CIRCLE-10 (Limiting Point)

Limiting Point

Limiting points of a system of co-axial circles are the centres of the point circles belonging to the family (circles whose radii are zero are called point circle)

1. Limiting points of the co-axial system

Let the circle is $\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}+\mathrm{c}=0$

Where $\mathrm{g}$ is a variable and $\mathrm{c}$ is constant

$\therefore$ centre $(-\mathrm{g}, 0)$ and radius $\sqrt{\mathrm{g}^{2}-\mathrm{c}}$ respectively

Let $\sqrt{\mathrm{g}^{2}-\mathrm{c}}=0$ radius

$\mathrm{g}^{2}-\mathrm{c}=0$

$\mathrm{g}^{2}=\mathrm{c}$

$\mathrm{g}= \pm \sqrt{\mathrm{c}}$

Thus we get the two limiting points of the given co-axial system as $(\sqrt{\mathrm{c}}, 0) &(-\sqrt{\mathrm{c}}, 0)$

The limiting points are real and distinct, real and coincident or imaginary according as $\mathrm{C}>,=,<0$.

2. System of co-axial circles whose limiting points are given

Let $(\alpha, \beta)$ and $(\gamma, \delta)$ be the two given limiting points

Then corresponding circles with zero radii are

$(x-\alpha)^{2}+(y-\beta)^{2}=0=x^{2}+y^{2}-2 \alpha x-2 \beta y+\alpha^{2}+\beta^{2}=0$

$(\mathrm{x}-\gamma)^{2}+(\mathrm{y}-\delta)^{2}=0=\mathrm{x}^{2}+\mathrm{y}^{2}-2 \gamma \mathrm{x}-2 \delta \mathrm{y}+\gamma^{2}+\delta^{2}=0$

System of co-axial circle equation is

$x^{2}+y^{2}-2 \alpha x-2 \beta y+\alpha^{2}+\beta^{2}+\lambda\left(x^{2}+y^{2}-2 \gamma x+2 \delta y+\gamma^{2}+\delta^{2}\right)=0 \quad(\lambda \neq-1)$

centre of this circle is $\left(\frac{\alpha+\gamma \lambda}{1+\lambda}, \frac{\beta+\delta \lambda}{1+\lambda}\right)$

and radius $=\sqrt{\left(\frac{\alpha+\gamma \lambda}{1+\lambda}\right)^{2}+\left(\frac{\beta+\delta \lambda}{1+\lambda}\right)^{2}-\frac{\left(\alpha^{2}+\beta^{2}+\lambda \gamma^{2}+\lambda \delta^{2}\right)}{1+\lambda}}=0$

After solving find $\lambda$ substitute in (1)

We get the limiting point of co-axial system.

Properties of Limiting points

1. The limiting point of a system of co-axial circles are conjugate points with respect to any member of the system.

Let the equation of any circle be

$\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}+\mathrm{c}=0$

limiting points of (1) are $(\sqrt{\mathrm{c}}, 0),(-\sqrt{\mathrm{c}}, 0)$

A program to give wings to girl students

The polar of the point $(\sqrt{\mathrm{c}}, 0)$ is

$\mathrm{x} \sqrt{\mathrm{c}}+\mathrm{g}(\mathrm{x}+\sqrt{\mathrm{c}})+\mathrm{c}=0$

$(\mathrm{x}+\sqrt{\mathrm{c}})(\mathrm{g}+\sqrt{\mathrm{c}})=0$

$\mathrm{x}+\sqrt{\mathrm{c}}=0 \Rightarrow \mathrm{x}=-\sqrt{\mathrm{c}}$

$\therefore(-\sqrt{c}, 0)$ ) lies on this.

Similarly $(\sqrt{\mathrm{c}}, 0)$ lies on polar with respect to $(-\sqrt{\mathrm{c}}, 0)$

$\therefore$ These limiting points $(-\sqrt{\mathrm{c}}, 0)$ and $(\sqrt{\mathrm{c}}, 0)$ are conjugate points

2. Every circle through the limiting points of a co-axial system is orthogonal to all circles of the system

Let the equation of any circle $\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}+\mathrm{c}=0$ where $\mathrm{g}$ is a variable and $\mathrm{c}$ is a constant Limiting point of this circle are $(-\sqrt{\mathrm{c}}, 0)$ and $(\sqrt{\mathrm{c}}, 0)$

Now let, $\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{~g} _{1} \mathrm{x}+2 \mathrm{f} _{1} \mathrm{y}+\mathrm{c} _{1}=$ be any circle passing through the limiting points $(-\sqrt{\mathrm{c}}, 0)$ and $(\sqrt{\mathrm{c}}, 0)$.

$\therefore \mathrm{c}-2 \mathrm{~g} _{1} \sqrt{\mathrm{c}}+\mathrm{c} _{1}=0$ (3) and $\mathrm{c}+2 \mathrm{~g} _{1} \sqrt{\mathrm{c}}+\mathrm{c} _{1}=0$

Solving (3) and (4). We get $\mathrm{g} _{1}=0$ and $\mathrm{c} _{1}=-\mathrm{c}$

$\therefore$ The equation becomes

$ \mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{f} _{1} \mathrm{y}-\mathrm{c}=0 $

applying condition of orthogonality

$2 \mathrm{gg} _{1}+2 \mathrm{ff} _{1}=\mathrm{c}+\mathrm{c} _{1}$ $\mathrm{o}+\mathrm{o}=\mathrm{c}-\mathrm{c}$

Hence condition is satisfied for all values of $g _{1}$ and $f _{1}$

Examples

1. If the origin be one limiting point of a system of co-axial circles of which $x^{2}+y^{2}+3 x+4 y+25=0$ is a member, find the other limiting point.

Show Answer

Solution :

Equation of circle with origin $(0,0)$ as limiting point is $x^{2}+y^{2}=0$

Given that one member of system of co-axial circle is $x^{2}+y^{2}+3 x+4 y+25=0$

$\therefore$ The system of co-axial circles is

$\mathrm{x}^{2}+\mathrm{y}^{2}+\frac{3}{1+\lambda} \mathrm{x}+\frac{4}{1+\lambda} \mathrm{y}+\frac{25}{1+\lambda}=0$

centre $\left(\frac{-3}{2(1+\lambda)}, \frac{-2}{1+\lambda}\right)$

radius $\frac{9}{4(1+\lambda)^{2}}+\frac{4}{(1+\lambda)^{2}}-\frac{25}{(1+\lambda)}=0$

$\frac{25}{4(1+\lambda)^{2}}-\frac{25}{1+\lambda}=0$

$1-4(1+\lambda)=0$

$1+\lambda=1 / 4$

$\lambda=1 / 4-1=-3 / 4$

$\therefore$ centre $(-6,-8)$ is the other limiting point of the system.

2. Find the radical axis of co-axial system of circles whose limiting points are $(-1,2)$ and $(2,3)$.

Show Answer

Solution :

Equations of circles with limiting points $(-1,2)$ and $(2,3)$ are

$(\mathrm{x}+1)^{2}+(\mathrm{y}-2)^{2}=0, \mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{x}-4 \mathrm{y}+5=0$

$(x-2)^{2}+(y-3)^{2}=0, x^{2}+y^{2}-4 x-6 y+13=0$

respectively

Equation of radical axis of (1) and (2) is

$\mathrm{S} _{1}-\mathrm{S} _{2}=0$

$6 x+2 y-8=0$

$3 x+y-4=0$

3. Find the equation of the circle which passes through the origin and belongs to the co-axial of circles whose limiting points are $(1,2)$ and $(4,3)$

Show Answer

Solution :

Equation of circles with limiting points $(1,2)$ and $(4,3)$ are

$(\mathrm{x}-1)^{2}+(\mathrm{y}-2)^{2}=0 \quad \Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}-4 \mathrm{y}+5=0$

$(\mathrm{x}-4)^{2}+(\mathrm{y}-3)^{2}=0 \quad \Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-8 \mathrm{x}-6 \mathrm{y}+25=0$

System of co-axial of circles equation is

$x^{2}+y^{2}-2 x-4 y+5+\lambda\left(x^{2}+y^{2}-8 x-6 y+25\right)=0$

equation (1) passes through origin

$\therefore 5+25 \lambda=0$

$\therefore \lambda=-1 / 5$

Substituting in (1) we get

$4\left(x^{2}+y^{2}\right)-2 x-14 y=0$

$2 x^{2}+2 y^{2}-x-7 y=0$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ