Unit 3 Electrochemistry (Intext Questions-3)

Intext Questions

3.7 Why does the conductivity of a solution decrease with dilution?

Show Answer

Answer

The conductivity of a solution is the conductance of ions present in a unit volume of the solution. The number of ions (responsible for carrying current) decreases when the solution is diluted. As a result, the conductivity of a solution decreases with dilution.

3.8 Suggest a way to determine the $\Lambda_{m}^{\circ}$ value of water.

Show Answer

Answer

Applying Kohlrausch’s law of independent migration of ions, the $\Lambda_{m}^{0}$ value of water can be determined as follows:

$$ \begin{aligned} \Lambda_{m\left(\mathrm{H_2} \mathrm{O}\right)}^{0} & =\lambda_{\mathrm{H}^{+}}^{0}+\lambda_{\mathrm{OH}^{-}}^{0} \\ & =\left(\lambda_{\mathrm{H}^{+}}^{0}+\lambda_{\mathrm{Cl}^{-}}^{0}\right)+\left(\lambda_{\mathrm{Na}^{+}}^{0}+\lambda_{\mathrm{OH}^{-}}^{0}\right)-\left(\lambda_{\mathrm{Na}^{+}}^{0}+\lambda_{\mathrm{Cl}^{-}}^{0}\right) \\ \Lambda_{m(\mathrm{HCl})}^{0} & +\Lambda_{m(\mathrm{NaOH})}^{0}-\Lambda_{m(\mathrm{NaCl})}^{0} \end{aligned} $$

Hence, by knowing the $\Lambda_{m}^{0}$ values of $\mathrm{HCl}, \mathrm{NaOH}$, and $\mathrm{NaCl}$, the $\Lambda_{m}^{0}$ value of water can be determined.

3.9 The molar conductivity of $0.025 \mathrm{~mol} \mathrm{~L}^{-1}$ methanoic acid is $46.1 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. Calculate its degree of dissociation and dissociation constant. Given $\lambda^{0}\left(\mathrm{H}^{+}\right)$ $=349.6 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ and $\lambda^{0}\left(\mathrm{HCOO}^{-}\right)=54.6 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.

Show Answer

Answer

$C=0.025 \mathrm{~mol} \mathrm{~L}^{-1}$

$\Lambda_{m}=46.1 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$

$\lambda^{0}\left(\mathrm{H}^{+}\right)=349.6 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$

$\lambda^{0}\left(\mathrm{HCOO}^{-}\right)=54.6 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$

$\Lambda_{m}^{0}(\mathrm{HCOOH})=\lambda^{0}\left(\mathrm{H}^{+}\right)+\lambda^{0}\left(\mathrm{HCOO}^{-}\right)$

$=349.6+54.6$

$=404.2 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$

Now, degree of dissociation:

$ \begin{aligned} \alpha & =\frac{\Lambda_{m}(\mathrm{HCOOH})}{\Lambda_{m}^{0}(\mathrm{HCOOH})} \\ \\ & =\frac{46.1}{404.2} \\ \\ & =0.114 \text { (approximately) } \end{aligned} $

Thus, dissociation constant:

$ \begin{aligned} K & =\frac{c \propto^{2}}{(1-\propto)} \\ \\ & =\frac{\left(0.025 \mathrm{~mol} \mathrm{~L}^{-1}\right)(0.114)^{2}}{(1-0.114)} \\ \\ & =3.67 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \end{aligned} $



Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ