CIRCLE-1 (Equation of Circles)

Basic concepts

Circle : A circle is the locus of points which are equidistant from a fixed point and lies on the same plane.

Fixed point is called centre of a circle and constant distance is called radius of the circle

Standard equation of a circle

The equation of a circle with the centre at $(\mathrm{h}, \mathrm{k})$ and radiaus $\mathrm{r}$ is

$ (\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{k})^{2}=\mathrm{r}^{2} $

If centre is at the origin and radius is $r$ then the equation of circle is $x^{2}+y^{2}$ $=\mathrm{r}^{2}$

General equation of a circle

$x^{2}+y^{2}+2 g x+2 f y+c=0$ where $g, f$, and $c$ are constants

centre ( $-\mathrm{g},-\mathrm{f})$ and radius is $\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}$

Conditions for a second-degree equation to represent a circle

$a^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ is a second degree equation

(i) coefficient of $\mathrm{x}^{2}=$ coefficient of $\mathrm{y}^{2} . \quad$ ie., $\quad \mathrm{a}=\mathrm{b}$

(ii) coefficient of $x y=0 \quad\quad\quad\quad\quad\quad$ ie., $\quad \mathrm{h}=0$

If $\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}>0$ then the circle represents real circle with centre $(-\mathrm{g},-\mathrm{f})$

If $\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}=0$ then the circle represents point circle since radius is zero

If $\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}<0$ then the circle is imaginary circle .

Equation of circle in various forms

1. Equation of circle with centre (h.k) and passes through origin. is $x^{2}+y^{2}+2 h x+2 k y=0$

Note that when a circle passes through origin the constant term must be zero

2. If the circle touches $\mathrm{x}$-axis then its equation is $(\mathrm{x} \pm \mathrm{h})^{2}+(\mathrm{y} \pm \mathrm{k})^{2}=\mathrm{k}^{2}(\mathrm{or}) \mathrm{x}^{2}+\mathrm{y}^{2} \pm 2 \mathrm{hx} \pm 2 \mathrm{ky}+\mathrm{h}^{2}=0$. In this case radius is ordinate of centre of a circle. Four circles possible

3. If the circle touches $y$-axis then its equation is $(x \pm h)^{2}+(y \pm k)^{2}=h^{2}($ or $) x^{2}+y^{2} \pm 2 h x \pm 2 k y+k^{2}$ $=0$. Here radius of the circle is abscissa of the centre. Four circles possible.

4. If the circle touches both the axes then its equation is $(x \pm r)^{2}+(y \pm r)^{2}=r^{2}$. Four circles possible $\mathrm{x}^{2}+\mathrm{y}^{2} \pm 2 \mathrm{rx} \pm 2 \mathrm{ry}+\mathrm{r}^{2}=0$

5. If the circle touches $x$-axis at origin then its equation is $x^{2}+(y \pm k)^{2}=k^{2}$

$\mathrm{x}^{2}+\mathrm{y}^{2} \pm 2 \mathrm{ky}=0$

6. If the circle touches $y$-axis at origin then its equation is $(x \pm h)^{2}+y^{2}=h^{2}(o r) x^{2}+y^{2} \pm 2 h x=0$

7. If the circle passes through origin and cuts intercepts $a$ and $b$ on the axes, then the equation of circle is $\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{ax}-\mathrm{by}=0$ and centre is $\mathrm{c}(\mathrm{a} / 2, \mathrm{~b} / 2)$ four circles possible.

Equation of circle on a given diameter

8. If $\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)$ and $\left(\mathrm{x} _{2}, \mathrm{y} _{2}\right)$ are end points of the diameter then the equation of circle is $\left(\mathrm{x}-\mathrm{x} _{1}\right)\left(\mathrm{x}-\mathrm{x} _{2}\right)+\left(\mathrm{y}-\mathrm{y} _{1}\right)\left(\mathrm{y}-\mathrm{y} _{2}\right)=0$

Parametric form of circle

9. $\mathrm{x}=\mathrm{h}+\mathrm{r} \cos \theta$

$\mathrm{y}=\mathrm{k}+\mathrm{r} \sin \theta$

Where $\theta$ is parameter $(0 \leq \theta \leq 2 \pi)$

In particular coordinates of any point on the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{r}^{2}$ is $(\mathrm{r} \cos \theta, r \sin \theta)$ on the circle $\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}=0$ is $\left(-\mathrm{g}+\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}(\cos \theta),-f+\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}(\sin \theta)\right)$

Intercept made on the axes by a circle

10. Let the equation of circle is $x^{2}+y^{2}+2 g x+2 f y+c=0$

$\mathrm{AB}=\mathrm{x}-$ intercept $=2 \sqrt{\mathrm{g}^{2}-\mathrm{c}}$

$\mathrm{CD}=\mathrm{y}-$ intercept $=2 \sqrt{\mathrm{f}^{2}-\mathrm{c}}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ