BINOMIAL THEOREM - 2 (Applications of Binomial Coefficients)

1. Bino-geometric series

${ }^{\mathrm{n}} \mathrm{C} _{0}+{ }^{\mathrm{n}} \mathrm{C} _{1} \mathrm{x}+{ }^{\mathrm{n}} \mathrm{C} _{2} \mathrm{x}^{2}………$ $+{ }^{n} C _{n} x^{n}=(1+x)^{n}$

eg. ${ }^{\mathrm{n}} \mathrm{C} _{0}+{ }^{\mathrm{n}} \mathrm{C} _{1} \cdot 3+{ }^{\mathrm{n}} \mathrm{C} _{2} \cdot 3^{2}+$ $…….+{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{n}} 3^{\mathrm{n}}=(1+3)^{\mathrm{n}}=4^{\mathrm{n}}$

2. Bino-arithmetic series

$ a^{n} C _{o}+(a+d){ }^{n} C _{1}+(a+2 d)^{n} C _{2}+\ldots \ldots \ldots \ldots \ldots \ldots+(a+n d)^{n} C _{n} $

This series is the sum of the products of corresponding terms of

${ }^{\mathrm{n}} \mathrm{C} _{0},{ }^{\mathrm{n}} \mathrm{C} _{1},{ }^{\mathrm{n}} \mathrm{C} _{2}………$ ${ }^{n} C _{n}$ (binomial coefficients) and $a, a+d, a+2 d…….,a+nd$ (arithmetic progression)

Such series can be solved either by

(i). eliminating $\mathrm{r}$ in the multiplier of binomial coefficient from the $(\mathrm{r}+1)^{\mathrm{th}}$ terms of the series (i.e. using $\mathrm{r}^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}=\mathrm{n}^{\mathrm{n}-1} \mathrm{C} _{\mathrm{r}-1}$ ) or

(ii). Differentiating the expansion of $\mathrm{x}^{\mathrm{a}}\left(1+\mathrm{x}^{\mathrm{d}}\right)^{\mathrm{n}}$ or (If product of two or more numericals occur, then differentiate again and again till we get the desired result)

eg. Prove that ${ }^{n} C _{0}+2{ }^{n} C _{1}+3{ }^{n} C _{2}+………$$+(n+1)^{\mathrm{n}} \mathrm{C} _{\mathrm{n}}=(\mathrm{n}+2) \cdot 2^{\mathrm{n}-1}$

${ }^{n} C _{0}+2 \cdot{ }^{n} C _{1}+\ldots . .+(n+1){ }^{n} C _{n}$

$=\sum _{\mathrm{r}=0}^{\mathrm{n}}(\mathrm{r}+1){ }^{\mathrm{n}} \mathrm{C} _{\mathrm{n}}$

$=\sum _{\mathrm{r}=0}^{\mathrm{n}} \mathrm{r}^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}+\sum _{\mathrm{r}=0}^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}$

$=\sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r} \cdot \frac{\mathrm{n}}{\mathrm{r}}{ }^{\mathrm{n}-1} \mathrm{C} _{\mathrm{r}-1}+\sum _{\mathrm{r}=1}^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}$

$=n \cdot 2^{\mathrm{n}-1}+2^{\mathrm{n}}=(\mathrm{n}+2) 2^{\mathrm{n}-1}$

OR

Consider the expansion

$ { }^{\mathrm{n}} \mathrm{C} _{0}+{ }^{\mathrm{n}} \mathrm{C} _{1} \mathrm{x}+{ }^{\mathrm{n}} \mathrm{C} _{2} \mathrm{x}^{2}+\ldots \ldots \ldots . .+{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{n}} \mathrm{x}^{\mathrm{n}}=(1+\mathrm{x})^{\mathrm{n}} $

Multiply by $\mathrm{x}$

$ { }^{n} C _{0} x+{ }^{n} C _{1} x^{2}+{ }^{n} C _{2} x^{3}+\ldots \ldots \ldots .+{ }^{n} C _{n} x^{n+1}=x(1+x)^{n} $

Differentiate w.r.t.x $ { }^n C_0+{ }^n C_1 2 x+{ }^n C_2 3 x^2+\ldots \ldots \ldots . .+{ }^n C_n(n+1) x^n=x n(1+x)^{n-1}+(1+x)^n $

Put $x=1$ $ { }^n C_0+2^n C_1+3^n C_2+\ldots \ldots \ldots \ldots+(n+1)^n C_n=n 2^{n-1}+2^n=(n+2) 2^{n-1} $

3. Bino-harmonic series

$\frac{{ }^{n} C _{0}}{a}+\frac{{ }^{n} C _{1}}{a+d}+\frac{{ }^{n} C _{2}}{a+2 d}+\ldots \ldots . .+\frac{{ }^{n} C _{n}}{a+n d}$

This series is the sum of the products of corresponding terms of

${ }^{\mathrm{n}} \mathrm{C} _{0},{ }^{\mathrm{n}} \mathrm{C} _{1},{ }^{\mathrm{n}} \mathrm{C} _{2}$, ${ }^{\mathrm{n}} \mathrm{C} _{\mathrm{n}}$ (binomial coefficients) and

$\frac{1}{a}, \frac{1}{a+d}, \frac{1}{a+2 d}, \ldots \ldots \ldots \ldots \ldots . . . \frac{1}{a+n d}$ (harmonic progression)

Such seris can be solved either by

(i). eliminating $\mathrm{r}$ in the multiplier of binomial coefficient from the $(\mathrm{r}+1)^{\mathrm{th}}$ term of the series (ie using $\frac{1}{\mathrm{r}+1}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}=\frac{1}{\mathrm{n}+1}{ }^{\mathrm{n}+1} \mathrm{C} _{\mathrm{r}+1}$ ) or

(ii). integrating suitable expansion

Note

(i). If the sum contains $\mathrm{C} _{0}, \mathrm{C} _{1}, \mathrm{C} _{2}……$ $\mathrm{C} _{\mathrm{n}}$ are all positive signs, integrate between limits 0 to 1

(ii). If the sum contains alternate signs (i.e.+ & -) then integrate between limits -1 to 0

(iii). If the sum contains odd coefficients (i.e. $\mathrm{C} _{\mathrm{o}}, \mathrm{C} _{2}, \mathrm{C} _{4}, \ldots \ldots$. ) then integrate between $-1 to +1 .$

(iv). If the sum contains even coefficient (i.e. $\mathrm{C} _{1}, \mathrm{C} _{3}, \mathrm{C} _{5}, \ldots \ldots \ldots$ ) the find the difference between (i) & (iii). and then divide by 2

(v). If in denominator of binomial coefficient is product of two numericals then integrate two times first time take limits between 0 to $\mathrm{x}$ and second time take suitable limits

eg: prove that $\frac{{ }^{n} C _{0}}{1}+\frac{{ }^{n} C _{1}}{2}+\frac{{ }^{n} C _{2}}{3}+\ldots \ldots \ldots \ldots \ldots . .+\frac{{ }^{n} C _{n}}{n+1}=\frac{2^{n+1}-1}{n+1}$

${ }^{n} C _{0}+\frac{{ }^{n} C _{1}}{2}+\frac{{ }^{n} C _{2}}{3}+\ldots \ldots \ldots \ldots . .+\frac{{ }^{n} C _{n}}{n+1}=\sum _{r=0}^{n} \frac{{ }^{n} C _{r}}{r+1}$

$=\frac{1}{\mathrm{n}+1} \sum _{\mathrm{r}=0}^{\mathrm{n}} \frac{{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}}{\mathrm{r}+1}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}$

$=\frac{1}{\mathrm{n}+1} \sum _{\mathrm{r}=0}^{\mathrm{n}}{ }^{\mathrm{n}+1} \mathrm{C} _{\mathrm{r}+1}$

$=\frac{1}{n+1} \sum_{r=0}^n{ }^{n+1} C_{r+1}$

$=\frac{1}{\mathrm{n}+1}\left(2^{\mathrm{n}+1}-1\right)$

OR

Consider the expansion

$ (1+x)^{n}={ }^{n} C _{0}+{ }^{n} C _{1} x+{ }^{n} C _{2} x^{2}+\ldots \ldots \ldots . .+{ }^{n} C _{n} x^{n} $

Integrate between limit to 0 to 1

$ \begin{aligned} & {\left[\frac{(1+x)^{n+1}}{n+1}\right] _{0}^{1}=\left[{ }^{n} C _{0} x+{ }^{n} C _{1} \frac{x^{2}}{2}+{ }^{n} C _{2} \frac{x^{3}}{3}+\ldots \ldots .+\frac{{ }^{n} C _{n} x^{n+1}}{n+1}\right] _{0}^{1}} \\ & \left(\frac{2^{n+1}}{n+1}-\frac{1}{n+1}\right)={ }^{n} C _{0}+\frac{{ }^{n} C _{1}}{2}+\frac{{ }^{n} C _{2}}{3}+\ldots \ldots \ldots .+\frac{{ }^{n} C _{n}}{n+1} \end{aligned} $

$ \therefore{ }^{\mathrm{n}} \mathrm{C} _{0}+\frac{{ }^{\mathrm{n}} \mathrm{C} _{1}}{2}+\frac{{ }^{\mathrm{n}} \mathrm{C} _{2}}{3}+\ldots \ldots \ldots+\frac{{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{n}}}{\mathrm{n}+1}=\frac{1}{\mathrm{n}+1}\left(2^{\mathrm{n}+1}-1\right) $

4. Bino-binomial series

  • ${ }^{\mathrm{n}} \mathrm{C} _{0}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}+{ }^{\mathrm{n}} \mathrm{C} _{1}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}+1}+{ }^{\mathrm{n}} \mathrm{C} _{2}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}+2}+…………$ $+{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{n}-\mathrm{r}}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{n}} \quad$ or

  • ${ }^{\mathrm{m}} \mathrm{C} _{0}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}+{ }^{\mathrm{m}} \mathrm{C} _{1}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}-1}+{ }^{\mathrm{m}} \mathrm{C} _{2}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}-2}+\ldots \ldots \ldots . .+{ }^{\mathrm{m}} \mathrm{C} _{\mathrm{r}}{ }^{\mathrm{n}} \mathrm{C} _{0}$

Such series can be solved by multiplying two expansions, one involving the first factors as coefficient and the other involving the second factors as coefficients and finally equating coefficients of a suitable power of $\mathrm{x}$ on both sides.

Prove That

${ }^{\mathrm{n}-1} \mathrm{C} _{0}{ }^{\mathrm{n}} \mathrm{C} _{1}+{ }^{\mathrm{n-}-1} \mathrm{C} _{1} \mathrm{n} _{2} \mathrm{C} _{2}+{ }^{\mathrm{n}-1} \mathrm{C} _{2}{ }^{\mathrm{n}} \mathrm{C} _{3}+\ldots \ldots \ldots . .+{ }^{+\mathrm{n-}-1} \mathrm{C} _{\mathrm{n}-1}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{n}}={ }^{2 \mathrm{n}-1} \mathrm{C} _{\mathrm{n}-1}$

We have

$\left({ }^{n} C _{0} x^{n+}+{ } _{1} C _{1} x^{n-1}+{ }^{n} C _{2} x^{n-2}+\ldots \ldots .+{ }^{n} C _{n-1} x^{+n} C _{n}\right)\left({ }^{n-1} C _{0}+{ }^{n-1} C _{1} x^{n-1} C _{2} x^{2}+\ldots \ldots \ldots . .+{ }^{n-1} C^{n-1} x^{n-1}\right)=(1+x)^{n}$ $(1+\mathrm{x})^{\mathrm{n}-1}$

$\Rightarrow\left({ }^{n} C _{0} x^{n}+{ }^{n} C _{1} x^{n-1}+{ }^{n} C _{2} x^{n-2}+\ldots .+{ }^{n} C _{n-1} x+{ }^{n} C _{n}\right)\left({ }^{n-1} C _{0}+{ }^{n-1} C _{1} x+{ }^{n-1} C _{2} x^{2}+\ldots . .+{ }^{n-1} C _{n-1} x^{n-1}\right)=(1+x)^{2 n-1}$ Equate the coefficients of $x^{n-1}$ on both sides, ${ }^{n-1} \mathrm{C} _{0}{ }^{n} C _{1}+{ }^{n-1} C _{1}{ }^{n} C _{2}+$ ${ }^{n-1} C _{n-1}{ }^{n} C _{n}={ }^{2 n-1} C _{n-1}$

Note : For the sake of convenience, the coefficients ${ }^{n} \mathrm{C} _{0},{ }^{n} \mathrm{C} _{1}, \ldots \ldots . .{ }^{n} \mathrm{C} _{\mathrm{r}}, \ldots . .{ }^{n} \mathrm{C} _{\mathrm{n}}$ are usually denoted by $\mathrm{C} _{0}, \mathrm{C} _{1}$, $\mathrm{C} _{\mathrm{r}}$ . $\mathrm{C} _{\mathrm{n}}$ respectively

Use of complex numbers in Binomial Theorem

We know $(\cos \theta+\sin \theta)^{\mathrm{n}}=\cos \theta \theta+\sin n \theta$.

Expand and the binomial and then equating the real and imaginary parts, we get

$\cos \theta=\cos ^{n} \theta-{ }^{n} C _{2} \cos ^{n-2} \theta \sin ^{2} \theta+{ }^{n} C _{4} \cos ^{n-4} \theta \sin ^{4} \theta+…..$

$\sin n \theta={ }^{n} C _{1} \cos ^{n-1} \theta \sin \theta-{ }^{n} C _{3} \cos ^{n-3} \theta \sin ^{3} \theta+{ }^{n} C _{5} \cos ^{n-5} \theta \sin ^{5} \theta+……..$

$\Rightarrow \operatorname{tann} \theta=\frac{{ }^{n} C _{1} \tan \theta-{ }^{n} C _{1} \tan ^{3} \theta+{ }^{n} C _{5} \tan ^{5} \theta \ldots \ldots \ldots \ldots . . . . .}{1-{ }^{n} C _{2} \tan ^{2} \theta+{ }^{n} C _{4} \tan ^{4} \theta-{ }^{n} C _{6} \tan ^{6} \theta+\ldots . .}$

Solved examples

1. If $\mathrm{C} _{0}, \mathrm{C} _{1}, \mathrm{C} _{2}, \mathrm{C} _{3}, \ldots \ldots \ldots . . \mathrm{C} _{\mathrm{n}-1}, \mathrm{C} _{\mathrm{n}}$ denote the binomial coefficients in the expansion of $(1+\mathrm{x})^{\mathrm{n}}$, prove that

$ \begin{aligned} \mathrm{C} _{0} \mathrm{C} _{1}+\mathrm{C} _{1} \mathrm{C} _{2}+\mathrm{C} _{2} \mathrm{C} _{3}+\ldots \ldots . . & +\mathrm{C} _{\mathrm{n}-1} \mathrm{C} _{n} \\ & =\frac{(2 \mathrm{n}) !}{(\mathrm{n}-1) !(n+1) !} \\ & =\frac{1.3 .5(2 \mathrm{n}-1)}{(\mathrm{n}+1) !} \cdot \mathrm{n} .2^{\mathrm{n}} \end{aligned} $

Show Answer

Solution :

Using binomial expansion, we have

$ (1+x)^{n}=C _{0}+C _{1} x+C _{2} x^{2}+\ldots \ldots . .+C _{r} x^{r}+\ldots .+C _{n} x^{n} \ldots \ldots . .(A) \text { and } $

$ (1+x)^{n}=C _{0} x^{n}+C _{1} x^{n-1}+C _{2} x^{n-2}+\ldots \ldots \ldots+C _{r} x^{n-r}+\ldots \ldots \ldots \ldots .+\ldots \ldots .+C _{n-1} x+C _{n} \ldots \ldots(B) $

Multiplying (A) and (B), we get

$(1+\mathrm{x})^{2 \mathrm{n}}$

$=\left(\mathrm{C} _{0}+\mathrm{C} _{1} \mathrm{x}+\mathrm{C} _{2} \mathrm{x}^{2}+\ldots . .+\mathrm{C} _{\mathrm{r}} \mathrm{r}^{+}+\ldots .+\mathrm{C} _{\mathrm{n}} \mathrm{x}^{\mathrm{n}}\right) \times\left(\mathrm{C} _{0} \mathrm{x}^{\mathrm{n}}+\mathrm{C} _{1} \mathrm{x}^{\mathrm{n}-1}+\mathrm{C} _{2} \mathrm{x}^{\mathrm{n}-2}+\ldots .+\mathrm{C} _{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}}+\ldots \ldots+\mathrm{C} _{\mathrm{n}-1} \mathrm{x}+\mathrm{C} _{\mathrm{n}}\right)$

or

$ \left(C _{0}+C _{1} x+C _{2} x^{2}+\ldots \ldots .+C _{r} x^{r}+\ldots \ldots+C _{n} x^{n}\right)\left(C _{0} x^{n}+C _{1} x^{n-1}+C 2^{n-2}+\ldots \ldots+C _{r} x^{n-r}+\ldots \ldots+C _{n-1}\right.$ $\left.x+C_n\right)=(1+x)^{2 n} \ldots \ldots \ldots \ldots \ldots \ldots . . . . . .(C)$

Equating the coefficients of $\mathrm{x}^{\mathrm{n-1}}$ on both sides of $(\mathrm{C})$, we get

$ \begin{aligned} & C _{0} C _{1}+C _{1} C _{2}+\ldots \ldots+C _{n-1} C _{n}={ }^{2 n} C _{n-1} \\ & \Rightarrow C _{0} C _{1}+C _{1} C _{2}+\ldots \ldots+C _{n-1} C _{n}={ }^{2 n} C _{n-1}=\frac{(2 n) !}{(n+1) !(n-1) !} \end{aligned} $

Now,

$ \begin{aligned} & \frac{(2 n) !}{(\mathrm{n}+1) !(\mathrm{n}-1) !} \\ & =\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \ldots \ldots \ldots .(2 \mathrm{n}-2)(2 \mathrm{n}-1)(2 \mathrm{n})}{(\mathrm{n}+1) !(\mathrm{n}-1) !} \\ & =\frac{\{1.3 \cdot 5 \ldots \ldots .(2 \mathrm{n}-1)\}\{2 \cdot 4 \cdot 6 \ldots \ldots . .2 \mathrm{n}\}}{(\mathrm{n}+1) !(\mathrm{n}-1) !} \\ & =\frac{\{1 \cdot 3.5 \ldots \ldots .(2 \mathrm{n}-1)\} .2^{\mathrm{n}} \cdot \mathrm{n} !}{(\mathrm{n}+1) !(\mathrm{n}-1) !} \\ & =\frac{1.3 \cdot 5 \ldots \ldots .(2 \mathrm{n}-1)}{(\mathrm{n}+1) !} \frac{2^{\mathrm{n}} \cdot \mathrm{n} \cdot(\mathrm{n}-1) !}{(\mathrm{n}-1) !} \\ & =\frac{1.3 \cdot 5 \ldots .(2 \mathrm{n}-1)}{(\mathrm{n}+1) !} n \cdot 2^{\mathrm{n}} \end{aligned} $

Hence,

$ \begin{aligned} C _{0} C _{1}+C _{1} C _{2}+C _{2} C _{3}+\ldots \ldots \ldots+C _{n-1} C _{n} & =\frac{(2 n) !}{(n-1) !(n+1) !} \\ & =\frac{1.3 .5 \ldots(2 n-1)^{n} \cdot 2^{n}}{(n+1) !} \end{aligned} $

2. If $\mathrm{C} _{0}, \mathrm{C} _{1}, \mathrm{C} _{2}, \mathrm{C} _{3}, \ldots \ldots \ldots . \mathrm{C} _{\mathrm{n}-1}, \mathrm{C} _{\mathrm{n}}$ denote the binomial coefficients in the expansion of $(1+\mathrm{x})^{\mathrm{n}}$, prove that

$ \begin{aligned} \mathrm{C} _{0}^{2}+\mathrm{C} _{1}^{2}+\mathrm{C} _{2}^{2}+\ldots \ldots \ldots \mathrm{C} _{\mathrm{n}}^{2} & =\frac{(2 \mathrm{n}) !}{(\mathrm{n} !)^{2}} \\ & =\frac{1.3 .5 \ldots(2 \mathrm{n}-1)}{\mathrm{n} !} 2^{\mathrm{n}} \end{aligned} $

Show Answer

Solution :

Using binomial expansion, we have

$\begin{aligned} & (1+x)^n=C_0+C_1 x+C_2 x^2+\ldots \ldots .+C_r x^r+\ldots .+C_n x^n \ldots \ldots . .(A) \text { and } \\ & (1+x)^n=C_0 x^n+C_1 x^{n-1}+C_2 x^{n-2}+\ldots \ldots \ldots+C_r x^{-r}+\ldots \ldots \ldots \ldots . . \ldots \ldots+C_{n-1} x+C_n \ldots \ldots .(B)\end{aligned}$

Multiplying (A) and (B), we get

$(1+\mathrm{x})^{2 \mathrm{n}}$

$=\left(\mathrm{C} _{0}+\mathrm{C} _{1} \mathrm{x}+\mathrm{C} _{2} \mathrm{x}^{2}+\ldots .+\mathrm{C} _{\mathrm{r}} \mathrm{r}^{\mathrm{r}}+\ldots . .+\mathrm{C} _{\mathrm{n}} \mathrm{x}^{\mathrm{n}}\right) \times\left(\mathrm{C} _{0} \mathrm{x}^{\mathrm{n}}+\mathrm{C} _{1} \mathrm{x}^{\mathrm{n}-1}+\mathrm{C} _{2} \mathrm{x}^{\mathrm{n}-2}+\ldots .+\mathrm{C} _{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}}+\ldots \ldots .+\mathrm{C} _{\mathrm{n}-1} \mathrm{x}+\mathrm{C} _{\mathrm{n}}\right)$ or $\quad\left(\mathrm{C} _{0}+\mathrm{C} _{1} \mathrm{x}+\mathrm{C} _{2} \mathrm{x}^{2}+\right.$ $\mathrm{x}+\mathrm{C})=(1+\mathrm{x})^{2 \mathrm{n}}$ $+\mathrm{C} _{\mathrm{r}} \mathrm{x}^{\mathrm{r}}+$ $\left.+\mathrm{C} _{\mathrm{n}} \mathrm{x}^{\mathrm{n}}\right)\left(\mathrm{C} _{0} \mathrm{x}^{\mathrm{n}}+\mathrm{C} _{1} \mathrm{x}^{\mathrm{n}-1}+\mathrm{C}^{\mathrm{n}-2}+\ldots\right.$ $+\mathrm{C} _{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}}+\ldots \ldots+\mathrm{C} _{\mathrm{n}-1}$$\left.x+C_n\right)=(1+x)^{2 n} \ldots \ldots \ldots \ldots \ldots \ldots . . . . . . .(C)$

Equating the coefficients of $\mathrm{x}^{\mathrm{n}}$ on both sides of $(\mathrm{C})$, we get

$ C_0{}^2+C_1{ }^2+C_2{}^2+\ldots \ldots.C_{\mathrm{n}}{ }^2={ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}} $

$\rarr C_0^2 + C_1^2 + C_2^2+……..C_n^2=\frac{(2n)!}{n!n!}$

Now

$ \begin{aligned} & \frac{(2 \mathrm{n}) !}{\mathrm{n} ! \mathrm{n} !}=\frac{1.2 .3 .4 .5 \ldots \ldots \ldots .(2 \mathrm{n}-2)(2 \mathrm{n}-1)(2 \mathrm{n})}{\mathrm{n} ! \mathrm{n} !} \\ & =\frac{\{1.3 .5 \ldots \ldots .(2 \mathrm{n}-1)\}\{2.4 .6 \ldots \ldots .(2 \mathrm{n}-2)(2 \mathrm{n})\}}{\mathrm{n} ! \mathrm{n} !} \\ & =\frac{\{1.3 .5 \ldots \ldots .(2 \mathrm{n}-1)\} \times 2^{\mathrm{n}} \times\{1.2 .3 \ldots \ldots \ldots(\mathrm{n}-1) \cdot \mathrm{n}\}}{\mathrm{n} ! \mathrm{n} !} \\ & =\frac{\{1.3 .5 \ldots \ldots .(2 \mathrm{n}-1)\} 2^{\mathrm{n}} \mathrm{n} !}{\mathrm{n} ! \mathrm{n} !} \\ & =\frac{1.3 .5 \ldots \ldots .(2 \mathrm{n}-1)}{\mathrm{n} !} 2^{\mathrm{n}} \\ & \text { Hence, } \mathrm{C} _{0}{ }^{2}+\mathrm{C} _{1}{ }^{2}+\mathrm{C} _{2}{ }^{2}+\ldots \ldots . \mathrm{C} _{\mathrm{n}}{ }^{2}=\frac{(2 \mathrm{n}) !}{\mathrm{n} ! \mathrm{n} !} \\ & \quad=\frac{1.3 .5 \ldots \ldots .(2 \mathrm{n}-1)}{\mathrm{n} !} 2^{\mathrm{n}} \end{aligned} $

3. If $\mathrm{C} _{0}, \mathrm{C} _{1}, \mathrm{C} _{2}, \ldots \ldots . \mathrm{C} _{\mathrm{n}}$ denote the binomial fulfillments in the expansion of $(1+\mathrm{x})^{\mathrm{n}}$, prove that ; $\mathrm{C} _{0}{ }^{2}-\mathrm{C} _{1}{ }^{2}+\mathrm{C} _{2}{ }^{2}-\mathrm{C} _{3}{ }^{2}+\ldots \ldots .+(-1)^{\mathrm{n}} \mathrm{C} _{\mathrm{n}}{ }^{2}$

$ = \begin{cases}0 & \text {,if } n \text { is odd } \\ (-1)^{n / 2} \cdot C _{n / 2} & \text {,if } n \text { is even }\end{cases} $

Show Answer

Solution : We have,

Also,

$(1+x)^n=\left(C_0+C_1 x+C_2 x^2+\ldots .+C_n x^n\right) \ldots \ldots \ldots .(i)$

$(1+\mathrm{x})^{\mathrm{n}}=\left(\mathrm{C} _{0} \mathrm{x}^{\mathrm{n}}+\mathrm{C} _{1} \mathrm{x}^{\mathrm{n}-1}+\ldots \ldots \ldots . .+\mathrm{C} _{\mathrm{n}-1} \mathrm{x}+\mathrm{C} _{\mathrm{n}}\right)……(ii)$

Replacing $x$ by $-x$ in (i), we get

$(1-\mathrm{x})^{\mathrm{n}}=\mathrm{C} _{0}-\mathrm{C} _{1} \mathrm{x}+\mathrm{C} _{2} \mathrm{x}^{2}-\mathrm{C} _{3} \mathrm{x}^{3}+\ldots \ldots .+(-1)^{\mathrm{n}} \mathrm{C} _{\mathrm{n}} \mathrm{x}^{\mathrm{n}}…….(iii)$

Multiplying (ii) and (iii), we get

$\begin{aligned} & \left(C_0-C_1 x+C_2 x^2-C_3 x^3+\ldots .+(-1)^n C_n x^n\right) \times\left(C_0 x^n+C_1 x^{n-1}+C_2^{n-2}+\ldots \ldots .+C_{n-1} x+C_n\right)=(1+x)^n(1-x)^n \\ & \text { or } \left(C_0-C_1 x+C_2 x^2-C_3 x^3+\ldots \ldots \ldots+(-1)^n C_n x^n\right) \times\left(C_0 x^n+C_1 x^{n-1}+C_2 x^{n-2}+\ldots \ldots \ldots+C_n\right)=(1-\left.x^2\right)^n \ldots \ldots \ldots .(\text { iv })\end{aligned}$

Equating coefficients of $\mathrm{x}^{\mathrm{n}}$ on both sides of (iv), we get

$ \mathrm{C} _{0}^{2}-\mathrm{C} _{1}^{2}+\mathrm{C} _{2}^{2}-\mathrm{C} _{3}^{2}+\ldots \ldots+(-1)^{\mathrm{n}} \mathrm{C} _{\mathrm{n}}^{2}=\text { Coeffecient of } \mathrm{x}^{\mathrm{n}} \text { in }\left(1-\mathrm{x}^{2}\right)^{\mathrm{n}} ………(v)$

Clearly, RHS of (v) contains only even powers of $x$ when it is expanded with the help of binomial theorem. Therefore,

$\therefore$ Coefficient of $\mathrm{x}^{\mathrm{n}}$ in $\left(1-\mathrm{x}^{2}\right)^{\mathrm{n}}=0$, if $\mathrm{n}$ is an odd natural number.

If $n$ is even, suppose $(r+1)$ the term in the binomial expansion of $\left(1-x^{2}\right) n$ contains $x^{n}$. We have,

$ T _{r+1}={ }^{n} C _{r}(-1)^{r}\left(x^{2}\right)^{r}={ }^{n} C _{r}(-1)^{r} X^{2 r} $

For this term to contain $\mathrm{x}^{\mathrm{n}}$, we must have,

$2\mathrm{r}=\mathrm{n} \Rightarrow \mathrm{r}=\mathrm{n} / 2$

$\therefore$ Coeff. of $\mathrm{x}^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C} _{\mathrm{n} 2}(-1)^{\mathrm{n} / 2}$

Hence,

$ \begin{aligned} & \mathrm{C} _{0}^{2}-\mathrm{C} _{1}^{2}-\mathrm{C} _{2}^{2}-\mathrm{C} _{3}^{2}+\ldots .+(-1)^{\mathrm{n}} \mathrm{C} _{\mathrm{n}}{ }^{2} \\ &= \begin{cases}0 & , \text { if } \mathrm{n} \text { is odd } \\ (-1)^{\mathrm{n} / 2} \cdot{ }^{n} \mathrm{C} _{\mathrm{n} / 2} & , \text { if } \mathrm{n} \text { is even }\end{cases} \end{aligned} $

4. If $(1+x)^{n}=C _{0}+C _{1} x+C _{2} x^{2}+\ldots .+C _{n} x^{n}$ prove that $\sum _{r=0}^{n} \sum _{s=0}^{n}\left(C _{r}+C _{s}\right)=(n+1)$

Show Answer

Sloution: We have,

$ \begin{aligned} & \sum _{\mathrm{r}=0}^{\mathrm{n}} \sum _{\mathrm{s}=0}^{\mathrm{n}}\left(\mathrm{C} _{\mathrm{r}}+\mathrm{C} _{\mathrm{s}}\right) \\ &= \sum _{\mathrm{r}=0}^{\mathrm{n}} \sum _{\mathrm{s}=0}^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}+\sum _{\mathrm{r}=0}^{\mathrm{n}} \sum _{\mathrm{s}=0}^{\mathrm{n}} \mathrm{C} _{\mathrm{s}} \\ &= \sum _{\mathrm{r}=0}^{\mathrm{n}}\left(\sum _{\mathrm{s}=0}^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}\right)+\sum _{\mathrm{r}=0}^{\mathrm{n}}\left(\sum _{\mathrm{s}=0}^{\mathrm{n}} \mathrm{C} _{\mathrm{s}}\right) \\ &= \sum _{\mathrm{s}=0}^{\mathrm{n}} 2^{\mathrm{n}}+\sum _{\mathrm{r}=0}^{\mathrm{n}} 2^{\mathrm{n}} \\ &=(\mathrm{n}+1) 2^{2}+(\mathrm{n}+1) 2^{\mathrm{n}} \\ &= 2(\mathrm{n}+1) 2^{\mathrm{n}} \\ &=(\mathrm{n}+1) 2^{\mathrm{n}+1} \end{aligned} $

5. If $(1+x)^{n}=C _{0}+C _{1} x+C _{2} x^{2}+\ldots+C _{n} x^{n}$ prove that $\sum _{r=0}^{n} \sum _{s=0}^{n} C _{r} C _{s}=2^{2 n}$

Show Answer

Solution: we have,

$\sum _{\mathrm{r}=0}^{\mathrm{n}} \sum _{\mathrm{s}=0}^{\mathrm{n}} \mathrm{C} _{\mathrm{r}} \mathrm{C} _{\mathrm{s}}$

$=\sum _{\mathrm{r}=0}^{\mathrm{n}}\left(\mathrm{C} _{\mathrm{r}} \sum _{\mathrm{s}=0}^{\mathrm{n}} \mathrm{C} _{\mathrm{s}}\right)$

$=\sum _{\mathrm{r}=0}^{\mathrm{n}} 2^{\mathrm{n}} \cdot \mathrm{C} _{\mathrm{r}}$

$=2^{\mathrm{n}}\left(\sum _{\mathrm{r}=0}^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}\right)$

$=2^{\mathrm{n}} \cdot 2^{\mathrm{n}}=\left(2^{\mathrm{n}}\right)^{2}=2^{2 \mathrm{n}}$

ALITER $\sum _{\mathrm{r}=0}^{\mathrm{n}} \sum _{\mathrm{s}=0}^{\mathrm{n}} \mathrm{C} _{\mathrm{r}} \mathrm{C} _{\mathrm{s}}=\left(\sum _{\mathrm{r}=0}^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}\right)\left(\sum _{\mathrm{s}=0}^{\mathrm{n}} \mathrm{C} _{\mathrm{s}}\right)=2^{\mathrm{n}} \cdot 2^{\mathrm{n}}=2^{2 \mathrm{n}}$

6. If $(1+\mathrm{x})^{\mathrm{n}}=\mathrm{C} _{0}+\mathrm{C} _{1} \mathrm{x}+\mathrm{C} _{2} \mathrm{x}^{2}+\ldots+\mathrm{C} _{\mathrm{n}} \mathrm{x}^{\mathrm{n}}$ prove that

$ \sum _{0 \leq \mathrm{r}<\mathrm{s} \leq \mathrm{n}}\left(\mathrm{C} _{\mathrm{r}}+\mathrm{C} _{\mathrm{s}}\right)=\mathrm{n} \cdot 2^{\mathrm{n}} $

Show Answer

Solution: We have,

$\sum _{\mathrm{r}=0}^{\mathrm{n}} \sum _{\mathrm{s}=0}^{\mathrm{n}}\left(\mathrm{C} _{\mathrm{r}}+\mathrm{C} _{\mathrm{s}}\right)=\sum _{\mathrm{r}=0}^{\mathrm{n}}\left(\mathrm{C} _{\mathrm{r}}+\mathrm{C} _{\mathrm{s}}\right)+2 \sum _{0 \leq \mathrm{r} r \mathrm{~s} \leq \mathrm{n}}\left(\mathrm{C} _{\mathrm{r}}+\mathrm{C} _{\mathrm{s}}\right)$

$\Rightarrow(\mathrm{n}+1) 2^{\mathrm{n}+1}=2\left(\sum _{\mathrm{r}=0}^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}\right)+2 \sum _{0 \leq \mathrm{r}<\leq \leq \mathrm{n}} \sum _{\mathrm{r}}\left(\mathrm{C} _{\mathrm{r}}+\mathrm{C} _{\mathrm{s}}\right)$

$\Rightarrow(\mathrm{n}+1) 2^{\mathrm{n}+1}=2 \cdot 2^{\mathrm{n}}+2 \sum _{0 \leq \mathrm{r}<\leq \leq \mathrm{n}} \sum _{\mathrm{r}}\left(\mathrm{C} _{\mathrm{r}}+\mathrm{C} _{\mathrm{s}}\right)$

$\Rightarrow \mathrm{n} .2^{\mathrm{n}+1}=2 \sum _{0 \leq \mathrm{r}<\mathrm{s} \leq \mathrm{n}}\left(\mathrm{C} _{\mathrm{r}}+\mathrm{C} _{\mathrm{s}}\right)$

$\Rightarrow \sum _{0 \leq \mathrm{r}<\mathrm{s} \leq \mathrm{n}}\left(\mathrm{C} _{\mathrm{r}}+\mathrm{C} _{\mathrm{s}}\right)=\mathrm{n} .2^{\mathrm{n}}$

7. If $(1+x)^{n}=C _{0}+C _{1} x+C _{2} x^{2}+\ldots+C _{n} x^{n}$ prove that $\sum _{0 \leq r<s \leq n} C _{r} C _{s}=\frac{1}{2}\left(2^{2 n _2 n} C _{n}\right)$

Show Answer

Solution: We have,

$ \begin{aligned} & \sum _{\mathrm{r}=0}^{\mathrm{n}} \sum _{\mathrm{s}=0}^{\mathrm{n}} \mathrm{C} _{\mathrm{r}} \mathrm{C} _{\mathrm{s}}=\left(\sum _{\mathrm{r}=0}^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}^{2}\right)+2 \sum _{0 \leq \mathrm{r}<\mathrm{s} \leq \mathrm{n}} \mathrm{C} _{\mathrm{r}} \mathrm{C} _{\mathrm{s}} \\ & \Rightarrow 2^{2 \mathrm{n}}={ }^{2 \mathrm{n}} \mathrm{C} _{\mathrm{n}}+2 \sum _{0 \leq \mathrm{r}<\mathrm{s} \leq \mathrm{n}} \mathrm{C} _{\mathrm{r}} \mathrm{C} _{\mathrm{s}} \\ & \Rightarrow \sum _{0 \leq \mathrm{r}<\mathrm{s} \leq \mathrm{n}} \mathrm{C} _{\mathrm{r}} \mathrm{C} _{\mathrm{s}}=\frac{1}{2}\left[2^{2 \mathrm{n}-2 \mathrm{n}} \mathrm{C} _{\mathrm{n}}\right] \end{aligned} $

ALITER We have,

$ \begin{aligned} & \left(\sum _{\mathrm{r}=0}^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}\right)^{2}=\left(\sum _{\mathrm{r}=0}^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}^{2}\right)+2\left(\sum _{0 \leq \mathrm{r}<\mathrm{s} \leq \mathrm{n}} \mathrm{C} _{\mathrm{r}} \mathrm{C} _{\mathrm{s}}\right) \\ & \Rightarrow\left(2^{\mathrm{n}}\right)^{2}={ }^{2 \mathrm{n}} \mathrm{C} _{\mathrm{n}}+2\left(\sum _{0 \leq \mathrm{r}<\mathrm{s} \leq \mathrm{n}} \mathrm{C} _{\mathrm{r}} \mathrm{C} _{\mathrm{s}}\right) \\ & \Rightarrow \sum _{0 \leq \mathrm{r}<\mathrm{s} \leq \mathrm{n}} \sum _{\mathrm{r}} \mathrm{C} _{\mathrm{s}}=\frac{1}{2}\left[2^{2 \mathrm{n}-2 \mathrm{n}} \mathrm{C} _{\mathrm{n}}\right] \end{aligned} $

Practice questions

1. If $n$ is an integer between 0 and 21 , then the minimum value of $n$ ! (21-n)! is attained for $n=$

(a) 1

(b) 10

(c) 12

(d) 20

Show Answer Answer: (b)

2. ${ }^{404} \mathrm{C} _{4}-{ }^{4} \mathrm{C} _{1}{ }^{303} \mathrm{C} _{4}+{ }^{4} \mathrm{C} _{2}{ }^{202} \mathrm{C} _{4}{ }^{-4} \mathrm{C} _{3}{ }^{101} \mathrm{C} _{4}$ is equal to

(a) $(401)^{4}$

(b) $(101)4$

(c) $0$

(d) (201)4

Show Answer Answer: (b)

3. If $\left(3+x^{2008}+x^{2009}\right)^{2010}=a _{0}+a _{1} x+a _{2} x^{2}+\ldots \ldots .+a _{n} x^{n}$, then the value of $a _{0}-\frac{1}{2} a _{1}-\frac{1}{2} a _{2}+a _{3}-\frac{1}{2} a _{4}-$ $\frac{1}{2} \mathrm{a} _{5}+\mathrm{a} _{6} \ldots \ldots$. is

(a) $3^{2010}$

(b) $1$

(c) $2^{2010}$

(d) None of these

Show Answer Answer: (c)

4. $\left\{\left({ }^{n} \mathrm{C} _{0}+{ }^{\mathrm{n}} \mathrm{C} _{3}+\ldots \ldots \ldots . .\right)-\frac{1}{2}\left({ }^{\mathrm{n}} \mathrm{C} _{1}+{ }^{\mathrm{n}} \mathrm{C} _{2}+{ }^{\mathrm{n}} \mathrm{C} _{4}+{ }^{\mathrm{n}} \mathrm{C} _{5} \ldots \ldots \ldots .\right)\right\}^{2}+\frac{3}{4}\left({ }^{3} \mathrm{C} _{1}-{ }^{\mathrm{n}} \mathrm{C} _{2}+{ }^{\mathrm{n}} \mathrm{C} _{4}-{ }^{\mathrm{n}} \mathrm{C} _{5}+\ldots \ldots .\right)^{2}=$

(a) 3

(b) 4

(c) 2

(d) 1

Show Answer Answer: (d)

5. Value of $\sum _{\mathrm{r}=0}^{20} \mathrm{r}(20-\mathrm{r})\left({ }^{20} \mathrm{C}\right){ }^{2}$ is equal to

(a) $400{ }^{39} \mathrm{C} _{20}$

(b) $400{ }^{40} \mathrm{C} _{19}$

(c) $400{ }^{39} \mathrm{C} _{19}$

(d) $400{ }^{38} \mathrm{C} _{20}$

Show Answer Answer: (d)

6. If for $z$ as real or complex,$\left(1+\mathrm{z}^{2}+\mathrm{z}^{4}\right)^{8}=\mathrm{C} _{0}+\mathrm{C} _{1} \mathrm{z}^{2}+\mathrm{C} _{2} \mathrm{Z}^{4}+$. $+\mathrm{C} _{16} \mathrm{Z}^{32}$, then

(a) $\mathrm{C} _{0}-\mathrm{C} _{1}+\mathrm{C} _{2}-\mathrm{C} _{3}+$ $+\mathrm{C} _{16}=1$

(c) $\mathrm{C} _{2}+\mathrm{C} _{5}+\mathrm{C} _{8}+\mathrm{C} _{11}+\mathrm{C} _{14}=3^{6}$

(b) $\mathrm{C} _{0}+\mathrm{C} _{3}+\mathrm{C} _{6}+\mathrm{C} _{9}+\mathrm{C} _{15}=3^{7}$

(d) $\mathrm{C} _{1}+\mathrm{C} _{4}+\mathrm{C} _{7}+\mathrm{C} _{10}+\mathrm{C} _{13}+\mathrm{C} _{16}=3^{7}$

Show Answer Answer: (a, b, d)

7. Read the passage and answer the following questions

Any complex number in polar form can be an unpleasing in Euler’s form as $\cos \theta+\sin \theta=\mathrm{e}^{\mathrm{i} \theta}$ which is useful is finding the sum of series $\sum _{\mathrm{r}=0}^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}(\cos \theta+\mathrm{i} \sin \theta)^{\mathrm{r}}=\sum _{\mathrm{r}=0}^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}(\cos \mathrm{r} \theta+\mathrm{i} \sin \mathrm{r} \theta)$

$=\sum _{\mathrm{r}=0}^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}} \mathrm{e}^{\mathrm{i \theta r}}=\left(1+\mathrm{e}^{\mathrm{i} \theta}\right)^{\mathrm{n}}$

Also we know that the sum of binomial series does not change if $\mathrm{r}$ is replaced by $\mathrm{n}-\mathrm{r}$.

(i). Value of $\sum _{\mathrm{r}=0}^{100}{ }^{100} \mathrm{C} _{\mathrm{r}} \sin (\mathrm{rx} 0)$ is …..

(a) $2^{100} \cos \left(\frac{\mathrm{x}}{2}\right) \sin (50 \mathrm{x})$ $2^{100} \sin 50 x \cos \frac{x}{2}$

(c) $2^{101} \cos (50 \mathrm{x}) \sin \left(\frac{\mathrm{x}}{2}\right)$

(d) $2^{101} \sin ^{100} 50 \mathrm{x} \cos 50 \mathrm{x}$

Show Answer Answer: (a)

ii. In triangle $\mathrm{ABC}$, the value of $\sum _{\mathrm{r}=0}^{50}{ }^{50} \mathrm{C} _{\mathrm{r}} \mathrm{a}^{\mathrm{r}} \mathrm{b}^{\mathrm{n-r}} \cos (\mathrm{rb}-(50-\mathrm{r}) \mathrm{A})$ is equal to (a,b,c are sides opposite to A, B, C & S in semi perimeter)

(a) $\mathrm{c}^{49}$

(b) $(a+b)^{50}$

(c) $(25-\mathrm{a}-\mathrm{b})^{50}$

(d) None of these

Show Answer Answer: (c)

(iii). If $f(x)=\frac{\sum _{r=0}^{50} C _{r}{ }^{50} \sin 2 \mathrm{rx}}{\sum _{\mathrm{r}=0}^{50} \mathrm{C} _{\mathrm{r}} \cos 2 \mathrm{rx}}$, then $\mathrm{f}(\pi / 8)$ is

(a) $1$

(b) $-1$

(c) irrational value

(d) None of these

Show Answer Answer: (a)

8. Match the following

Column I Column II
(a) $\sum _{\mathrm{i} \neq \mathrm{j}} \sum^{10} \mathrm{C} _{\mathrm{i}}{ }^{10} \mathrm{C} _{\mathrm{j}}$ (p) $\frac{2^{20}-{ }^{20} \mathrm{C} _{10}}{2}$
(b) $\sum _{0 \leq i \leq j \leq n} \sum^{10} \mathrm{C} _{\mathrm{i}}{ }^{10} \mathrm{C} _{\mathrm{j}}$ (q) $2^{20}-{ }^{20} \mathrm{C} _{10}$
(c) $\sum _{0 \leq i<j \leq n} \sum^{10} \mathrm{C} _{\mathrm{i}}{ }^{10} \mathrm{C} _{\mathrm{j}}$ (r) $ 2^{20}$
(d) $\sum _{\mathrm{i}=0}^{10} \sum _{\mathrm{j}=0}^{10}{ }^{10} \mathrm{C} _{\mathrm{i}}{ }^{10} \mathrm{C} _{\mathrm{j}}$ (s) $\frac{2^{20}+{ }^{20} \mathrm{C} _{10}}{2}$
Show Answer Answer: a $\rarr$ q; b $\rarr$ s; c $\rarr$ p; d$\rarr$ r

9. The coefficient of $\lambda^{n} \mu^{n}$ is the expansion of $(1+\lambda)^{n}(1+\mu)^{n}(\lambda+\mu)^{n}$ is

(a) $\sum _{\mathrm{r}=0}^{\mathrm{n}}\left({ }^{n} \mathrm{C} _{\mathrm{r}}\right)^{2}$

(b) $\sum _{\mathrm{r}=0}^{\mathrm{n}}\left({ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}-2}\right)^{2}$

(c) $\sum _{\mathrm{r}=0}^{\mathrm{n}}\left({ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}+3}\right)^{2}$

(d) $\sum _{\mathrm{r}=0}^{\mathrm{n}}\left({ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}\right)^{3}$

Show Answer Answer: (d)

10. If $\mathrm{C} _{1}, \mathrm{C} _{2} \ldots \ldots \ldots . \mathrm{C} _{\mathrm{n}}$ are binomial Coefficients, then the value of $\mathrm{C} _{1}{ }^{2}-2 \mathrm{C} _{2}{ }^{2}+3 \mathrm{C} _{3}{ }^{2}-\ldots \ldots \ldots .-2 \mathrm{nC}^{2}{ } _{2 \mathrm{n}}$ is

(a) $\mathrm{n}^{2}$

(b) $(-1)^{\mathrm{n}-1} \mathrm{n}$

(c) $2(-1)^{\mathrm{n}-1} \mathrm{n}^{2 \mathrm{n}-1} \mathrm{C} _{\mathrm{n}}$

(d) $-n^{2}$

Show Answer Answer: (c)


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ