+m . \delta m+n^{2}+n . \delta n$

$\Rightarrow \quad \cos \delta \theta=(l^{2}+m^{2}+n^{2})+(l . \delta l+m . \delta m+n . \delta n)$

$\Rightarrow \quad \cos \delta \theta=1-\frac{1}{2}(\delta l^{2}+\delta m^{2}+\delta n^{2})$

$\Rightarrow 1-\cos \delta \theta=\frac{1}{2}(\delta l^{2}+\delta m^{2}+\delta n^{2})$

$\Rightarrow 2 \sin ^{2} \frac{\delta \theta}{2}=\frac{1}{2}(\delta l^{2}+\delta m^{2}+\delta n^{2})$

$\Rightarrow 4 \sin ^{2} \frac{\delta \theta}{2}=\delta l^{2}+\delta m^{2}+\delta n^{2}$

$\Rightarrow 4(\frac{\delta \theta}{2})^{2}=\delta l^{2}+\delta m^{2}+\delta n^{2}$

$ \begin{bmatrix} \because \quad \frac{\delta \theta}{2} \text{ is very small so, } \\ \sin \frac{\delta \theta}{2}=\frac{\delta \theta}{2} \end{bmatrix} $

$\Rightarrow \quad(\delta \theta)^{2}=\delta l^{2}+\delta m^{2}+\delta n^{2}$ Hence proved.

14. $O$ is the origin and $A$ is $(a, b, c)$. Find the direction cosines of the line $OA$ and the equation of plane through $A$ at right angle to $OA$.

Show Answer

Solution

We have $A(a, b, c)$ and $O(0,0,0)$

$\therefore$ direction ratios of $OA=a-0, b-0, c-0$

$ =a, b, c $

$\therefore$ direction cosines of line $OA$

$ =\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}} $

Now direction ratios of the normal to the plane are $(a, b, c)$.

$\therefore$ Equation of the plane passing through the point $A(a, b, c)$ is

$ a(x-a)+b(y-b)+c(z-c)=0 $

$ \begin{aligned} \Rightarrow a x-a^{2}+b y-b^{2}+c z-c^{2} =0 \\ \Rightarrow a x+b y+c z =a^{2}+b^{2}+c^{2} \end{aligned} $

Hence, the required equation is $a x+b y+c z=a^{2}+b^{2}+c^{2}$.

15. Two systems of rectangular axis have the same origin. If a plane cuts them at distances $a, b, c$ and $a^{\prime}, b^{\prime}, c^{\prime}$ respectively from the origin, prove that $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}$.

Show Answer

Solution

Let OX, OY, OZ and $o x, o y, o z$ be two rectangular systems

$\therefore$ Equations of two planes are

$$ \begin{equation*} \frac{X}{a}+\frac{Y}{b}+\frac{Z}{c}=1 \ldots(i) \quad \text{ and } \quad \frac{x}{a^{\prime}}+\frac{y}{b^{\prime}}+\frac{z}{c^{\prime}}=1 \tag{ii} \end{equation*} $$

Length of perpendicular from origin to plane $(i)$ is

$ =|\frac{\frac{0}{a}+\frac{0}{b}+\frac{0}{c}-1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}|=\frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}} $

Length of perpendicular from origin to plane (ii)

$ =|\frac{\frac{0}{a^{\prime}}+\frac{0}{b^{\prime}}+\frac{0}{c^{\prime}}-1}{\sqrt{\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}}}|=\frac{1}{\sqrt{\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}}} $

As per the condition of the question

$ \frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}=\frac{1}{\sqrt{\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}}} $

Hence, $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}$

Long Answer Type Questions

16. Find the foot of perpendicular from the point $(2,3,-8)$ to the line $\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$. Also, find the perpendicular distance from the given point to the line.

Show Answer

Solution

Given that: $\quad \frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$ is the equation of line

$ \Rightarrow \quad \frac{x-4}{-2}=\frac{y}{6}=\frac{z-1}{-3}=\lambda $

$\therefore$ Coordinates of any point $Q$ on the line are $x=-2 \lambda+4, y=6 \lambda$ and $z=-3 \lambda+1$ and the given point is $P(2,3,-8)$

Direction ratios of PQ are $-2 \lambda+4-2,6 \lambda-3,-3 \lambda+1+8$

i.e., $-2 \lambda+2,6 \lambda-3,-3 \lambda+9$

and the D’ratios of the given line are $-2,6,-3$.

If $PQ \perp$ line

then $-2(-2 \lambda+2)+6(6 \lambda-3)-3(-3 \lambda+9)=0$

$\Rightarrow \quad 4 \lambda-4+36 \lambda-18+9 \lambda-27=0$

$\Rightarrow \quad 49 \lambda-49=0 \Rightarrow \lambda=1$

$\therefore$ The foot of the perpendicular is $-2(1)+4,6(1),-3(1)+1$

i.e., $2,6,-2$

$ \text{ Now, distance } \begin{aligned} P Q & =\sqrt{(2-2)^{2}+(3-6)^{2}+(-8+2)^{2}} \\ & =\sqrt{9+36}=\sqrt{45}=3 \sqrt{5} \end{aligned} $

Hence, the required coordinates of the foot of perpendicular are $2,6,-2$ and the required distance is $3 \sqrt{5}$ units.

17. Find the distance of a point $(2,4,-1)$ from the line

$\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}$.

Show Answer

Solution

The given equation of line is

$ \frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}=\lambda \text{ and any point } P(2,4,-1) $

Let $Q$ be any point on the given line

$\therefore$ Coordinates of $Q$ are $x=\lambda-5, y=4 \lambda-3, z=-9 \lambda+6$

D’ratios of PQ are $\lambda-5-2,4 \lambda-3-4,-9 \lambda+6+1$

i.e., $\lambda-7,4 \lambda-7,-9 \lambda+7$

and the d’ratios of the line are $1,4,-9$

If $PQ \perp$ line then

$ \begin{aligned} 1(\lambda-7)+4(4 \lambda-7)-9(-9 \lambda+7) & =0 \\ \lambda-7+16 \lambda-28+81 \lambda-63 & =0 \\ \Rightarrow \quad 98 \lambda-98 & =0 \quad \therefore \quad \lambda=1 \end{aligned} $

So, the coordinates of $Q$ are $1-5,4 \times 1-3,-9 \times 1+6$ i.e., $-4,1,-3$

$ \begin{aligned} \therefore \quad PQ & =\sqrt{(-4-2)^{2}+(1-4)^{2}+(-3+1)^{2}} \\ & =\sqrt{(-6)^{2}+(-3)^{2}+(-2)^{2}}=\sqrt{36+9+4}=\sqrt{49}=7 \end{aligned} $

Hence, the required distance is 7 units.

18. Find the length and foot of perpendicular from the point $(1, \frac{3}{2}, 2)$ to the plane $2 x-2 y+4 z+5=0$.

Show Answer

Solution

Given plane is $2 x-2 y+4 z+5=0$ and given point is $(1, \frac{3}{2}, 2)$

D’ratios of the normal to the plane are 2, - 2, 4

So, the equation of the line passing through $(1, \frac{3}{2}, 2)$ and whose d’ratios are equal to the d’ratios of the normal to the plane i.e., $2,-2,4$ is $\frac{x-1}{2}=\frac{y-\frac{3}{2}}{-2}=\frac{z-2}{4}=\lambda$

$\therefore$ Any point in the plane is $2 \lambda+1,-2 \lambda+\frac{3}{2}, 4 \lambda+2$

Since, the point lies in the plane, then

$2(2 \lambda+1)-2(-2 \lambda+\frac{3}{2})+4(4 \lambda+2)+5=0$

$\Rightarrow 4 \lambda+2+4 \lambda-3+16 \lambda+8+5=0$

$\Rightarrow 24 \lambda+12=0 \quad \therefore \lambda=-\frac{1}{2}$

So, the coordinates of the point in the plane are

$ 2(-\frac{1}{2})+1,-2(-\frac{1}{2})+\frac{3}{2}, 4(-\frac{1}{2})+2 \text{ i.e., } 0, \frac{5}{2}, 0 $

Hence, the foot of the perpendicular is $(0, \frac{5}{2}, 0)$ and the

$ \begin{aligned} \text{required length} \quad & =\sqrt{(1-0)^{2}+(\frac{3}{2}-\frac{5}{2})^{2}+(2-0)^{2}} \\ & =\sqrt{1+1+4}=\sqrt{6} \text{ units } \end{aligned} $

19. Find the equations of the line passing through the point $(3,0,1)$ and parallel to the planes $x+2 y=0$ and $3 y-z=0$.

Show Answer

Solution

Given point is $(3,0,1)$ and the equation of planes are

and $\quad \begin{aligned} x+2 y & =0 \\ 3 y-z & =0\end{aligned}$

Equation of any line $l$ passing through $(3,0,1)$ is

$l: \frac{x-3}{a}=\frac{y-0}{b}=\frac{z-1}{c}$

Direction ratios of the normal to plane (i) and plane (ii) are

$(1,2,0)$ and $(0,3,-1)$

Since the line is parallel to both the planes.

$ \begin{matrix} \therefore & 1 \cdot a+2 \cdot b+0 . c=0 \Rightarrow a+2 b+0 c=0 \\ \text{ and } & 0 \cdot a+3 \cdot b-1 . c=0 \Rightarrow 0 \cdot a+3 b-c=0 \end{matrix} $

So

$ \frac{a}{-2-0}=\frac{-b}{-1-0}=\frac{c}{3-0}=\lambda $

$\therefore a=-2 \lambda, b=\lambda, c=3 \lambda$

So, the equation of line is

$ \frac{x-3}{-2 \lambda}=\frac{y}{\lambda}=\frac{z-1}{3 \lambda} $

Hence, the required equation is

or in vector form is

$ \frac{x-3}{-2}=\frac{y}{1}=\frac{z-1}{3} $

$ (x-3) \hat{i}+y \hat{j}+(z-1) \hat{k}=\lambda(-2 \hat{i}+\hat{j}+3 \hat{k}) $

20. Find the equation of the plane through the points $(2,1,-1)$ and $(-1,3,4)$, and perpendicular to the plane $x-2 y+4 z=10$.

Show Answer

Solution

Equation of the plane passing through two points $(x_1, y_1, z_1)$ and $(x_2, y_2, z_2)$ with its normal’s d’ratios is

$$ \begin{equation*} a(x-x_1)+b(y-y_1)+c(z-z_1)=0 \tag{i} \end{equation*} $$

If the plane is passing through the given points $(2,1,-1)$ and $(-1,3,4)$ then

$$ \begin{align*} & & a(x_2-x_1)+b(y_2-y_1)+c(z_2-z_1) & =0 \\ \Rightarrow & & a(-1-2)+b(3-1)+c(4+1) & =0 \\ \Rightarrow & & -3 a+2 b+5 c & =0 \tag{ii} \end{align*} $$

Since the required plane is perpendicular to the given plane $x-2 y+4 z=10$, then

$$ \begin{equation*} 1 . a-2 . b+4 . c=10 \tag{iii} \end{equation*} $$

Solving (ii) and (iii) we get,

$ \frac{a}{8+10}=\frac{-b}{-12-5}=\frac{c}{6-2}=\lambda $

$a=18 \lambda, b=17 \lambda, c=4 \lambda$

Hence, the required plane is

$ \begin{matrix} 18 \lambda(x-2)+17 \lambda(y-1)+4 \lambda(z+1) =0 \\ \Rightarrow 18 x-36+17 y-17+4 z+4 =0 \\ \Rightarrow 18 x+17 y+4 z-49 =0 \end{matrix} $

21. Find the shortest distance between the lines given by

and $\quad \vec{r}=15 \hat{i}+29 \hat{j}+5 \hat{k}+\mu(3 \hat{i}+8 \hat{j}-5 \hat{k})$.

$ \begin{aligned} & \vec{r}=(8+3 \lambda) \hat{i}-(9+16 \lambda) \hat{j}+(10+7 \lambda) \hat{k} \\ & \vec{r}=15 \hat{i}+29 \hat{j}+5 \hat{k}+\mu(3 \hat{i}+8 \hat{j}-5 \hat{k}) . \end{aligned} $

Show Answer

Solution

Given equations of lines are

$$ \begin{align*} \vec{r} & =(8+3 \lambda) \hat{i}-(9+16 \lambda) \hat{j}+(10+7 \lambda) \hat{k} \tag{i}\\ \text{ and } \quad \vec{r} & =15 \hat{i}+29 \hat{j}+5 \hat{k}+\mu(3 \hat{i}+8 \hat{j}-5 \hat{k}) \tag{ii} \end{align*} $$

Equation (i) can be re-written as

$$ \begin{equation*} \vec{r}=8 \hat{i}-9 \hat{j}+10 \hat{k}+\lambda(3 \hat{i}-16 \hat{j}+7 \hat{k}) \tag{iii} \end{equation*} $$

Here, $\quad \vec{a} _1=8 \hat{i}-9 \hat{j}+10 \hat{k}$ and $ \vec{a} _2=15 \hat{i}+29 \hat{j}+5 \hat{k}$

$ \begin{aligned} \vec{b} _1 & =3 \hat{i}-16 \hat{j}+7 \hat{k} \text{ and } \vec{b} _2=3 \hat{i}+8 \hat{j}-5 \hat{k} \\ \vec{a} _2- \vec{a} _1 & =7 \hat{i}+38 \hat{j}-5 \hat{k} \\ \vec{b} _1 \times \vec{b} _2 & = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix} \end{aligned} $

$ \begin{aligned} & =\hat{i}(80-56)-\hat{j}(-15-21)+\hat{k}(24+48) \\ & =24 \hat{i}+36 \hat{j}+72 \hat{k} \end{aligned} $

$\therefore$ Shortest distance, SD $\begin{aligned}=|\frac{( \vec{a} _2- \vec{a} _1) \cdot( \vec{b} _1 \times \vec{b} _2)}{| \vec{b} _1 \times \vec{b} _2|}|\end{aligned}$

$ \begin{aligned} & =|\frac{(7 \hat{i}+38 \hat{j}-5 \hat{k}) \cdot(24 \hat{i}+36 \hat{j}+72 \hat{k})}{\sqrt{(24)^{2}+(36)^{2}+(72)^{2}}}| \\ & =|\frac{168+1368-360}{\sqrt{576+1296+5184}}|=|\frac{168+1008}{\sqrt{7056}}|=\frac{1176}{84}=14 \text{ units } \end{aligned} $

Hence, the required distance is 14 units.

22. Find the equation of the plane which is perpendicular to the plane $5 x+3 y+6 z+8=0$ and which contains the line of intersection of the planes $x+2 y+3 z-4=0$ and $2 x+y-z+5=0$.

Show Answer

Solution

The given planes are

$P_1: \quad 5 x+3 y+6 z+8=0$

$P_2: \quad x+2 y+3 z-4=0$

$P_3: \quad 2 x+y-z+5=0$

Equation of the plane passing through the line of intersection of $P_2$ and $P_3$ is

$ (x+2 y+3 z-4)+\lambda(2 x+y-z+5)=0 $

$$ \begin{equation*} \Rightarrow \quad(1+2 \lambda) x+(2+\lambda) y+(3-\lambda) z-4+5 \lambda=0 \tag{i} \end{equation*} $$

Plane (i) is perpendicular to $P_1$, then

$5(1+2 \lambda)+3(2+\lambda)+6(3-\lambda) =0 $

$\Rightarrow \quad 5 5+10 \lambda+6+3 \lambda+18-6 \lambda =0$

$\Rightarrow \quad 7 \lambda+29 =0 $

$\therefore \quad \lambda =\frac{-29}{7}$

Putting the value of $\lambda$ in eq. (i), we get

$ \begin{aligned} & {[1+2(\frac{-29}{7})] x+[2-\frac{29}{7}] y+[3+\frac{29}{7}] z-4+5(\frac{-29}{7})=0} \\ & \Rightarrow \frac{-15}{7} x-\frac{15}{7} y+\frac{50}{7} z-4-\frac{145}{7}=0 \\ & \Rightarrow-15 x-15 y+50 z-28-145=0 \\ & \Rightarrow-15 x-15 y+50 z-173=0 \Rightarrow 51 x+15 y-50 z+173=0 \end{aligned} $

23. The plane $a x+b y=0$ is rotated about its line of intersection with plane $z=0$ through an angle $\alpha$. Prove that the equation of the plane in its new position is $a x+b y \pm(\sqrt{a^{2}+b^{2}} \tan \alpha) z=0$.

Show Answer

Solution

Given planes are:

$$ \begin{align*} a x+b y & =0 \tag{i}\\ z & =0 \tag{ii} \end{align*} $$

Equation of any plane passing through the line of intersection of plane (i) and (ii) is

$$ \begin{equation*} (a x+b y)+k z=0 \Rightarrow a x+b y+k z=0 \tag{iii} \end{equation*} $$

Dividing both sides by $\sqrt{a^{2}+b^{2}+k^{2}}$, we get

$\begin{aligned}\frac{a}{\sqrt{a^{2}+b^{2}+k^{2}}} x+\frac{b}{\sqrt{a^{2}+b^{2}+k^{2}}} y+\frac{k}{\sqrt{a^{2}+b^{2}+k^{2}}} z=0\end{aligned}$

$\therefore$ Direction cosines of the normal to the plane are

$\begin{aligned}\frac{a}{\sqrt{a^{2}+b^{2}+k^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}+k^{2}}}, \frac{k}{\sqrt{a^{2}+b^{2}+k^{2}}}\end{aligned}$

and the direction cosines of the plane ( $i$ ) are

$\begin{aligned}\frac{a}{\sqrt{a^{2}+b^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}}}, 0\end{aligned}$

Since, $\alpha$ is the angle between the planes (i) and (iii), we get

$ \begin{aligned} & \cos \alpha=\frac{a \cdot a+b \cdot b+k \cdot 0}{\sqrt{a^{2}+b^{2}+k^{2}} \cdot \sqrt{a^{2}+b^{2}}} \\ & \Rightarrow \quad \cos \alpha=\frac{a^{2}+b^{2}}{\sqrt{a^{2}+b^{2}+k^{2}} \cdot \sqrt{a^{2}+b^{2}}} \\ & \Rightarrow \quad \cos \alpha=\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{a^{2}+b^{2}+k^{2}}} \Rightarrow \cos ^{2} \alpha=\frac{a^{2}+b^{2}}{a^{2}+b^{2}+k^{2}} \\ & \Rightarrow(a^{2}+b^{2}+k^{2}) \cos ^{2} \alpha=a^{2}+b^{2} \\ & \Rightarrow a^{2} \cos ^{2} \alpha+b^{2} \cos ^{2} \alpha+k^{2} \cos ^{2} \alpha=a^{2}+b^{2} \\ & \Rightarrow \quad k^{2} \cos ^{2} \alpha=a^{2}-a^{2} \cos ^{2} \alpha+b^{2}-b^{2} \cos ^{2} \alpha \\ & \Rightarrow \quad k^{2} \cos ^{2} \alpha=\alpha^{2}(1-\cos ^{2} \alpha)+b^{2}(1-\cos ^{2} \alpha) \\ & \Rightarrow \quad k^{2} \cos ^{2} \alpha=a^{2} \sin ^{2} \alpha+b^{2} \sin ^{2} \alpha \\ & \Rightarrow \quad k^{2} \cos ^{2} \alpha=(a^{2}+b^{2}) \sin ^{2} \alpha \\ & \Rightarrow \quad k^{2}=(a^{2}+b^{2}) \frac{\sin ^{2} \alpha}{\cos ^{2} \alpha} \Rightarrow k= \pm \sqrt{a^{2}+b^{2}} \cdot \tan \alpha \end{aligned} $

Putting the value of $k$ in eq. (iii) we get

$a x+b y \pm(\sqrt{a^{2}+b^{2}} \cdot \tan \alpha) z=0$ which is the required equation of plane.

Hence proved.

24. Find the equation of the plane through the intersection of the planes $\vec{r} \cdot(\hat{i}+3 \hat{j})-6=0$ and $\vec{r} \cdot(3 \hat{i}-\hat{j}-4 \hat{k})=0$, whose perpendicular distance from origin is unity.

Show Answer

Solution

Given planes are;

and $\begin{aligned} \quad \vec{r} \cdot(\hat{i}+3 \hat{j})-6=0 \quad & \Rightarrow \quad x+3 y-6=0 \\ \quad \vec{r} \cdot(3 \hat{i}-\hat{j}-4 \hat{k})=0 & \Rightarrow \quad 3 x-y-4 z=0\end{aligned}$

Equation of the plane passing through the line of intersection of plane (i) and (ii) is

$$ \begin{matrix} (x+3 y-6)+k(3 x-y-4 z)=0 \tag{iii}\\ (1+3 k) x+(3-k) y-4 k z-6=0 \end{matrix} $$

Perpendicular distance from origin

$\begin{aligned}=|\frac{-6}{\sqrt{(1+3 k)^{2}+(3-k)^{2}+(-4 k)^{2}}}|=1\end{aligned}$

$\begin{aligned}\Rightarrow \frac{36}{1+9 k^{2}+6 k+9+k^{2}-6 k+16 k^{2}}=1\end{aligned}$ [Squaring both sides]

$\begin{aligned}\Rightarrow \quad \frac{36}{26 k^{2}+10}=1 \Rightarrow 26 k^{2}+10=36\end{aligned}$

$\Rightarrow \quad 26 k^{2}=26 \quad \Rightarrow \quad k^{2}=1 \quad \therefore k= \pm 1$

Putting the value of $k$ in eq. (iii) we get,

$ (x+3 y-6) \pm(3 x-y-4 z)=0 $

$\Rightarrow x+3 y-6+3 x-y-4 z=0$ and $x+3 y-6-3 x+y+4 z=0$

$\Rightarrow 4 x+2 y-4 z-6=0$ and $-2 x+4 y+4 z-6=0$

Hence, the required equations are:

$4 x+2 y-4 z-6=0$ and $-2 x+4 y+4 z-6=0$.

25. Show that the points $(\hat{i}-\hat{j}+3 \hat{k})$ and $3(\hat{i}+\hat{j}+\hat{k})$ are equidistant from the plane $\vec{r} \cdot(5 \hat{i}+2 \hat{j}-7 \hat{k})+9=0$ and lies on opposite side of it.

Show Answer

Solution

Given points are $P(\hat{i}-\hat{j}+3 \hat{k})$ and $Q(3 \hat{i}+3 \hat{j}+3 \hat{k})$ and the plane $\vec{r} .(5 \hat{i}+2 \hat{j}-7 \hat{k})+9=0$

Perpendicular distance of $P(\hat{i}-\hat{j}+3 \hat{k})$ from the plane

$ \begin{aligned} \vec{r} .(5 \hat{i}+2 \hat{j}-7 \hat{k})+9 & =|\frac{(\hat{i}-\hat{j}+3 \hat{k}) \cdot(5 \hat{i}+2 \hat{j}-7 \hat{k})+9}{\sqrt{(5)^{2}+(2)^{2}+(-7)^{2}}}| \\ & =|\frac{5-2-21+9}{\sqrt{25+4+49}}|=|\frac{-9}{\sqrt{78}}| \end{aligned} $

and perpendicular distance of $Q(3 \hat{i}+3 \hat{j}+3 \hat{k})$ from the plane

$ \begin{aligned} & =|\frac{(3 \hat{i}+3 \hat{j}+3 \hat{k}) \cdot(5 \hat{i}+2 \hat{j}-7 \hat{k})+9}{\sqrt{25+4+49}}| \\ & =|\frac{15+6-21+9}{\sqrt{78}}|=|\frac{9}{\sqrt{78}}| \end{aligned} $

Hence, the two points are equidistant from the given plane. Opposite sign shows that they lie on either side of the plane.

26. $\overrightarrow{{}AB}=3 \hat{i}-\hat{j}+\hat{k}$ and $\overrightarrow{{}CD}=-3 \hat{i}+2 \hat{j}+4 \hat{k}$ are two vectors. The position vectors of the points $A$ and $C$ are $6 \hat{i}+7 \hat{j}+4 \hat{k}$ and $-9 \hat{j}+2 \hat{k}$, respectively. Find the position vector of a point $P$ on the line $AB$ and a point $Q$ on the line $CD$ such that $\overrightarrow{{}PQ}$ is perpendicular to $\overrightarrow{{}AB}$ and $\overrightarrow{{}CD}$ both.

Show Answer

Solution

Position vector of $A$ is $6 \hat{i}+7 \hat{j}+4 \hat{k}$ and $\overrightarrow{{}AB}=3 \hat{i}-\hat{j}+\hat{k}$

So, equation of any line passing through $A$ and parallel to $\overrightarrow{{}AB}$

$$ \begin{equation*} \vec{r}=(6 \hat{i}+7 \hat{j}+4 \hat{k})+\lambda(3 \hat{i}-\hat{j}+\hat{k}) \tag{i} \end{equation*} $$

Now any point $P$ on $\overrightarrow{{}AB}=(6+3 \lambda, 7-\lambda, 4+\lambda)$

Similarly, position vector of $C$ is $-9 \hat{j}+2 \hat{k}$

and $\overrightarrow{{}CD}=-3 \hat{i}+2 \hat{j}+4 \hat{k}$

So, equation of any line passing through $C$ and parallel to $\overrightarrow{{}CD}$ is

$$ \begin{equation*} \vec{r}=(-9 j+2 \hat{k})+\mu(-3 \hat{i}+2 \hat{j}+4 \hat{k}) \tag{ii} \end{equation*} $$

Any point $Q$ on $\overrightarrow{{}CD}=(-3 \mu,-9+2 \mu, 2+4 \mu)$

d’ratios of $\overrightarrow{{}PQ}$ are

$ (6+3 \lambda+3 \mu, 7-\lambda+9-2 \mu, 4+\lambda-2-4 \mu) $

$\Rightarrow(6+3 \lambda+3 \mu),(16-\lambda-2 \mu),(2+\lambda-4 \mu)$

Now $\overrightarrow{{}PQ}$ is $\perp$ to eq. (i), then

$3(6+3 \lambda+3 \mu)-1(16-\lambda-2 \mu)+1(2+\lambda-4 \mu)=0$

$\Rightarrow 18+9 \lambda+9 \mu-16+\lambda+2 \mu+2+\lambda-4 \mu=0 $

$\Rightarrow 11 \lambda+7 \mu+4=0\qquad $(iii)

$\overrightarrow{{}PQ} \text{ is also } \perp \text{ to eq. }(\text{ ii }) \text{, then }$

$-3(6+3 \lambda+3 \mu)+2(16-\lambda-2 \mu)+4(2+\lambda-4 \mu)=0 $

$\Rightarrow -18-9 \lambda-9 \mu+32-2 \lambda-4 \mu+8+4 \lambda-16 \mu=0 $

$\Rightarrow -7 \lambda-29 \mu+22=0 $

$\Rightarrow 7 \lambda+29 \mu-22=0 \qquad $(iv)

Solving eq. (iii) and (iv) we get

$ \begin{aligned} 7 \lambda+49 \mu+28=0 \\ 77 \lambda+319 \mu-242=0 \\ (-) \quad (-) \quad (+) \\ \hline -270\mu+270=0 \end{aligned} $

$\therefore \mu=1$

Now using $\mu=1$ in eq. (iv) we get

$ 7 \lambda+29-22=0 \Rightarrow \lambda=-1 $

$\therefore$ Position vector of $P=[6+3(-1), 7+1,4-1]=(3,8,3)$

and position vector of $Q=[-3(1),-9+2(1), 2+4(1)]=(-3,-7,6)$

Hence, the position vectors of

$ P=3 \hat{i}+8 \hat{j}+3 \hat{k} \text{ and } Q=-3 \hat{i}-7 \hat{j}+6 \hat{k} $

27. Show that the straight lines whose direction cosines are given by $2 l+2 m-n=0$ and $m n+n l+l m=0$ are at right angles.

Show Answer

Solution

Given that $2 l+2 m-n=0$ and $\quad m n+n l+l m=0$

Eliminating $m$ from eq. (i) and (ii) we get,

$ \begin{aligned} & m=\frac{n-2 l}{2} \\ \Rightarrow & (\frac{n-2 l}{2}) n+n l+l(\frac{n-2 l}{2})=0 \\ \Rightarrow & \frac{n^{2}-2 n l+2 n l+n l-2 l^{2}}{2}=0 \\ \Rightarrow & n^{2}+n l-2 l^{2}=0 \\ \Rightarrow & n^{2}+2 n l-n l-2 l^{2}=0 \\ \Rightarrow & n(n+2 l)-l(n+2 l)=0 \\ \Rightarrow & (n-l)(n+2 l)=0 \\ \Rightarrow & n=-2 l \quad \text{ and } \quad n=l \\ \therefore & m=\frac{-2 l-2 l}{2}, \quad m=\frac{l-2 l}{2} \\ \Rightarrow & m=-2 l, \quad m=\frac{-l}{2} \end{aligned} $

Therefore, the direction ratios are proportional to $l,-2 l,-2 l$ and $l, \frac{-l}{2}, l$.

$\Rightarrow 1,-2,-2$ and $2,-1,2$

If the two lines are perpendicular to each other then

$ \begin{aligned} 1(2)-2(-1)-2 \times 2 & =0 \\ 2+2-4 & =0 \\ 0 & =0 \end{aligned} $

Hence, the two lines are perpendicular.

28. If $l_1, m_1, n_1 ; l_2, m_2, n_2 ; l_3, m_3, n_3$ are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to $l_1+l_2+l_3, m_1+m_2+m_3$, $n_1+n_2+n_3$, makes equal angles with them.

Show Answer

Solution

Let $\vec{a}, \vec{b}, \vec{c}$ and $\vec{d}$ are such that

$ \vec{a}=l_1 \hat{i}+m_1 \hat{j}+n_1 \hat{k} $

$ \begin{aligned} \vec{b} & =l_2 \hat{i}+m_2 \hat{j}+n_2 \hat{k} \\ \vec{c} & =l_3 \hat{i}+m_3 \hat{j}+n_3 \hat{k} \end{aligned} $

and $\vec{d}=(l_1+l_2+l_3) \hat{i}+(m_1+m_2+m_3) \hat{j}+(n_1+n_2+n_3) \hat{k}$

Since the given $d^{\prime}$ cosines are mutually perpendicular then

$ \begin{aligned} & l_1 l_2+m_1 m_2+n_1 n_2=0 \\ & l_2 l_3+m_2 m_3+n_2 n_3=0 \\ & l_1 l_3+m_1 m_3+n_1 n_3=0 \end{aligned} $

Let $\alpha, \beta$ and $\gamma$ be the angles between $\vec{a}$ and $\vec{d}, \vec{b}$ and $\vec{d}, \vec{c}$ and $\vec{d}$ respectively.

$ \begin{aligned} \therefore \cos \alpha & =l_1(l_1+l_2+l_3)+m_1(m_1+m_2+m_3)+n_1(n_1+n_2+n_3) \\ & =l_1^{2}+l_1 l_2+l_1 l_3+m_1^{2}+m_1 m_2+m_1 m_3+n_1^{2}+n_1 n_2+n_1 n_3 \\ & =(l_1^{2}+m_1^{2}+n_1^{2})+(l_1 l_2+m_1 m_2+n_1 n_2)+(l_1 l_3+m_1 m_3+n_1 n_3) \\ & =1+0+0=1 \\ \therefore \cos \beta & =l_2(l_1+l_2+l_3)+m_2(m_1+m_2+m_3)+n_2(n_1+n_2+n_3) \\ & =l_1 l_2+l_2^{2}+l_2 l_3+m_1 m_2+m_2^{2}+m_2 m_3+n_1 n_2+n_2^{2}+n_2 n_3 \\ & =(l_2^{2}+m_2^{2}+n_2^{2})+(l_1 l_2+m_1 m_2+n_1 n_2)+(l_2 l_3+m_2 m_3+n_2 n_3) \\ & =1+0+0=1 \end{aligned} $

Similarly,

$ \begin{aligned} \therefore \cos \gamma & =l_3(l_1+l_2+l_3)+m_3(m_1+m_2+m_3)+n_3(n_1+n_2+n_3) \\ & =l_1 l_3+l_2 l_3+l_3^{2}+m_1 m_3+m_2 m_3+m_3^{2}+n_1 n_3+n_2 n_3+n_3^{2} \\ & =(l_3^{2}+m_3^{2}+n_3^{2})+(l_1 l_3+m_1 m_3+n_1 n_3)+(l_2 l_3+m_2 m_3+n_2 n_3) \\ & =1+0+0=1 \end{aligned} $

$\therefore \cos \alpha=\cos \beta=\cos \gamma=1 \Rightarrow \alpha=\beta=\gamma$ which is the required result.

Objective Type Questions

29. Distance of the point $(\alpha, \beta, \gamma)$ from $y$-axis is

(a) $\beta$

(b) $|\beta|$

(c) $|\beta|+|\gamma|$

(d) $\sqrt{\alpha^{2}+\gamma^{2}}$

Show Answer

Solution

The given point is $(\alpha, \beta, \gamma)$

Any point on $y$-axis $=(0, \beta, 0)$

$\therefore$ Required distance $=\sqrt{(\alpha-0)^{2}+(\beta-\beta)^{2}+(\gamma-0)^{2}}$

$ =\sqrt{\alpha^{2}+\gamma^{2}} $

Hence, the correct option is (d).

  • Option (a) $\beta$: This option is incorrect because $\beta$ represents the coordinate of the point along the $y$-axis, not the distance from the $y$-axis. The distance from the $y$-axis depends on the $x$ and $z$ coordinates, not just the $y$ coordinate.

  • Option (b) $|\beta|$: This option is incorrect for the same reason as option (a). The absolute value of the $y$ coordinate does not represent the distance from the $y$-axis. The distance is determined by the $x$ and $z$ coordinates.

  • Option (c) $|\beta|+|\gamma|$: This option is incorrect because it incorrectly combines the absolute values of the $y$ and $z$ coordinates. The distance from the $y$-axis should be calculated using the Euclidean distance formula, which involves squaring the $x$ and $z$ coordinates, not adding the absolute values of the $y$ and $z$ coordinates.

30. If the direction cosines of a line are $k, k, k$, then

(a) $k>0$

(b) $0<k<1$

(c) $k=1$

(d) $k=\frac{1}{\sqrt{3}}$ or $\frac{-1}{\sqrt{3}}$

Show Answer

Solution

If $l, m, n$ are the direction cosines of a line, then

$l^{2}+m^{2}+n^{2} =1 $

$\text{ So, } \quad k^{2}+k^{2}+k^{2} =1 $

$ \quad \Rightarrow 3 k^{2} =1 \Rightarrow k= \pm \frac{1}{\sqrt{3}}$

Hence, the correct option is (d).

  • Option (a) $k>0$ is incorrect because the value of $k$ can be either positive or negative. The correct values of $k$ are $\frac{1}{\sqrt{3}}$ or $-\frac{1}{\sqrt{3}}$, so $k$ is not necessarily greater than 0.

  • Option (b) $0<k<1$ is incorrect because the value of $k$ can be negative as well. The correct values of $k$ are $\frac{1}{\sqrt{3}}$ or $-\frac{1}{\sqrt{3}}$, and $-\frac{1}{\sqrt{3}}$ does not fall within the range $0<k<1$.

  • Option (c) $k=1$ is incorrect because substituting $k=1$ into the equation $3k^2 = 1$ does not satisfy the equation. The correct values of $k$ are $\frac{1}{\sqrt{3}}$ or $-\frac{1}{\sqrt{3}}$.

31. The distance of the plane $\vec{r} \cdot(\frac{2}{7} \hat{i}+\frac{3}{7} \hat{j}-\frac{6}{7} \hat{k})=1$ from the origin is

(a) 1

(b) 7

(c) $\frac{1}{7}$

(d) None of these

Show Answer

Solution

Given that: $\vec{r} \cdot(\frac{2}{7} \hat{i}+\frac{3}{7} \hat{j}-\frac{6}{7} \hat{k})=1$

So, the distance of the given plane from the origin is

$\begin{aligned}=|\frac{-1}{\sqrt{(\frac{2}{7})^{2}+(\frac{3}{7})^{2}+(\frac{-6}{7})^{2}}}|=|\frac{-1}{\sqrt{\frac{4}{49}+\frac{9}{49}+\frac{36}{49}}}|=\frac{1}{1}=1\end{aligned}$

Hence, the correct option is $(a)$.

  • Option (b) 7 is incorrect because the calculation of the distance involves dividing by the magnitude of the normal vector, which results in a value of 1, not 7.

  • Option (c) $\frac{1}{7}$ is incorrect because the correct distance calculation yields a value of 1, not $\frac{1}{7}$.

  • Option (d) None of these is incorrect because the correct distance is indeed 1, which matches option (a).

32. The sine of the angle between the straight line $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ and the plane $2 x-2 y+z=5$ is

(a) $\frac{10}{6 \sqrt{5}}$

(b) $\frac{5}{5 \sqrt{2}}$

(c) $\frac{2 \sqrt{3}}{5}$

(d) $\frac{\sqrt{2}}{10}$

Show Answer

Solution

Given that: $l: \frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$

and $\quad P: 2 x-2 y+z=5$

d’ratios of the line are $3,4,5$

and d’ratios of the normal to the plane are $2,-2,1$

$ \begin{matrix} \therefore & \sin \theta=\frac{3(2)+4(-2)+5(1)}{\sqrt{9+16+25} \cdot \sqrt{4+4+1}} \\ \Rightarrow & \sin \theta=\frac{6-8+5}{\sqrt{50} \cdot 3} \Rightarrow \frac{3}{5 \sqrt{2} \cdot 3}=\frac{1}{5 \sqrt{2}}=\frac{\sqrt{2}}{10} \end{matrix} $

Hence, the correct option is $(d)$.

  • Option (a) $\frac{10}{6 \sqrt{5}}$: This option is incorrect because the numerator and denominator do not match the correct calculation. The correct numerator should be 3, and the denominator should be $5 \sqrt{2} \cdot 3$. The given option does not simplify to the correct value of $\frac{\sqrt{2}}{10}$.

  • Option (b) $\frac{5}{5 \sqrt{2}}$: This option is incorrect because it simplifies to $\frac{1}{\sqrt{2}}$, which is not the correct value. The correct value is $\frac{\sqrt{2}}{10}$, which is different from $\frac{1}{\sqrt{2}}$.

  • Option (c) $\frac{2 \sqrt{3}}{5}$: This option is incorrect because the numerator and denominator do not match the correct calculation. The correct numerator should be 3, and the denominator should be $5 \sqrt{2} \cdot 3$. The given option does not simplify to the correct value of $\frac{\sqrt{2}}{10}$.

33. The reflection of the point $(\alpha, \beta, \gamma)$ in the $x y$-plane is

(a) $(\alpha, \beta, 0)$

(b) $(0,0, \gamma)$

(c) $(-\alpha,-\beta, \gamma)$

(d) $(\alpha, \beta,-\gamma)$

Show Answer

Solution

Reflection of point $(\alpha, \beta, \gamma)$ in $x y$-plane is $(\alpha, \beta,-\gamma)$.

Hence, the correct option is $(d)$.

  • Option (a) $(\alpha, \beta, 0)$ is incorrect because the reflection of a point in the $xy$-plane does not change the $x$ and $y$ coordinates, but it changes the $z$ coordinate to its negative value, not to zero.

  • Option (b) $(0,0, \gamma)$ is incorrect because the reflection of a point in the $xy$-plane does not change the $x$ and $y$ coordinates to zero; it only changes the $z$ coordinate to its negative value.

  • Option (c) $(-\alpha,-\beta, \gamma)$ is incorrect because the reflection of a point in the $xy$-plane does not change the $x$ and $y$ coordinates to their negative values; it only changes the $z$ coordinate to its negative value.

34. The area of the quadrilateral $ABCD$, where $A(0,4,1), B(2,3,-1)$, $C(4,5,0)$ and $D(2,6,2)$ is equal to

(a) 9 sq. units

(b) 18 sq. units

(c) 27 sq. units

(d) 81 sq. units

Show Answer

Solution

Given points are

$A(0,4,1), B(2,3,-1), C(4,5,0)$ and $D(2,6,2)$

d’ratios of $AB=2,-1-2$

and d’ratios of $D C=2,-1,-2$

$\therefore AB | DC$

Similarly, d’ratios of $AD=2,2,1$ and d’ratios of $BC=2,2,1$

$\therefore AD | BC$

So $\square ABCD$ is a parallelogram.

$ \begin{aligned} & \overrightarrow{{}AB}=2 \hat{i}-\hat{j}-2 \hat{k} \\ & \overrightarrow{{}AD}=2 \hat{i}+2 \hat{j}+\hat{k} \end{aligned} $

$\therefore$ Area of parallelogram $ABCD=|\overrightarrow{{}AB} \times \overrightarrow{{}AD}|$

$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & -2 \\ 2 & 2 & 1\end{vmatrix} =\hat{i}(-1+4)-\hat{j}(2+4)+\hat{k}(4+2)=3 \hat{i}-6 \hat{j}+6 \hat{k}$

$=\sqrt{(3)^{2}+(-6)^{2}+(6)^{2}}=\sqrt{9+36+36}=\sqrt{81}=9$ sq units

Hence, the correct option is $(a)$.

  • Option (b) 18 sq. units: This option is incorrect because the calculated area of the parallelogram $ABCD$ is 9 square units, not 18. The determinant method used to find the area yields a result of 9, which is significantly less than 18.

  • Option (c) 27 sq. units: This option is incorrect because the calculated area of the parallelogram $ABCD$ is 9 square units, not 27. The determinant method used to find the area yields a result of 9, which is significantly less than 27.

  • Option (d) 81 sq. units: This option is incorrect because the calculated area of the parallelogram $ABCD$ is 9 square units, not 81. The determinant method used to find the area yields a result of 9, which is significantly less than 81.

35. The locus represented by $x y+y z=0$ is

(a) A pair of perpendicular lines

(b) A pair of parallel lines

(c) A pair of parallel planes

(d) A pair of perpendicular planes

Show Answer

Solution

Given that: $\quad x y+y z=0$

$ \begin{aligned} y \cdot(x+z) & =0 \\ y & =0 \text{ or } x+z=0 \end{aligned} $

Here $y=0$ is one plane and $x+z=0$ is another plane. So, it is a pair of perpendicular planes.

Hence, the correct option is $(d)$.

  • (a) A pair of perpendicular lines: The equation (xy + yz = 0) represents a relationship in three-dimensional space involving planes, not lines. Therefore, it cannot represent a pair of perpendicular lines.

  • (b) A pair of parallel lines: Similar to option (a), the equation (xy + yz = 0) involves variables in three-dimensional space and describes planes, not lines. Hence, it cannot represent a pair of parallel lines.

  • (c) A pair of parallel planes: The equation (xy + yz = 0) simplifies to (y(x + z) = 0), which gives two distinct planes: (y = 0) and (x + z = 0). These planes intersect along a line and are not parallel to each other. Therefore, it cannot represent a pair of parallel planes.

36. The plane $2 x-3 y+6 z-11=0$ makes an angle $\sin ^{-1}(\alpha)$ with $x$-axis. The value of $\alpha$ is equal to

(a) $\frac{\sqrt{3}}{2}$

(b) $\frac{\sqrt{2}}{3}$

(c) $\frac{2}{7}$

(d) $\frac{3}{7}$

Show Answer

Solution

Direction ratios of the normal to the plane $2 x-3 y+6 z-11=0$ are 2, -3, 6

Direction ratios of $x$-axis are $1,0,0$ $\therefore$ angle between plane and line is

$ \begin{aligned} \sin \theta & =\frac{2(1)-3(0)+6(0)}{\sqrt{(2)^{2}+(-3)^{2}+(6^{2})} \cdot \sqrt{(1)^{2}+(0)^{2}+(0)^{2}}} \\ & =\frac{2}{\sqrt{4+9+36}}=\frac{2}{7} \end{aligned} $

Hence, the correct option is (c).

  • Option (a) $\frac{\sqrt{3}}{2}$: This value is incorrect because it does not match the calculated value of $\frac{2}{7}$ for $\sin \theta$. The calculation involves the dot product of the direction ratios of the normal to the plane and the direction ratios of the x-axis, divided by the product of their magnitudes. The result of this calculation is $\frac{2}{7}$, not $\frac{\sqrt{3}}{2}$.

  • Option (b) $\frac{\sqrt{2}}{3}$: This value is incorrect for the same reason as option (a). The correct value of $\sin \theta$ is derived from the specific direction ratios given in the problem, and the result is $\frac{2}{7}$. The value $\frac{\sqrt{2}}{3}$ does not match this result.

  • Option (d) $\frac{3}{7}$: This value is also incorrect because the correct calculation yields $\frac{2}{7}$, not $\frac{3}{7}$. The dot product and magnitude calculations specifically result in $\frac{2}{7}$, making $\frac{3}{7}$ an incorrect option.

Fillers

37. A plane passes through the points $(2,0,0),(0,3,0)$ and $(0,0,4)$ ……

The equation of plane is

Show Answer

Solution

Given points are $(2,0,0),(0,3,0)$ and $(0,0,4)$.

So, the intercepts cut by the plane on the axes are 2, 3, 4

Equation of the plane (intercept form) is

$ \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 \quad \Rightarrow \quad \frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1 $

Hence, the equation of plane is $\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1$.

38. The direction cosines of vector $(2 \hat{i}+2 \hat{j}-\hat{k})$ are ……

Show Answer

Solution

Let

$ \vec{a}=2 \hat{i}+2 \hat{j}-\hat{k} $

direction ratios of $\vec{a}$ are 2,2 , -1

So, the direction cosines are $\frac{2}{\sqrt{4+4+1}}, \frac{2}{\sqrt{4+4+1}}, \frac{-1}{\sqrt{4+4+1}}$

$\Rightarrow \frac{2}{3}, \frac{2}{3}, \frac{-1}{3}$

Hence, the direction cosines of the given vector are $\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}$.

39. The vector equation of the line $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$ is ……

Show Answer

Solution

The given equation is

$ \frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2} $

Here $\vec{a}=(5 \hat{i}-4 \hat{j}+6 \hat{k})$ and $\vec{b}=(3 \hat{i}+7 \hat{j}+2 \hat{k})$

Equation of the line is $\vec{r}=\vec{a}+\vec{b} \lambda$

Hence, the vector equation of the given line is

$ \vec{r}=(5 \hat{i}-4 \hat{j}+6 \hat{k})+\lambda(3 \hat{i}+7 \hat{j}+2 \hat{k}) $

40. The vector equation of the line through the points $(3,4,-7)$ and $(1,-1,6)$ is ……

Show Answer

Solution

Given the points $(3,4,-7)$ and $(1,-1,6)$

Here $\vec{a}=3 \hat{i}+4 \hat{j}-7 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+6 \hat{k}$

Equation of the line is $\vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a})$

$\Rightarrow \vec{r}=(3 \hat{i}+4 \hat{j}-7 \hat{k})+\lambda[(\hat{i}-\hat{j}+6 \hat{k})-(3 \hat{i}+4 \hat{j}-7 \hat{k})]$

$\Rightarrow \vec{r}=(3 \hat{i}+4 \hat{j}-7 \hat{k})+\lambda(-2 \hat{i}-5 \hat{j}+13 \hat{k})$

$\Rightarrow(x \hat{i}+y \hat{j}+z \hat{k})=(3 \hat{i}+4 \hat{j}-7 \hat{k})+\lambda(-2 \hat{i}-5 \hat{j}+13 \hat{k})$

$\Rightarrow(x-3) \hat{i}+(y-4) \hat{j}+(z+7) \hat{k}=\lambda(-2 \hat{i}-5 \hat{j}+13 \hat{k})$

Hence, the vector equation of the line is

$ (x-3) \hat{i}+(y-4) \hat{j}+(z+7) \hat{k}=\lambda(-2 \hat{i}-5 \hat{j}+13 \hat{k}) $

41. The Cartesian equation of the plane $\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2$ is ……

Show Answer

Solution

Given equation is $\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2$

$\begin{matrix} \Rightarrow & (x \hat{i}+y \hat{j}+z \hat{k}) \cdot(\hat{i}+\hat{j}-\hat{k}) & =2 \\ \Rightarrow & x+y-z & =2\end{matrix} $

Hence, the Cartesian equation of the plane is $x+y-z=2$.

True/False

42. The unit vector normal to the plane $x+2 y+3 z-6=0$ is

$ \frac{1}{\sqrt{14}} \hat{i}+\frac{2}{\sqrt{14}} \hat{j}+\frac{3}{\sqrt{14}} \hat{k} $

Show Answer

Solution

Given plane is $x+2 y+3 z-6=0$

Vector normal to the plane $\vec{n}=\hat{i}+2 \hat{j}+3 \hat{k}$

$\therefore \hat{n}=\frac{\vec{n}}{|\vec{n}|}=\frac{\hat{i}+2 \hat{j}+3 \hat{k}}{\sqrt{(1)^{2}+(2)^{2}+(3)^{2}}}=\frac{1}{\sqrt{14}} \hat{i}+\frac{2}{\sqrt{14}} \hat{j}+\frac{3}{\sqrt{14}} \hat{k}$

Hence, the given statement is ’true'.

43. The intercepts made by the plane $2 x-3 y+5 z+4=0$ on the coordinate axes are $-2, \frac{4}{3}, \frac{-4}{5}$.

Show Answer

Solution

Equation of the plane is $2 x-3 y+5 z+4=0$

$\Rightarrow \quad 2 x-3 y+5 z=-4$

$\Rightarrow \frac{2}{-4} x-\frac{3 y}{-4}+\frac{5 z}{-4}=1$

$\Rightarrow \frac{x}{-2}-\frac{y}{4 / 3}+\frac{z}{-4 / 5}=1$

So, the required intercepts are $-2, \frac{4}{3}$ and $-\frac{4}{5}$

Hence, the given statement is ’true'.

44. The angle between the line $\vec{r}=(5 \hat{i}-\hat{j}-4 \hat{k})+\lambda(2 \hat{i}-\hat{j}+\hat{k})$ and the plane $\vec{r} .(3 \hat{i}-4 \hat{j}-\hat{k})+5=0$ is $\sin ^{-1}(\frac{5}{2 \sqrt{91}})$.

Show Answer

Solution

Equation of line is $\vec{r}=(5 \hat{i}-\hat{j}-4 \hat{k})+\lambda(2 \hat{i}-\hat{j}+\hat{k})$ and the equation of the plane is $\vec{r} \cdot(3 \hat{i}-4 \hat{j}-\hat{k})+5=0$

Here, $ \vec{b} _1=2 \hat{i}-\hat{j}+\hat{k}$ and $ \vec{n} _2=3 \hat{i}-4 \hat{j}-\hat{k}$

$\therefore \quad \sin \theta=\frac{b_1 \vec{n} _2}{| \vec{b} _1|| \vec{n} _2|}$

$\Rightarrow \quad \sin \theta=\frac{(2 \hat{i}-\hat{j}+\hat{k}) \cdot(3 \hat{i}-4 \hat{j}-\hat{k})}{\sqrt{4+1+1} \cdot \sqrt{9+16+1}}=\frac{6+4-1}{\sqrt{6} \cdot \sqrt{26}}=\frac{9}{\sqrt{6} \cdot \sqrt{26}}$

$\Rightarrow \quad \sin \theta=\frac{9}{2 \sqrt{39}}$ which is false.

Hence, the given statement is ‘false’.

45. The angle between the planes $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+\hat{k})=1$ and $\vec{r} \cdot(\hat{i}-\hat{j})=4$ is $\cos ^{-1}(\frac{-5}{\sqrt{58}})$.

Show Answer

Solution

The given planes are $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+\hat{k})=1$ and $\vec{r} \cdot(\hat{i}-\hat{j})=4$

Here, $ \vec{b} _1=2 \hat{i}-3 \hat{j}+\hat{k}$ and $ \vec{b} _2=(\hat{i}-\hat{j})$

So, $\quad \cos \theta=\frac{ \vec{b} _1 \cdot \vec{n} _2}{| \vec{b} _1|| \vec{n} _2|}$

$\Rightarrow \quad \cos \theta=\frac{(2 i-3 j+\hat{k}) \cdot(\hat{i}-\hat{j})}{\sqrt{4+9+1} \cdot \sqrt{1+1}}=\frac{2+3}{\sqrt{14} \cdot \sqrt{2}}=\frac{5}{\sqrt{28}}$

$\therefore \quad \theta=\cos ^{-1}(\frac{5}{\sqrt{28}})$ which is false.

Hence, the given statement is ‘false’.

46. The line $\vec{r}=2 \hat{i}-3 \hat{j}-\hat{k}+\lambda(\hat{i}-\hat{j}+2 \hat{k})$ lies in the plane $r \cdot(3 \hat{i}+\hat{j}-\hat{k})+2=0$.

Show Answer

Solution

Direction ratios of the line $(\hat{i}-\hat{j}+2 \hat{k})$

Direction ratios of the normal to the plane are $(3 \hat{i}+\hat{j}-\hat{k})$

So $(\hat{i}-\hat{j}+2 \hat{k}) \cdot(3 \hat{i}+\hat{j}-\hat{k})=3-1-2=0$

Therefore, the line is parallel to the plane.

Now point through which the line is passing

$\vec{a}=2 \hat{i}-3 \hat{j}-\hat{k}$

If line lies in the plane then

$ \begin{matrix} (2 \hat{i}-3 \hat{j}-\hat{k}) \cdot(3 \hat{i}+\hat{j}-\hat{k})+2=0 \\ 6-3+1+2 \neq 0 \end{matrix} $

So, the line does not lie in the plane.

Hence, the given statement is ‘false’.

47. The vector equation of the line $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$ is

$\vec{r}=5 \hat{i}-4 \hat{j}+6 \hat{k}+\lambda(3 \hat{i}+7 \hat{j}+2 \hat{k})$.

Show Answer

Solution

The Cartesian form of the equation is

$\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}=\lambda$

$\therefore$ Here $x_1=5, y_1=-4, z_1=6, a=3, b=7, c=2$

So, the vector equation is $\vec{r}=(5 \hat{i}-4 \hat{j}+6 \hat{k})+\lambda(3 \hat{i}+7 \hat{j}+2 \hat{k})$

Hence, the given statement is ’true'.

48. The equation of a line, which is parallel to $2 \hat{i}+\hat{j}+3 \hat{k}$ and which passes through the point $(5,-2,4)$ is $\frac{x-5}{2}=\frac{y+2}{-1}=\frac{z-4}{3}$.

Show Answer

Solution

Here, $x_1=5, y_1=-2, z_1=4 ; a=2, b=1, c=3$

We know that the equation of line is $\frac{x-x_1}{a}=\frac{y-y_1}{b}=\frac{z-z_1}{c}$

$\Rightarrow \quad \frac{x-5}{2}=\frac{y+2}{1}=\frac{z-4}{3}$

Hence, the given statement is ‘false’.

49. If the foot of the perpendicular drawn from the origin to a plane is $(5,-3,-2)$, then the equation of plane is $\vec{r} .(5 \hat{i}-3 \hat{j}-2 \hat{k})=38$.

Show Answer

Solution

The given equation of the plane is $\vec{r} .(5 \hat{i}-3 \hat{j}-2 \hat{k})=38$

If the foot of the perpendicular to this plane is

$(5,-3,-2)$ i.e., $5 \hat{i}-3 \hat{j}-2 \hat{k}$ then

$(5 \hat{i}-3 \hat{j}-2 \hat{k}) \cdot(5 \hat{i}-3 \hat{j}-2 \hat{k})=38$

$\Rightarrow \quad 25+9+4=38$

$38=38$ (satisfied)

Hence, the given statement is ’true'.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ