CIRCLE-2 (Position of a Point)

1. Position of a point with respect to a circle .

let the circle is $x^{2}+y^{2}+2 g x+2 f y+c=0$

Point $\mathrm{P}\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)$ lies outside, on or inside the circle accordingly $\mathrm{CP}>$, $=$, $<$ radius

(or) $\mathrm{S} _{1}=\mathrm{x} _{1}{ }^{2}+\mathrm{y} _{1}{ }^{2}+2 \mathrm{gx} _{1}+2 \mathrm{fy} _{1}+\mathrm{c}>,=,<0$

2. Maximum and minimum distance of a point from the circle

Let the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ and point $P\left(x _{1}, y _{1}\right)$

The maximum and minimum distance form $\mathrm{P}\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)$ to the circle are

$\mathrm{PB}=\mathrm{CB}+\mathrm{CP}$

$=\mathrm{r}+\mathrm{CP}$

$\mathrm{PA} \quad=|\mathrm{CP}-\mathrm{CA}|=|\mathrm{PC}-\mathrm{r}|$

$\mathrm{PB}$ is maximum distance and $\mathrm{PA}$ is minimum distance.

Examples

1. If the equation $p x^{2}+(3-q) x y+2 y^{2}-6 q x+30 y+6 q=0$ represents a circle, then the values of $p$ and q are

(a) 3, 1

(b) 2, 2

(c) 2, 3

(d) 3, 4

Show Answer

Solution :

$\mathrm{ax}^{2}+\mathrm{by}^{2}+2 \mathrm{hxy}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c} 0$

represents a circle if $\mathrm{h}=0$ and $\mathrm{a}=\mathrm{b}$

$\therefore \mathrm{p}=2$ and $3-\mathrm{q}=0 \Rightarrow \mathrm{q}=3$

Correct option is :(c)

2. The number if integral values of $\lambda$ for which $x^{2}+y^{2}+(1-\lambda) x+\lambda y+5=0$ is the equation of a circle whose radius cannot exceed 5 is

(a) 20

(b) 16

(c) 18

(d) 24

Show Answer

Solution :

radius of the equation $\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}$

$g=\frac{1-\lambda}{2}, \quad f=\frac{\lambda}{2} \quad c=5$

$\sqrt{\left(\frac{1-\lambda}{2}\right)^{2}+\frac{\lambda^{2}}{4}-5} \leq 5$

$1+\lambda^{2}-2 \lambda+\lambda^{2}-20 \leq 300$

$2 \lambda^{2}-2 \lambda-119 \leq 0$

$ \begin{aligned} & D=4+8 \times 119 \\ & =4+952 \\ & =956 \\ & =4(239) \\ & \lambda=\frac{2 \pm 2 \sqrt{239}}{4} \\ & =\frac{1-\sqrt{239}}{2} \frac{1+\sqrt{239}}{2} \\ & \therefore \frac{1-\sqrt{239}}{2} \leq \lambda \leq \frac{1+\sqrt{239}}{2} \\ & -7.2 \leq \lambda \leq 8.2 \text { (approx) } \\ & \lambda=-7,-6,-5,-4, \ldots \ldots . .8 \end{aligned} $

number of values of $\lambda$ is 16

3. The equation of the circle which passes through $(1,0)$ and $(0,1)$ and has its radius as small as possible is

(a) $x^{2}+y^{2}-2 x-2 y+1=0$

(b) $x^{2}+y^{2}-x-y=0$

(c) $2 x^{2}+2 y^{2}-3 x-3 y+1=0$

(d) $x^{2}+y^{2}-3 x-3 y+2=0$

Show Answer

Solution :

The radius will be minimum, if the given points are the end points of a diameter. Then the equation of the circle is $(x-1)(x-0)+(y-0)(y-1)=0 \Rightarrow x^{2}+y^{2}-x-y=0$

4. The centre of the circle $x=-1+2 \cos \theta, y=3+2 \sin \theta$ is

(a) $(1,-3)$

(b) $(-1,3)$

(c) $(1,3)$

(d) None of these

Show Answer

Solution :

Rewrite the given equation

$\begin{array}{ll}x+1=2 \cos \theta & y-3=2 \sin \theta \\ \frac{x+1}{2}=\cos \theta & \frac{y-3}{2}=\sin \theta\end{array}$

squaring and adding

$ \begin{aligned} & \left(\frac{x+1}{2}\right)^{2}+\left(\frac{y-3}{2}\right)^{2}=\cos ^{2} \theta+\sin ^{2} \theta \\ & (x+1)^{2}+(y-3)^{2}=4 \\ & \text { centre }(-1,3) \text { radius } 2 \end{aligned} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ