CIRCLE-5 (Tangents and Normals)

1. Chord of contact

Let the equation of circle be $x^{2}+y^{2}=\underline{r}^{2}$ PA and $\mathrm{PB}$ are pair of tangents drawn from the point $\mathrm{P}\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)$ then $\mathrm{AB}$ is the chord of contact with $\mathrm{A}$ and $B$ as its points of contact.

$\therefore$ Equation of chord of contact $\mathrm{AB}$ is $\mathrm{xx} _{1}+\mathrm{yy} _{1}=\underline{a}^{2}$ Equation of chord of contact look like equation of tangent at point but point are different

If the equation of circle be $x^{2}+y^{2}+2 g x+2 f y+c= 0$ then the equation of chord of contact is $\mathrm{xx} _{1}+\mathrm{yy} _{1}+\mathrm{g}\left(\mathrm{x}+\mathrm{x} _{1}\right)+\mathrm{f}\left(\mathrm{y}+\mathrm{y} _{1}\right)+\mathrm{c}=0$

2. Equation of the chord bisected at a given point

Let the equation of circle be $x^{2}+y^{2}=r^{2}$ and $A B$ is a chord of it $\operatorname{Let}\left(M\left(x _{1}, y _{1}\right)\right.$ be midpoint of $A B$.

$ \begin{aligned} & \text { Slope of } C M=\frac{y _{1}}{x _{1}} \\ & \text { Slope of } A B=\frac{-x _{1}}{y _{1}} \end{aligned} $

Equation of chord $\mathrm{AB}$ is

$ \begin{aligned} & \mathrm{y}-\mathrm{y} _{1}=\frac{-\mathrm{x} _{1}}{\mathrm{y} _{1}}\left(\mathrm{x}-\mathrm{x} _{1}\right) \\ & \mathrm{yy} _{1}-\mathrm{y} _{1}^{2}=-\mathrm{xx} _{1}+\mathrm{x} _{1}^{2} \\ & \mathrm{xx} _{1}+\mathrm{yy} _{1}=\mathrm{x} _{1}^{2}+\mathrm{y} _{1}^{2} \\ & \mathrm{xx} _{1}+\mathrm{yy} _{1}-\mathrm{a}^{2}=\mathrm{x} _{1}^{2}+\mathrm{y} _{1}^{2}-\mathrm{a}^{2} \\ & \mathrm{~T}=\mathrm{S} _{1} \end{aligned} $

If the equation of circle be $x^{2}+y^{2}+2 g x+2 f y+c=0$ then the equation of chord which is bisected at $\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)$ is

$\mathrm{xx} _{1}+\mathrm{yy} _{1}+\mathrm{g}\left(\mathrm{x}+\mathrm{x} _{1}\right)+\mathrm{f}\left(\mathrm{y}+\mathrm{y} _{1}\right)+\mathrm{c}=\mathrm{x} _{1}^{2}+\mathrm{y} _{1}{ }^{2}+2 \mathrm{gx} _{1}+2 \mathrm{fy} _{1}+\mathrm{c}$

Examples

1. Find the equation of tangent to the circle $\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{ax}=0$ at the point $(\mathrm{a}(1+\cos \alpha)$, $\mathrm{sin} \alpha)$

Show Answer

Solution :

Equation of tangent of $x^{2}+y^{2}-2 a x=0 a t(a(1+\cos \alpha)$,asin $\alpha)$ is

$\mathrm{ax}(1+\cos \alpha)+\mathrm{aysin} \alpha-\mathrm{a}(\mathrm{x}+\mathrm{a}(1+\cos \alpha))=0$

$\mathrm{ax}+\mathrm{axcos} \alpha+\mathrm{aysin} \alpha-\mathrm{ax}-\mathrm{a}^{2}(1+\cos \alpha)=0$

$\operatorname{axcos} \alpha+\mathrm{aysin} \alpha=\mathrm{a}^{2}(1+\cos \alpha)$

$\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\mathrm{a}(1+\cos \alpha)$

2. Find the equations of the tangents to the circle $x^{2}+y^{2}=9$ which make an angle of $60^{\circ}$ with the axis.

Show Answer

Solution :

Since tangents make an angle of $60^{\circ}$ with the $\mathrm{x}$-axis so slope of tangent

$\mathrm{m}=\tan 60^{\circ}=\mathrm{m}=\sqrt{3}$

radius of circle $\mathrm{x}^{2}+\mathrm{y}^{2}=9$ is 3

we know equation of tangent to a circle $x^{2}+y^{2}=a^{2}$ is

$y=m x \pm a \sqrt{1+m^{2}}$

$\therefore \mathrm{y}=\sqrt{3} \mathrm{x} \pm 3 \sqrt{1+3}$

$=\sqrt{3} \mathrm{x} \pm 6$

or $\sqrt{3} x-y \pm 6=0$ ie., $\sqrt{3} x-y+6=0$ and $\sqrt{3} x-y-6=0$ are equations of tangents.

3. Show that the line $(\mathrm{x}-2) \cos \theta+(\mathrm{y}-2) \sin \theta=1………(1)$ touches a circle for all values of $\theta$. Find the circle.

Show Answer

Solution :

Since the line $(\mathrm{x}-2) \cos \theta+(\mathrm{y}-2) \sin \theta=1$ (1) touches a circle so it is a tangent equation to a circle.

Equation of tangent to a circle at $\left(x _{1}, y _{1}\right)$ is $(x-h) x _{1}+(y-k) y _{1}=a^{2}$ to a circle $(x-h)^{2}+(y-k)^{2}=a^{2}$ comparing (1) and (2) we get

$\mathrm{x}-\mathrm{h}=\mathrm{x}-2 \quad \mathrm{y}-\mathrm{k}=\mathrm{y}-2 \quad$ and $\mathrm{a}^{2}=1$

$\mathrm{x} _{1}=1 \cos \theta$ $\mathrm{y} _{1}=1 \sin \theta$

$\therefore$ Required equation of circle is

$(\mathrm{x}-2)^{2}+(\mathrm{y}-2)^{2}=1$

$\mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{x}-4 \mathrm{y}+7=0$

4. Find the equation of the normal to the circle $x^{2}+y^{2}=2 x$ which is parallel to the line $x+2 y=3$

Show Answer

Solution :

Equation of normal at $\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)$ of $\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}=0$ is

$\frac{x-x _{1}}{x _{1}-1}=\frac{y-y _{1}}{y _{1}-0}\left(\frac{x-x _{1}}{a x _{1}+g}=\frac{y-y _{1}}{b y _{1}+f}\right)$

Slope of this equation is $\frac{y _{1}}{x _{1}-1}$

Slope of $x+2 y=3$ is $\frac{-1}{2}$

Since given that normal is parallel to $x+2 y=3$

$\therefore \frac{\mathrm{y} _{1}}{\mathrm{x} _{1}-1}=\frac{-1}{2}$

$2 \mathrm{y} _{1}=-\mathrm{x} _{1}+1$ therefore locus of $\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)$ is $\mathrm{x} _{1}+2 \mathrm{y} _{1}=1$

It is the equation of normal $\Rightarrow(x+2 y)=1$

5. Show that the line $3 x-4 y=1$ touches the circle $x^{2}+y^{2}-2 x+4 y+1=0$ find the coordinates of the point of contact.

Show Answer

Solution :

Centre and radius of circle $x^{2}+y^{2}-2 x+4 y+1=0$

is $(1,-2)$ and $\sqrt{1+4-1}=2$ respectively.

If the distance of a line $3 x-4 y=1$ from the centre $(1,-2)$ is equal to radius then the line touches or it is tangent to a circle.

$=\left|\frac{3 \times 1-4(-2)-1}{\sqrt{3^{2}+4^{2}}}\right| \quad\left(\left|\frac{\mathrm{ax} _{1}+\mathrm{by} _{1}+\mathrm{c}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}\right|=\mathrm{d}\right)$

$=\left|\frac{3+8-1}{5}\right|$

$=2$

$\therefore$ line $3 x-4 y=1$ touches the circle.

Let point of contact be $\left(x _{1}, y _{1}\right)$ then equation of tangent to a circle $x^{2}+y^{2}-2 x+4 y+1=0$ is

$\mathrm{xx} _{1}+\mathrm{yy} _{1}-\left(\mathrm{x}+\mathrm{x} _{1}\right)+2\left(\mathrm{y}+\mathrm{y} _{1}\right)+1=0……….(1)$

$\mathrm{x}\left(\mathrm{x} _{1}-1\right)+\mathrm{y}\left(\mathrm{y} _{1}+2\right)-\mathrm{x} _{1}+2 \mathrm{y} _{1}+1=0……..(2)$

and given line $3 x-4 y-1=0$

(1) and (2) are idenfical then comparing (1) and (2) we get

$\frac{\mathrm{x} _{1}-1}{3}=\frac{\mathrm{y} _{1}+2}{-4}=\frac{-\mathrm{x} _{1}+2 \mathrm{y} _{1}+1}{-1}$

$-\mathrm{x} _{1}+1=-3 \mathrm{x} _{1}+6 \mathrm{y} _{1}+3 \quad$ or $\quad 2 \mathrm{x} _{1}-6 \mathrm{y} _{1}-2=0$

$-\mathrm{y} _{1}-2=4 \mathrm{x} _{1}-8 \mathrm{y} _{1}-4 \quad$ or $\quad 4 \mathrm{x} _{1}-7 \mathrm{y} _{1}-2=0$

Solving these two equations of $\mathrm{x} _{1}, \mathrm{y} _{1}$ we get $\mathrm{x} _{1}=\frac{-1}{5}$ and $\mathrm{y} _{1}=\frac{-2}{5}$

$\therefore$ point of contact is $\left(\frac{-1}{5}, \frac{-2}{5}\right)$

6. The angle between a pair of tangents from a point $\mathrm{P}$ to the circle

$x^{2}+y^{2}+4 x-6 y+9 \sin ^{2} \alpha+13 \cos ^{2} \alpha=0$ is $2 \alpha$. Find the equation of the locus of the point $P$.

Show Answer

Solution :

Let the coordinate of $\mathrm{Pbe}\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)$ and given circle is $\mathrm{x}^{2}+\mathrm{y}^{2}+4 \mathrm{x}-6 \mathrm{y}+9 \sin ^{2} \alpha+13 \cos ^{2} \alpha=0$

$(\mathrm{x}+2)^{2}+(\mathrm{y}-3)^{2}-4-9+9 \sin ^{2} \alpha+13 \cos ^{2} \alpha=0$

$(x+2)^{2}+(y-3)^{2}-9 \sin ^{2} \alpha-13\left(1-\cos ^{2} \alpha\right)=0$

$(x+2)^{2}+(y-3)^{2}-9 \sin ^{2} \alpha-13 \sin ^{2} \alpha=0$

$(x+2)^{2}+(y-3)^{2}=4 \sin ^{2} \alpha=(2 \sin \alpha)^{2}$

$\therefore$ centre and radius of circle is $(-2,3)$ and $2 \sin \alpha$ respectively

Distance of $\mathrm{P}$ and $\mathrm{C}$ is

$\mathrm{PC}=\sqrt{\left(\mathrm{x} _{1}+2\right)^{2}+\left(\mathrm{y} _{1}-3\right)^{2}}$

In ${ } _{\Delta} \mathrm{PCR}$

$\sin \alpha=\frac{2 \sin \alpha}{\sqrt{\left(\mathrm{x} _{1}+2\right)^{2}+\left(\mathrm{y} _{1}-3\right)^{2}}}$

or $\sqrt{\left(x _{1}+2\right)^{2}+\left(y _{1}-3\right)^{2}}=2$

Squaring

$\left(\mathrm{x} _{1}+2\right)^{2}+(\mathrm{y}-3)^{2}=4$ or $(\mathrm{x}+2)^{2}+(\mathrm{y}-3)^{2}=4$

$\therefore$ locus of point $P$ is a circle

7. If the length of tangent from ( $\mathrm{f}, \mathrm{g})$ to the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=6$ be twice the length of the tangent from (f,g) to circle $x^{2}+y^{2}+3 x+3 y=0$ then prove that $f^{2}+g^{2}+4 f+4 g+2=0$

Show Answer

Solution :

According to the question

$\sqrt{\mathrm{f}^{2}+\mathrm{g}^{2}-6}=2 \sqrt{\mathrm{f}^{2}+\mathrm{g}^{2}+3 \mathrm{f}+3 \mathrm{~g}}$

Squaring both side

$\mathrm{f}^{2}+\mathrm{g}^{2}-6=4\left(\mathrm{f}^{2}+\mathrm{g}^{2}+3 \mathrm{f}+3 \mathrm{~g}\right)$

$3 \mathrm{f}^{2}+3 \mathrm{~g}^{2}+12 \mathrm{f}+12 \mathrm{~g}+6=0$

Divide by 3 we get $\mathrm{f}^{2}+\mathrm{g}^{2}+4 \mathrm{f}+4 \mathrm{~g}+2=0$

8. The chord of contact of tangents drawn from a point on the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$ to the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=$ $\mathrm{b}^{2}$ touches the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{c}^{2}$ show that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP.

Show Answer

Solution :

Let $\mathrm{P}(\mathrm{a} \cos \theta, \operatorname{asin} \theta)$ be a point on the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$ Then equation of chord of contact to the circle $x^{2}+y^{2}=b^{2}$ from $P(a \cos \theta$, asin $\theta)$ is

$x(a \cos \theta)+y(a \sin \theta)=b^{2}$

$\operatorname{axsin} \theta+a y \sin \theta=b^{2}$

It is a tangent to the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{c}^{2}$

$\therefore$ length of perpendicular to the line $=$ radius.

$\left|\frac{-\mathrm{b}^{2}}{\sqrt{\mathrm{a}^{2}}}\right|=\mathrm{c}$

$\mathrm{b}^{2}=\mathrm{ac}$

$\therefore$ a, b.c are in G.P.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ