BINOMIAL THEOREM - 1 (Principle and simple applications)

Binomial Theorem for Positive Integral Index

If $\mathrm{x}$ and $\mathrm{y}$ are real, then for all $\mathrm{n} \in \mathrm{N}$

$ \begin{aligned} & (x+y)^{n}={ }^{n} C _{0} x^{n}+{ }^{n} C _{1} x^{n-1} y+{ }^{n} C _{2} x^{n-2} y^{2}+\ldots \ldots .+{ }^{n} C _{r} x^{n-r} y^{r}+\ldots .+{ }^{n} C _{n-1} x^{1} y^{n-1}+{ }^{n} C _{n} y^{n} \\ & =\quad \sum _{r=0}^{n}{ }^{n} C _{r} x^{n-r} y^{r} \\ & (x-y)^{n}={ }^{n} C _{0} x^{n}-{ }^{n} C _{1} x^{n-1} y^{1}+{ }^{n} C _{2} x^{n-2} y^{2} \ldots \ldots .{ }^{n} C _{r}(-1)^{r} x^{n-r} y^{r}+\ldots .{ }^{n} C _{n-1}(-1)^{n-1} x^{1} y^{n-1}+{ }^{n} C _{n}(-1)^{n} y^{n} \\ & (x+y)^{n}+(x-y)^{n}=2\left\{{ }^{n} C _{0} x^{n}+{ }^{n} C _{2} x^{n-2} y^{2}+{ }^{n} C _{4} x^{n-4} y^{4}+\ldots \ldots . .\right. \\ & (x+y)^{n}-(x-y)^{n}=2\left\{{ }^{n} C _{1} x^{n-1} a^{1}+{ }^{n} C _{3} x^{n-3} a^{3}+{ }^{n} C _{5} x^{n-5} y^{5}+\ldots \ldots . .\right] \\ & (1+x)^{n}={ }^{n} C _{0}+{ }^{n} C _{1} x+{ }^{n} C _{2} x^{2}+\ldots \ldots \ldots{ }^{n} C _{r} x^{r}+\ldots \ldots .{ }^{n} C _{n} x^{n} \\ & (1-x)^{n}={ }^{n} C _{0}-{ }^{n} C _{1} x+{ }^{n} C _{2} x^{2}-\ldots \ldots \ldots .{ }^{n} C _{r}(-1)^{r} x^{r}+\ldots \ldots+{ }^{n} C _{n}(-1)^{n} x^{n} \end{aligned} $

Properties of Binomial Expansion

(i). The number of terms in the expansion of $(x+y)^{n}$ where $n \in \mathrm{N}$ is $(\mathrm{n}+1)$.

(ii). The sum of exponents of $x & y$ in $(x+y)^{n}$ is equal to $n$, the index of the expansion.

(iii). Since ${ }^{n} \mathrm{C} _{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C} _{\mathrm{n}-\mathrm{r}} ; \mathrm{r}=0,1,2, \ldots \ldots . \mathrm{n}$, the binomial coefficients equidistant from the begin ning and the end are equal.

i.e. ${ }^{n} C _{0}={ }^{n} C _{n},{ }^{n} C _{1}={ }^{n} C _{n-1}$ and so on.

(iv). The general term is the expansion of $(\mathrm{x}+\mathrm{y})^{\mathrm{n}}$ is given by

$ T _{r+1}={ }^{n} C _{r} x^{n-r} y^{r} $

(v). Coefficient of $(r+1)^{\text {th }}$ term in the expansion of $(1+x)^{n}$ is ${ }^{n} C _{r}=$ coefficient of $x^{r}$.

(vi). If $\mathrm{n}$ is odd, then $\left\{(\mathrm{x}+\mathrm{y})^{\mathrm{n}}+(\mathrm{x}-\mathrm{y})^{\mathrm{n}}\right\}$ and $\left\{(\mathrm{x}+\mathrm{y})^{\mathrm{n}}-(\mathrm{x}-\mathrm{y})^{\mathrm{n}}\right\}$ have same number of terms equal to $\left(\frac{\mathrm{n}+1}{2}\right)$.

If $n$ is even, then

$\left\{(\mathrm{x}+\mathrm{y})^{\mathrm{n}}+(\mathrm{x}-\mathrm{y})^{\mathrm{n}}\right\}$ has $\left(\frac{\mathrm{n}}{2}+1\right)$ terms and

$\left\{(\mathrm{x}+\mathrm{y})^{\mathrm{n}}-(\mathrm{x}-\mathrm{y})^{\mathrm{n}}\right\}$ has $\left(\frac{\mathrm{n}}{2}\right)$ terms.

(vii). Middle term If $\mathrm{n}$ is even then in the expansion of $(x+y)^{n},\left(\frac{n}{2}+1\right)$ th terms is the middle term.

If $\mathrm{n}$ is odd natural number, then $\left(\frac{\mathrm{n}+1}{2}\right)$ th and $\left(\frac{\mathrm{n}+3}{2}\right)$ th are the middle terms in the expansion of $(x+y)^{n}$.

(viii). Let $\mathrm{S}=(\mathrm{x}+\mathrm{y})^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C} _{0} \mathrm{x}^{\mathrm{n}}+{ }^{n} \mathrm{C} _{1} \mathrm{x}^{\mathrm{n}-1} \mathrm{y}+\ldots \ldots .+{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{n}-1} \mathrm{xy}^{\mathrm{n}-1}+{ }^{n} \mathrm{C} _{\mathrm{n}} \mathrm{y}^{\mathrm{n}}$ where $\mathrm{n} \in \mathrm{N}$

$= \sum _{\mathrm{r}=0}^{\mathrm{n}} \mathrm{C} _{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \mathrm{y}^{\mathrm{r}}$

Replacing $\mathrm{r}$ by $\mathrm{n}-\mathrm{r}$ we get,

$S=\sum _{r=0}^{n}{ }^{n} C _{n-r} x^{r} y^{n-r}$

$={ }^{n} C _{n} y^{n}+{ }^{n} C _{n-1} y^{n-1} x+\ldots . .+{ }^{n} C _{n-1} y^{n-1}+{ }^{n} C _{n} x^{n}$.

i.e. By replacing $\mathrm{r}$ by $\mathrm{n}-\mathrm{r}$, we are writing the binomial expansion in the reverse order

Properties of Binomial Coefficient

(i). Sum of two binomial coefficients, ${ }^{n} C _{r}+{ }^{n} C _{r-1}={ }^{n+1} C _{r}$

(ii). ${ }^{n} C _{r}=\frac{n}{r}{ }^{n-1} C _{r-1}$

(iii). $\frac{{ }^{n} C _{r}}{{ }^{n} C _{r-1}}=\frac{n-r+1}{r}$

(iv). ${ }^{n} \mathrm{C} _{\mathrm{r}}={ }^{n} \mathrm{C} _{\mathrm{s}} \Rightarrow$ either $\mathrm{r}=\mathrm{s}$ or $\mathrm{r}+\mathrm{s}=\mathrm{n}$

Multinomial Theorem (For a positive integral index)

$\left(\mathrm{x} _{1}+\mathrm{x} _{2}+\ldots \ldots .+\mathrm{xk}\right)^{\mathrm{n}}=\frac{\mathrm{n} !}{\mathrm{n} _{1} ! \mathrm{n} _{2} ! \ldots . . \mathrm{nk} !} \mathrm{x} _{1}^{\mathrm{n} 1} \mathrm{x} _{2}^{\mathrm{n} 2} \ldots \ldots \mathrm{x} _{\mathrm{k}}^{\mathrm{nk}}$,

Where $\mathrm{n} _{1}+\mathrm{n} _{2}+\ldots \ldots+\mathrm{n} _{\mathrm{k}}=\mathrm{n}$ and $0 \leq \mathrm{n} _{1}, \mathrm{n} _{2}, \ldots \ldots . \mathrm{n} _{\mathrm{k}} \leq \mathrm{n}$

  • The greatest coefficient in this expansion is $\frac{\mathrm{n} !}{(\mathrm{q} !)^{k-\mathrm{r}}((\mathrm{q}+1) !)^{\mathrm{r}}}$ where $\mathrm{q}$ is the quotient and $\mathrm{r}$ is the remainder when $\mathrm{n}$ is divided by $\mathrm{k}$.

$\quad \quad $ Eg. Find the greatest coefficient in $(x+y+z+w)^{15}$

$\quad \quad $ $\mathrm{n}=15, \mathrm{k}=4$ we have $15=4 \times 3+3$ i.e. $\mathrm{q}=3, \mathrm{r}=3$ greatest coefficient $=\frac{15 !}{(3 !)^{1}(4 !)^{3}}$

  • Number of distinct terms in the expansion is ${ }^{n+k-1} C _{k-1}$ (Total number of terms).

  • Number of positive integer solutions of $\mathrm{x} _{1}+\mathrm{x} _{2}+\ldots+\mathrm{x} _{\mathrm{k}}=\mathrm{n}$ is ${ }^{\mathrm{n}-1} \mathrm{C} _{\mathrm{k}-1}$.

  • Number of non negative integer solutions of $x _{1}+x _{2}+\ldots+x _{k}=n$ is ${ }^{n+k-1} C _{k-1}$.

  • Sum of all the coefficients is obtained by setting $\mathrm{x} _{1}=\mathrm{x} _{2}=\ldots \ldots \mathrm{x} _{\mathrm{k}}=1$.

Greatest Coefficient and Greatest term

Consider the binomial expansion of $(x+y)^{n}$. where $n \in W$. For a given value of $n$,

Maximum value of ${ }^{n} \mathrm{C} _{\mathrm{r}}$ is ${ }^{n} \mathrm{C} _{\mathrm{n} 2}$ if $\mathrm{n}$ is even

Maximum value of ${ }^{n} C _{r}$ is ${ }^{n} C _{\frac{n-1}{2}}={ }^{n} C _{\frac{n+1}{2}}$ if $n$ is od(d).

To find the greatest term in the expansion of $(x+y)^{n}$,

(i) Find $m=\frac{n+1}{1+\frac{x}{y}}$

(ii) If $\mathrm{m}$ is an integer we have $\mathrm{m}^{\text {th }}$ and $(\mathrm{m}+1)^{\text {th }}$ terms as greatest terms.

(iii) If $\mathrm{m}$ is not an integer, then $([\mathrm{m}]+1)$ th term is the greatest term where [.] denote the greatest integer $\leq \mathrm{m}$.

Divisibility Problems

From the expansion

$(1+\mathrm{a})^{\mathrm{n}}=1+{ }^{\mathrm{n}} \mathrm{C} _{1} \mathrm{a}+{ }^{\mathrm{n}} \mathrm{C} _{2} \mathrm{a}^{2}+\ldots . .+{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{n}} \mathrm{a}^{\mathrm{n}}$, we can see that

(i) $\quad(1+a)^{n}-1$ is a mutliple of $a=M(a)$

(ii) $\quad (1+\mathrm{a})^{\mathrm{n}}-1-$ na is a mutliple of $\mathrm{a}^{2}=\mathrm{M}\left(\mathrm{a}^{2}\right)$

(iii) $\quad (1+\mathrm{a})^{\mathrm{n}}-1-\mathrm{na}-\frac{\mathrm{n}(\mathrm{n}-1)}{2} \mathrm{a}^{2}$ is a mutliple of $\mathrm{a}^{3}$ and so on.

For example

  • $(1+8)^{50}-1=9^{\mathrm{n}}-1$ is $\mathrm{M}(8)$

  • $(1+8)^{50}-1-50 \times 8=9^{\mathrm{n}}-399$ is $\mathrm{M}\left(8^{2}\right)=\mathrm{M}(64)$

  • $(1+8)^{50}-1-50 \times 8-\frac{50 \times 49}{2} 8^{2}=\mathrm{M}\left(8^{3}\right)=\mathrm{M}(512)$ and soon

Binomial Theorem for any index (for negative or fractional index)

$\quad$ If $n \varepsilon Q$, then $(1+x)^{n}=1+n x+\frac{n(n-1)}{2 !} x^{2}+\frac{n(n-1)(n-2)}{3 !} x^{3}+\ldots . . \infty$ provided $|x|<1$.

  • For any index $n$, the general term in the expansion of

i. $\quad(1+x)^{n}$ is $T _{r+1}=\frac{n(n-1) \ldots \ldots . .(n-r+1)}{r !} x^{r}$

ii. $\quad(1+\mathrm{x})^{-\mathrm{n}}$ is $\mathrm{T} _{\mathrm{r}+1}=\frac{(-1)^{\mathrm{r}} \mathrm{n}(\mathrm{n}+1) \ldots \ldots \ldots .(\mathrm{n}+\mathrm{r}-1)}{\mathrm{r} !} \mathrm{x}^{\mathrm{r}}$

iii. $\quad(1-\mathrm{x})^{\mathrm{n}}$ is $\mathrm{T} _{\mathrm{r}+1}=\frac{(-1)^{\mathrm{r}} \mathrm{n}(\mathrm{n}-1) \ldots \ldots \ldots .(\mathrm{n}-\mathrm{r}+1)}{\mathrm{r} !} \mathrm{x}^{\mathrm{r}}$

iv. $\quad(1-\mathrm{x})^{-\mathrm{n}}$ is $\mathrm{T} _{\mathrm{r}+1}=\frac{\mathrm{n}(\mathrm{n}+1) \ldots \ldots \ldots .(\mathrm{n}+\mathrm{r}-1)}{\mathrm{r} !} \mathrm{x}^{\mathrm{r}}$

  • The following expansions should be remembered (for $|\mathrm{x}|<1$ ).

i. $\quad (1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots \ldots \ldots \infty$

ii. $\quad (1-x)^{-1}=1+x+x^{2}+x^{3}+$ $\ldots\ldots \ldots\infty$

iii. $\quad (1+x)^{-2}=1-2 x+3 x^{2}-4 x^{3}+$ $\ldots\ldots \ldots\infty$

iv. $\quad (1-x)^{-2}=1+2 x+3 x^{2}+4 x^{3}+$ $\ldots\ldots \ldots\infty$

  • Note : The expansion in ascending powers of $x$ is valid if $x$ is small. If $x$ is large (i.e. $|x|>1)$, then we may find it convenient to expand in powers of $\frac{1}{x}$, which then will be small.

Exponential series

  • $ \mathrm{e}^{\mathrm{x}}=1+\frac{\mathrm{x}}{1 !}+\frac{\mathrm{x}^{2}}{2 !}+\frac{\mathrm{x}^{3}}{3 !}+\ldots . . \infty$

  • $ \mathrm{e}=1+\frac{1}{1 !}+\frac{1}{2 !}+\frac{1}{3 !}+\ldots . \infty(\mathrm{e} \simeq 2.72)$

  • $ \mathrm{e}+\mathrm{e}^{-1}=2\left(1+\frac{1}{2 !}+\frac{1}{4 !}+\frac{1}{6 !}+\ldots . \infty\right)$

  • $ \mathrm{e}-\mathrm{e}^{-1}=2\left(\frac{1}{1 !}+\frac{1}{3 !}+\frac{1}{5 !}+\frac{1}{7 !}+\ldots . \infty\right)$

Logarithmic series

For $-1<\mathrm{x} \leq 1$

$\log _{e}(1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots . . \infty$

  • $ \log _{\mathrm{e}}(1-\mathrm{x})=-\mathrm{x}-\frac{\mathrm{x}^{2}}{2}-\frac{\mathrm{x}^{3}}{3}-\frac{\mathrm{x}^{4}}{4}+\ldots . \infty,-1 \leq \mathrm{x}<1$

  • $ \log \left(\frac{1+\mathrm{x}}{1-\mathrm{x}}\right)=2\left(\mathrm{x}+\frac{\mathrm{x}^{3}}{3}+\frac{\mathrm{x}^{5}}{5}+\ldots . \infty\right),-1<\mathrm{x}<1$

  • $\log _{\mathrm{e}} 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots . . \infty \approx 0.693$

Solved examples

1. If $\mathrm{C} _{0}, \mathrm{C} _{1}, \mathrm{C} _{2}, \ldots . . \mathrm{Cn}$ denote the coefficients in the binomial expansion of $(1+\mathrm{x})^{\mathrm{n}}$, prove that :

$ \mathrm{C} _{1}+2 \mathrm{C} _{2}+3 \mathrm{C} _{3}+\ldots . .+\mathrm{nC}=\mathrm{n} \cdot 2^{\mathrm{n}-1} $

i.e. $ \sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r} \cdot \mathrm{C} _{\mathrm{r}}=\mathrm{n} \cdot 2^{\mathrm{n}-1}$

Show Answer

Solution :

We have

$\mathrm{C} _{1}+2 \mathrm{C} _{2}+3 . \mathrm{C} _{3}+\ldots .+\mathrm{nC} _{\mathrm{n}}$

$=\sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r} \cdot \mathrm{C} _{\mathrm{r}}$

$=\sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}^{\mathrm{n}} \mathrm{C} _{\mathrm{r}} \quad\left[\because \mathrm{C} _{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}\right]$

$=\sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r} \cdot \frac{\mathrm{n}}{\mathrm{r}}{ }^{\mathrm{n}-1} \mathrm{C} _{\mathrm{r}-1} \quad\left[\because{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}=\frac{\mathrm{n}}{\mathrm{r}} .{ }^{\mathrm{n}-1} \mathrm{C} _{\mathrm{r}-1}\right]$

$=\sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{n} _{\mathrm{r}-1}$

$=\mathrm{n}\left({ }^{(n-1} C _{0}+{ }^{n-1} C _{1}+\ldots .+{ }^{n-1} C _{n-1}\right)=\mathrm{n}(1+1)^{\mathrm{n}-1}[\because \mathrm{x}=1]$

$=n \cdot 2^{\mathrm{n}-1}$

2. If $\mathrm{C} _{0}, \mathrm{C} _{1}, \mathrm{C} _{2}, \ldots . . . \mathrm{Cn}$ denote the coefficients in the binomial expansion of $(1+\mathrm{x})^{\mathrm{n}}$, prove that: $\mathrm{C} _{0}+3 \mathrm{C} _{1}+5 \mathrm{C} _{2}+\ldots . .+(2 \mathrm{n}+1) \mathrm{C} _{\mathrm{n}}=(\mathrm{n}+1) \cdot 2^{\mathrm{n}}$.

Show Answer

Solution :

We have,

$\mathrm{C} _{0}+3 \mathrm{C} _{1}+5 \mathrm{C} _{2}+\ldots .+(2 \mathrm{n}+1) \mathrm{C} _{\mathrm{n}}$

$=\sum _{\mathrm{r}=0}^{\mathrm{n}}(2 \mathrm{r}+1) \mathrm{C} _{\mathrm{r}}$

$=\sum _{\mathrm{r}=0}^{\mathrm{n}}(2 \mathrm{r}+1)^{\mathrm{n}} \mathrm{C} _{\mathrm{r}} \quad\left[\because \mathrm{C} _{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}\right]$

$=\sum _{\mathrm{r}=0}^{\mathrm{n}}\left(2 \mathrm{r} \cdot{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}+{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}\right)$

$=\sum _{\mathrm{r}=0}^{\mathrm{n}} 2 \mathrm{r} \cdot \mathrm{n} _{\mathrm{r}}+\sum _{\mathrm{r}=0}^{\mathrm{n}}{ }^{n} C _{\mathrm{r}}$

$=2 \sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r} \cdot \frac{\mathrm{n}}{\mathrm{r}} \cdot{ }^{\mathrm{n}-1} \mathrm{C} _{\mathrm{r}-1}+\sum _{\mathrm{r}=0}^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}} \quad\left[\because{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}=\frac{\mathrm{n}}{\mathrm{r}} \cdot{ }^{\mathrm{n}-1} \mathrm{C} _{\mathrm{r}-1}\right]$

$ \begin{aligned} & =2 n \sum _{r=1}^{n}{ }^{n-1} C _{r-1}+\sum _{r=0}^{n} C _{r} \\ & =2 n \cdot 2^{n-1}+2^{n} \\ & =n \cdot 2^{n}+2^{n}=(n+1) 2^{n} \end{aligned} $

3. If $\mathrm{C} _{0}, \mathrm{C} _{1}, \mathrm{C} _{2}, \ldots . . \mathrm{Cn}$ denote the coefficients in the binomial expansion of $(1+\mathrm{x})^{\mathrm{n}}$, prove that: $1^{2} \cdot \mathrm{C} _{1}+2^{2} \cdot \mathrm{C} _{2}+3^{2} \cdot \mathrm{C} _{3}+\ldots .+\mathrm{n}^{2} \cdot \mathrm{C} _{\mathrm{n}}=\mathrm{n}(\mathrm{n}+1) 2^{\mathrm{n}-2}$

Show Answer

Solution :

We have,

$1^{2} \cdot \mathrm{C} _{1}+2^{2} \cdot \mathrm{C} _{2}+3^{2} \cdot \mathrm{C} _{3}+\ldots . .+\mathrm{n}^{2} \cdot \mathrm{C} _{\mathrm{n}}$

$=\sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}^{2} \cdot \mathrm{C} _{\mathrm{r}}$

$=\sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}^{2} \cdot \mathrm{n} _{\mathrm{r}}$

$=\sum _{\mathrm{r}=1}^{\mathrm{n}}[\mathrm{r}(\mathrm{r}-1)+\mathrm{r}]{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}$

$=\sum _{r=1}^{n} r(r-1) \cdot \frac{n}{r} \cdot \frac{n-1}{r-1}{ }^{n-2} C _{r-2}+\sum _{r=1}^{n} r \cdot \frac{n}{r}{ }^{n-1} C _{r-1}$

$=n(n-1)\left(\sum _{r=2}^{n}{ }^{n-2} C _{r-2}\right)+n\left(\sum _{r=1}^{n} n-1 C _{r-1}\right)$

$=\mathrm{n}(\mathrm{n}-1)\left({ }^{\mathrm{n}-2} \mathrm{C} _{0}+{ }^{+\mathrm{n}-2} \mathrm{C} _{1}+\ldots .+{ }^{+\mathrm{n}-2} \mathrm{C} _{\mathrm{n}-2}\right)$

$+n\left({ }^{(n-1} \mathrm{C} _{0}{ }^{n-1} \mathrm{C} _{1}+\ldots .+{ }^{\mathrm{n}-1} \mathrm{C} _{\mathrm{n}-1}\right)$

$=\mathrm{n}(\mathrm{n}-1) \cdot 2^{\mathrm{n}-2}+\mathrm{n} \cdot 2^{\mathrm{n}-1}$

$=\mathrm{n}(\mathrm{n}-1+2) 2^{\mathrm{n}-2}$

$=\mathrm{n}(\mathrm{n}+1) 2^{\mathrm{n}-2}$

4. If $\mathrm{C} _{0}, \mathrm{C} _{1}, \mathrm{C} _{2}, \ldots . . \mathrm{Cn}$ denote the coefficients in the binomial expansion of $(1+\mathrm{x})^{\mathrm{n}}$, prove that: $1^{3} \cdot \mathrm{C} _{1}+2^{3} \cdot \mathrm{C} _{2}+3^{3} \cdot \mathrm{C} _{3}+\ldots . .+\mathrm{n}^{3} \cdot \mathrm{C} _{\mathrm{n}}=\mathrm{n}^{2}(\mathrm{n}+3) 2^{\mathrm{n}-3}$

Show Answer

Solution :

We have,

$1^{3} \cdot \mathrm{C} _{1}+2^{3} \cdot \mathrm{C} _{2}+3^{3} \cdot \mathrm{C} _{3}+\ldots . .+\mathrm{n}^{3} \cdot \mathrm{C} _{\mathrm{n}}$

$=\sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}^{3} \cdot \mathrm{C} _{\mathrm{r}}$

$=\sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}^{3} \cdot{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}$

$ \begin{aligned} & =\sum _{\mathrm{r}=1}^{\mathrm{n}}[\mathrm{r}(\mathrm{r}-1)(\mathrm{r}-2)+3 \mathrm{r}(\mathrm{r}-1)+\mathrm{r}]{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}} \\ & =\sum _{r=1}^{n} r(r-1)(r-2)^{n} C _{r}+\sum _{r=1}^{n} 3 r(r-1)^{n} C _{r}+\sum _{r=1}^{n} r^{n} C _{r} \\ & =\sum _{r=3}^{n} r(r-1)(r-2) \cdot \frac{n}{r} \cdot \frac{n-1}{r-1} \cdot \frac{n-2}{r-2} \cdot{ }^{n-3} C _{r-3} \\ & +\sum _{r=2}^{n} 3 r(r-1) \frac{n}{r} \cdot \frac{n-1}{r-1}{ }^{n-2} C _{r-2}+\sum _{r=1}^{n} r \cdot \frac{n _{n}-1}{r} C _{r-1} \\ & =n(n-1)(n-2)\left(\sum _{r=3}^{n}{ }^{n-3} C _{r-3}\right)+3 n(n-1)\left(\sum _{r=2}^{n}{ }^{n-2} C _{r-2}\right)+n\left(\sum _{r=1}^{n} n-1 C _{r-1}\right) \\ & =\quad n(n-1)(n-2)\left\{{ }^{n-3} C _{0}+{ }^{n-3} C _{1}+\ldots \ldots .{ }^{n-3} C _{n-3}\right. \\ & +3 n(n-1)\left({ }^{n-2} C _{0}+{ }^{n-2} C _{1}+\ldots \ldots .{ }^{n-2} C _{n-2}\right. \\ & +n\left\{{ }^{n-1} C _{0}+{ }^{n-1} C _{1}+\ldots \ldots+{ }^{n-1} C _{n-1}\right\} \\ & =\quad n(n-1)(n-2) \cdot 2^{n-3}+3 n(n-1) \cdot 2^{n-2}+n \cdot 2^{n-1} \\ & =\{(\mathrm{n}-1)(\mathrm{n}-2)+6(\mathrm{n}-1)+4\} \mathrm{n} 2^{\mathrm{n}-3} \\ & =n\left(n^{2}+3 n\right) 2^{n-3} \\ & =\mathrm{n}^{2}(\mathrm{n}+3) 2^{\mathrm{n}-3} \end{aligned} $

5. If $\mathrm{C} _{0}, \mathrm{C} _{1}, \mathrm{C} _{2} \ldots \ldots, \mathrm{C} _{\mathrm{n}-1}, \mathrm{C} _{\mathrm{n}}$ denote the binomial coefficients in the expansion of $(1+\mathrm{x})^{\mathrm{n}}$, prove that: $\frac{\mathrm{C} _{1}}{\mathrm{C} _{0}}+2 \cdot \frac{\mathrm{C} _{2}}{\mathrm{C} _{1}}+3 \cdot \frac{\mathrm{C} _{3}}{\mathrm{C} _{2}}+\ldots \ldots+\mathrm{n} \cdot \frac{\mathrm{C} _{\mathrm{n}}}{\mathrm{C} _{\mathrm{n}-1}}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$

Show Answer

Solution : We have, $\frac{C _{1}}{C _{0}}+2 \cdot \frac{C _{2}}{C _{1}}+3 \cdot \frac{C _{3}}{C _{2}}+\ldots \ldots+n \cdot \frac{C _{n}}{C _{n-1}}$

$ \begin{aligned} & =\sum _{r=1}^{n} r \frac{C _{r}}{C _{r-1}} \\ & =\sum _{r=1}^{n} r \cdot \frac{{ }^{n} C _{r}}{{ }^{n} C _{r-1}} \\ & =\sum _{r=1}^{n} r \cdot\left(\frac{n-r+1}{r}\right) \quad\left[\because \frac{{ }^{n} C _{r}}{{ }^{n} C _{r-1}}=\frac{n-r+1}{r}\right] \\ & =\sum _{r=1}^{n}(n-r+1) \\ & =\sum _{r=1}^{n}\{(n+1)-r\} \end{aligned} $

$ \begin{aligned} & =\mathrm{n}(\mathrm{n}+1)-\sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r} \\ & =\mathrm{n}(\mathrm{n}+1)-\frac{\mathrm{n}(\mathrm{n}+1)}{2} \\ & =\frac{\mathrm{n}(\mathrm{n}+1)}{2} \end{aligned} $

6. If $\mathrm{C} _{0}, \mathrm{C} _{1}, \mathrm{C} _{2} \ldots . ., \mathrm{C} _{\mathrm{n}-1}, \mathrm{C} _{\mathrm{n}}$ denote the binomial coefficients in the expansion of $(1+\mathrm{x})^{\mathrm{n}}$, prove that: $\left(\mathrm{C} _{0}+\mathrm{C} _{1}\right)\left(\mathrm{C} _{1}+\mathrm{C} _{2}\right)\left(\mathrm{C} _{2}+\mathrm{C} _{3}\right)\left(\mathrm{C} _{3}+\mathrm{C} _{4}\right) \ldots \ldots\left(\mathrm{C} _{\mathrm{n}-1}+\mathrm{C} _{\mathrm{n}}\right)=\frac{\mathrm{C} _{0} \mathrm{C} _{1} \mathrm{C} _{2} \ldots . \mathrm{C} _{\mathrm{n}-1}(\mathrm{n}+1)^{\mathrm{n}}}{\mathrm{n} !}$

Show Answer

Solution :

We, have $\left(\mathrm{C} _{0}+\mathrm{C} _{1}\right)\left(\mathrm{C} _{1}+\mathrm{C} _{2}\right)\left(\mathrm{C} _{2}+\mathrm{C} _{3}\right) \ldots . .\left(\mathrm{C} _{\mathrm{n}-1}+\mathrm{C} _{\mathrm{n}}\right)$

$=\mathrm{C} _{0} \mathrm{C} _{1} \mathrm{C} _{2} \ldots . . \mathrm{C} _{\mathrm{n}-1}\left(1+\frac{\mathrm{C} _{1}}{\mathrm{C} _{0}}\right)\left(1+\frac{\mathrm{C} _{2}}{\mathrm{C} _{1}}\right) \cdots\left(1+\frac{\mathrm{C} _{\mathrm{n}}}{\mathrm{C} _{\mathrm{n}-1}}\right)$

$=\left(C _{0} C _{1} \ldots . C _{n-1}\right) \prod _{r=1}^{n}\left\{1+\frac{{ }^{n} C _{r}}{{ }^{n} C _{r-1}}\right\}$

$=\left(\mathrm{C} _{0} \mathrm{C} _{1} \ldots \mathrm{C} _{\mathrm{n}-1}\right) \prod _{\mathrm{r}=1}^{\mathrm{n}}\left\{1+\frac{\mathrm{n}-\mathrm{r}+1}{\mathrm{r}}\right\}$

$=\left(\mathrm{C} _{0} \mathrm{C} _{1} \ldots \mathrm{C} _{\mathrm{n}-1}\right) \prod _{\mathrm{r}=1}^{\mathrm{n}}\left(\frac{\mathrm{n}+1}{\mathrm{r}}\right)$

$=\left(\mathrm{C} _{0} \mathrm{C} _{1} \ldots \mathrm{C} _{\mathrm{n}-1}\right) \prod _{\mathrm{r}=1}^{\mathrm{n}} \frac{(\mathrm{n}+1)^{\mathrm{n}}}{\mathrm{n} !}$

7. If $\mathrm{C} _{0}, \mathrm{C} _{1}, \mathrm{C} _{2}, \ldots . . \mathrm{Cn}$ denote the binomial cofficients in the expansion of $(1+\mathrm{x})^{\mathrm{n}}$, prove that $\mathrm{C} _{0}+\frac{\mathrm{C} _{1}}{2}+\frac{\mathrm{C} _{2}}{3}+\ldots \ldots+\frac{\mathrm{C} _{\mathrm{n}}}{\mathrm{n}+1}=\frac{2^{\mathrm{n}+1}-1}{\mathrm{n}+1}$

Show Answer

Solution : we have, $\mathrm{C} _{0}+\frac{\mathrm{C} _{1}}{2}+\frac{\mathrm{C} _{2}}{3}+\ldots \ldots .+\frac{\mathrm{C} _{\mathrm{n}}}{\mathrm{n}+1}$

$ \begin{aligned} & =\sum _{\mathrm{r}=0}^{\mathrm{n}} \frac{\mathrm{C} _{\mathrm{r}}}{\mathrm{r}+1} \\ & =\sum _{\mathrm{r}=0}^{\mathrm{n}} \frac{1}{\mathrm{r}+1} \cdot{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}} \\ & =\sum _{\mathrm{r}=0}^{\mathrm{n}} \frac{1}{\mathrm{n}+1} \cdot \frac{\mathrm{n}+1}{\mathrm{r}+1} \cdot{ }^{n} \mathrm{C} _{\mathrm{r}} \end{aligned} $

$\begin{aligned} & =\frac{1}{n+1} \sum_{r=0}^n \frac{n+1}{r+1} \cdot{ }^n C_r \\ & =\frac{1}{n+1} \sum_{r=0}^n{ }^{n+1} C_{r+1} \qquad\left[{}^{n+1}C_{r+1}=\frac{n+1}{r+1}.{}^n C_r\right]\\ & =\frac{1}{n+1}\left[{ }^{n+1} C_1+{ }^{n+1} C_2+{ }^{n+1} C_3+\ldots .{ }^{n+1} C_{n+1}\right] \\ & =\frac{1}{n+1}\left[{ }^{n+1} C_r+{ }^{n+1} C_1+\ldots .{ }^{n+1} C_{n+1}-\left({ }^{n+1} C_0\right)\right] \\ & =\frac{1}{n+1}\left[2{ }^{n+1}-1\right]\end{aligned}$

Practice questions

1. The sum $\frac{1}{1 !(\mathrm{n}-1) !}+\frac{1}{3 !(\mathrm{n}-3) !}+\frac{1}{5 !(\mathrm{n}-5) !}+\ldots \ldots \ldots=$

Show Answer Answer: $\frac{2^{n-1}}{n!}$

2. If the coefficient of $x^{n}$ in $(1+x)^{101}\left(1-x+x^{2}\right)^{100}$ is non-zero, then $n$ cannot be of the form

(a). $3 \mathrm{r}+1$

(b). $3 \mathrm{r}$

(c). $3 \mathrm{r}+2$

(d). none of these

Show Answer Answer: (c)

3. The coefficient of $x^{r} ; 0 \leq r \leq n-1$, is the expansion of $(x+3)^{n-1}+(x+3)^{n-2}(x+2)+(x+3)^{n-2}$ $(\mathrm{x}+2)^{2}+\ldots . .(\mathrm{x}+2)^{\mathrm{n}-1}$ are

(a). ${ }^{n} C _{r}\left(3^{r}-2^{n}\right)$

(b). ${ }^{n} C _{r}\left(3^{n-r}-2^{n-r}\right)$

(c). ${ }^{n} C _{r}\left(3^{r}-2^{n-r}\right)$

(d). none of these

Show Answer Answer: (b)

4. The number of real negative terms in the binomial expension of $(1+i x)^{4 n-2}, n \in N, x>0$ is

(a). $\mathrm{n}$

(b). $n+1$

(c). $\mathrm{n}-1$

(d). $2 \mathrm{n}$

Show Answer Answer: (a)

5. $(\mathrm{n}+2){ }^{n} C _{0} 2^{\mathrm{n}+1}-(\mathrm{n}+1){ }^{\mathrm{n}} \mathrm{C} _{1} 2^{\mathrm{n}}+\mathrm{n} \cdot{ }^{n} \mathrm{C} _{2} 2^{\mathrm{n}-1} \ldots . .$. is equal to

(a). $4$

(b). $4 \mathrm{n}$

(c). $4(\mathrm{n}+1)$

(d). $2(\mathrm{n}+2)$

Show Answer Answer: (c)

6. $\sum _{\mathrm{k}=1}^{\infty} \mathrm{k}\left(1+\frac{1}{\mathrm{n}}\right)^{\mathrm{k}-1}=$

(a). $\mathrm{n}(\mathrm{n}-1)$

(b). $\mathrm{n}(\mathrm{n}+1)$

(c). $n^{2}$

(d). $(\mathrm{n}+1)^{2}$

Show Answer Answer: (c)

7. The sum of rational term in $(\sqrt{2}+\sqrt[3]{3}+\sqrt[6]{5})^{10}$ is equal to

(a). 12632

(b). 1260

(c). 126

(d). none of these

Show Answer Answer: (d)

8. Last two digit of $(23)^{14}$ are

(a). 01

(b). 03

(c). 09

(d). none of these

Show Answer Answer: (c)

9. If $(4+\sqrt{15})^{\mathrm{n}}=\mathrm{I}+\mathrm{f}$, where $\mathrm{n}$ is an odd natural number, $\mathrm{I}$ is an interger and $0<\mathrm{f}<1$, then

(a). I is a natural number

(b). I an even integer

(c). $(\mathrm{I}+\mathrm{f})(1-\mathrm{F})=1$

(d). $ 1-\mathrm{f}=(4+\sqrt{5})^{\mathrm{n}}$

Show Answer Answer: (a, c, d)

10. The number of rational numbers lying in the interval $(2002, 2003)$ all whose digits after the decimal point are non-zero and are in decreasing order is

(a). $ \sum _{\mathrm{i}=1}^{9}{ }^{9} \mathrm{P} _{\mathrm{i}}$

(b). $ \sum _{\mathrm{i}=1}^{10}{ }^{9} \mathrm{P} _{\mathrm{i}}$

(c). $ 2^{9}-1$

(d). $2^{10}-1$

Show Answer Answer: (c)

11. Match the following:

Column I Column II
(a). ${ }^{\mathrm{m}} \mathrm{C} _{1}{ }^{n} \mathrm{C} _{\mathrm{m}}-{ }^{\mathrm{m}} \mathrm{C} _{2}{ }^{2 \mathrm{n}} \mathrm{C} _{\mathrm{m}}+{ }^{\mathrm{m}} \mathrm{C} _{3}{ }^{3 \mathrm{n}} \mathrm{C} _{\mathrm{m}} \cdots .$. $+(-1)^{\mathrm{m}-1 \mathrm{~m}} \mathrm{C} _{\mathrm{m}}{ }^{\mathrm{m}} \mathrm{C} _{\mathrm{m}}$ is p. The coefficent of $\mathrm{x}^{\mathrm{m}}$ in the expansion of $\left((1+\mathrm{x})^{\mathrm{n}}-1\right)^{\mathrm{m}}$
(b). ${ }^{n} C _{m}+{ }^{n-1} C _{m}+{ }^{n-2} C _{m}+\ldots . .+{ }^{m} C _{m}$ is q. The coefficent of $x^{m}$ in $\frac{(1+x)^{n+1}}{x}$
(c). $\mathrm{C} _{0} \mathrm{C} _{\mathrm{n}}+\mathrm{C} _{1} \mathrm{C} _{\mathrm{n}-1}+\ldots \ldots . \mathrm{C} _{\mathrm{n}} \mathrm{C} _{0}$ is r. The coefficent of $x^{n}$ in $(1+x)^{2 n}$
(d). $ 2 k^{n} C _{0}-2^{k-1}{ }^{n} C _{1}{ }^{n-1} C _{k-1}+(-1)^{k}{ }^{n} C _{k}$ ${ }^{\mathrm{n}-\mathrm{k}} \mathrm{C} _{0}$ is s. The coefficent of $x^{k}$ in the expansion $(1+\mathrm{x})^{\mathrm{n}}$
Show Answer Answer: a $\rarr$ p; b$\rarr$ q; c $\rarr$ r; d $\rarr$ s


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ