CIRCLE-7 (Intersection of Two Circles)

Angle of intersection of two circles

Let the two circles $S \equiv x^{2}+y^{2}+2 g x+2 f y+c=0$ and $S^{\prime} \equiv x^{2}+y^{2}+2 g _{1} x+2 f _{1} y+c _{1}=0$ intersect each other at the point $\mathrm{P}$ and $\mathrm{Q}$. The angle $\theta$ between two circles $\mathrm{S}=0$ and $\mathrm{S}^{\prime}=0$ is defined as the angle between the tangents to the two circles at the point of intersection. $\theta$ must be taken acute angle .

$C _{1}$ and $C _{2}$ are the centres of circles $S=0$ and $S^{\prime}=0$ then $C _{1}(-g,-f)$ and $C _{2}\left(-g _{1},-f _{1}\right)$ and their radii

$\mathrm{r} _{1}=\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}} \& \mathrm{r} _{2}=\sqrt{\mathrm{g} _{1}^{2}+\mathrm{f} _{1}^{2}-\mathrm{c} _{1}}$

Let $\mathrm{d}=\left|\mathrm{c} _{1} \mathrm{c} _{2}\right|=\sqrt{\left(\mathrm{g}-\mathrm{g} _{1}\right)^{2}+\left(\mathrm{f}-\mathrm{f} _{1}\right)^{2}}=\sqrt{\mathrm{g}^{2}+\mathrm{g} _{1}{ }^{2}-2 \mathrm{gg} _{1}+\mathrm{f}^{2}+\mathrm{f} _{1}{ }^{2}-2 \mathrm{ff} _{1}}$

$\mathrm{C} _{1} \mathrm{P} \perp \mathrm{AA}^{\prime}, \mathrm{C} _{2} \mathrm{P} \perp \mathrm{BB}^{\prime}$ since radius is perpendicular to the tangent at the point of contact ie. $\angle \mathrm{C} _{1} \mathrm{PA}^{\prime}=90^{\circ}$ and $\angle \mathrm{C} _{2} \mathrm{~PB}^{\prime}=90^{\circ}$

$\therefore \angle \mathrm{C} _{1} \mathrm{~PB}^{\prime}=90^{\circ}-\theta$ and $\angle \mathrm{C} _{2} \mathrm{PA}^{\prime}=90^{\circ}-\theta$

Hence $\angle \mathrm{C} _{1} \mathrm{PC} _{2}=90^{\circ}-\theta+\theta+90^{\circ}-\theta=180^{\circ}-\theta$

Now in $\Delta \mathrm{C} _{1} \mathrm{PC} _{2}$

$\cos \left(180^{\circ}-\theta\right)=\frac{\mathrm{r} _{1}{ }^{2}+\mathrm{r} _{2}{ }^{2}-\mathrm{d}^{2}}{2 \mathrm{r} _{1} \mathrm{r} _{2}}$ (cosine rule)

$\cos \theta=\left|\frac{\mathrm{r} _{1}{ }^{2}+\mathrm{r} _{2}{ }^{2}-\mathrm{d}^{2}}{2 \mathrm{r} _{1} \mathrm{r} _{2}}\right|$

If the angle between the circles is $90^{\circ}$ ie., $\theta=90^{\circ}$, then $\cos 90^{\circ}=0$ Then the circles are said to be orthogonal circles or the circles cut each other orthogonally.

$\therefore \mathrm{r} _{1}{ }^{2}+\mathrm{r} _{2}{ }^{2}-\mathrm{d}^{2}=0$

$\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}^{2}+\mathrm{g} _{1}{ }^{2}+\mathrm{f} _{1}^{2}-\mathrm{c} _{1}-\mathrm{g}^{2}-\mathrm{g} _{1}{ }^{2}+2 \mathrm{gg} _{1}-\mathrm{f}^{2}-\mathrm{f} _{1}{ }^{2}+2 \mathrm{ff} _{1}=0$

$2 \mathrm{gg} _{1}+2 \mathrm{ff} _{1}=\mathrm{c}+\mathrm{c} _{1}$

It is a condition for two circles to be orthogonal

Examples :

1. Find the angle between the circles

$S \equiv x^2+y^2-4 x+6 y+11=0$ and $S^{\prime}=x^2+y^2-2 x+8 y+13=0$

Show Answer

Solution:

Here $S \equiv x^{2}+y^{2}-4 x+6 y+11=0$ and $S^{\prime}=x^{2}+y^{2}-2 x+8 y+13=0$

The centre of these circles are $\mathrm{C} _{1}(2,-3)$ and $\mathrm{C} _{2}(1,-4)$ respectively.

The radius of these circles are $r _{1}=\sqrt{4+9-11}=\sqrt{2}$

and $\mathrm{r} _{2}=\sqrt{1+16-13}=2$

Distance between the centres $\mathrm{C} _{1} \mathrm{C} _{2}=\mathrm{d}=\sqrt{1^{2}+1^{2}}=\sqrt{2}$

Angle between two circle is $\cos \theta=\left|\frac{\mathrm{r} _{1}{ }^{2}+\mathrm{r} _{2}{ }^{2}-\left(\mathrm{c} _{1} \mathrm{c} _{2}\right)^{2}}{2 \mathrm{r} _{1} \mathrm{r} _{2}}\right|=\left|\frac{2+4-2}{2 \times 2 \times \sqrt{2}}\right|=\frac{1}{\sqrt{2}}=\cos \frac{\pi}{4}$

$\therefore \theta=\frac{\pi}{4}$

2. Find the equations of the two circles which intersect the circles $x^{2}+y^{2}-6 y+1=0$ and $x^{2}+y^{2}-$ $4 y+1=0$ orthogonally and touch the line $3 x+4 y+5=0$

Show Answer

Solution:

Let the required equation of circle be $x^{2}+y^{2}+2 g x+2 f y+c=0$

This circle intersect orthogonally with circles $x^{2}+y^{2}-6 y+1=0$ and $x^{2}+y^{2}-4 y+1=0$

Condition for orthogonality is $2 \mathrm{gg} _{1}+2 \mathrm{ff} _{1}=\mathrm{c}+\mathrm{c} _{1}$ $\therefore 0+2 \mathrm{f}(-3)=\mathrm{C}+1 \quad$ and $0+2 \mathrm{f}(-2)=\mathrm{c}+1$ $-6 \mathrm{f}=\mathrm{c}+1$ $-4 \mathrm{f}=\mathrm{c}+1$

$\therefore-6 \mathrm{f}=-4 \mathrm{f} \Rightarrow \mathrm{f}=0$ and $\mathrm{c}=-1$

Equation of circle is $x^{2}+y^{2}+2 g x-1=0$

Centre is $(-\mathrm{g}, 0)$ and radius $\sqrt{\mathrm{g}^{2}+1}$

Since the line $3 x+4 y+5=0$ touches the circle

$\therefore$ distance of this line from the centre must be equal to radius $\sqrt{\mathrm{g}^{2}+1}$

$\therefore\left|\frac{-3 \mathrm{~g}+5}{\sqrt{9+16}}\right|=\sqrt{\mathrm{g}^{2}+1}$

$5-3 \mathrm{~g}=5 \sqrt{\mathrm{g}^{2}+1}$

squaring

$25+9 \mathrm{~g}^{2}-30 \mathrm{~g}=25 \mathrm{~g}^{2}+25$

$16 \mathrm{~g}^{2}+30 \mathrm{~g}=0$

$2 \mathrm{~g}(8 \mathrm{~g}+15)=0$

$g=0$ or $g=\frac{-15}{8}$

Hence equations of circles are

$\mathrm{x}^{2}+\mathrm{y}^{2}-1=0$ and $\mathrm{x}^{2}+\mathrm{y}^{2}-\frac{15}{4} \mathrm{x}-1=0$

$x^{2}+y^{2}-1=0$ and $4 x^{2}+4 y^{2}-15 x-4=0$

3. Prove that the two circles, which pass through $(0, a)$ and $(0,-a)$ and touch the line $y=m x+c$, will cut or thogonally if $\mathrm{c}^{2}=\mathrm{a}^{2}\left(2+\mathrm{m}^{2}\right)$

Show Answer

Solution:

Let the equation of the circles be

$x^{2}+y^{2}+2 g x+2 f y+d=0$

This circle passes through the points $(0, \mathrm{a})$ and $(0,-\mathrm{a})$

$\therefore \mathrm{a}^{2}+2 \mathrm{fa}+\mathrm{d}=0$

(1) and $\mathrm{a}^{2}-2 \mathrm{fa}+\mathrm{d}=0$

(1) (2)

$4 \mathrm{fa}=0$

$\therefore \mathrm{f}=0$ and $\mathrm{d}=-\mathrm{a}^{2}$

$\therefore$ The equation of circle is $\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}-\mathrm{a}^{2}=0$

Centre of this circle is $(-\mathrm{g}, 0)$ and radies $\sqrt{\mathrm{g}^{2}+\mathrm{a}^{2}}$

Since line $y=m x+c$ touches the circle

$\therefore\left|\frac{-\mathrm{mg}+\mathrm{c}}{\sqrt{\mathrm{m}^{2}+1}}\right|=\sqrt{\mathrm{g}^{2}+\mathrm{a}^{2}}$

$\mathrm{c}-\mathrm{mg}=\sqrt{\mathrm{g}^{2}+\mathrm{a}^{2}} \sqrt{\mathrm{m}^{2}+1}$

Squaring

$\mathrm{c}^{2}+\mathrm{m}^{2} \mathrm{~g}^{2}-2 \mathrm{mcg}=\mathrm{g}^{2} \mathrm{~m}^{2}+\mathrm{g}^{2}+\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{a}^{2}$

$\mathrm{g}^{2}+2 \mathrm{mcg}+\mathrm{a}^{2}\left(1+\mathrm{m}^{2}\right)-\mathrm{c}^{2}=0$

It is a quadratic in $\mathrm{g}$

$\therefore$ product of the roots $\mathrm{g} _{1} \mathrm{~g} _{2}=\mathrm{a}^{2}\left(1+\mathrm{m}^{2}\right)-\mathrm{c}^{2}$

Sum of roots $\mathrm{g} _{1}+\mathrm{g} _{2}=-2 \mathrm{mc}$

Now the equations of the two circles represented are $x^{2}+y^{2}+2 g _{1} x-a^{2}=0$ and $x^{2}+y^{2}+2 g _{2} x-a^{2}=$ 0

These two circles will be orthogonal if

$ \begin{aligned} & 2 \mathrm{~g} _{1} \mathrm{~g} _{2}=-\mathrm{a}^{2}-\mathrm{a}^{2} \\ & \mathrm{~g} _{1} \mathrm{~g} _{2}=-\mathrm{a}^{2} \end{aligned} $

But $\mathrm{g} _{1} \mathrm{~g} _{2}=-\mathrm{c}^{2}+\mathrm{a}^{2}\left(1+\mathrm{m}^{2}\right)$

$\therefore-\mathrm{c}^{2}+\mathrm{a}^{2}\left(1+\mathrm{m}^{2}\right)=-\mathrm{a}^{2}$

or $\mathrm{c}^{2}=\mathrm{a}^{2}\left(2+\mathrm{m}^{2}\right)$

Which is the required condition

4. If the angle of intersection of the circles $x^{2}+y^{2}+x+y=0$ and $x^{2}+y^{2}+x-y=0$ is $\theta$, then equation of the line passing through $(1,2)$ and making an angle $\theta$ with the $y$-axis is

Show Answer

Solution:

Let $C _{1}$ and $C _{2}$ be the centres of given circles $C _{1}\left(\frac{-1}{2}, \frac{-1}{2}\right)$ and $C _{2}\left(\frac{-1}{2}, \frac{1}{2}\right)$

Also radius these two circles are $r _{1}=\sqrt{\frac{1}{4}+\frac{1}{4}}=\sqrt{\frac{1}{2}}=\frac{1}{\sqrt{2}}$

and $\mathrm{r} _{2}=\sqrt{\frac{1}{4}+\frac{1}{4}}=\frac{1}{\sqrt{2}}$

$\cos \theta=\frac{\mathrm{r} _{1}{ }^{2}+\mathrm{r} _{2}{ }^{2}-\mathrm{d}^{2}}{2 \mathrm{r} _{1} \mathrm{r} _{2}}$

$=\frac{\frac{1}{2}+\frac{1}{2}-1}{2 \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}}$

$=0$

$\therefore \theta=\frac{\pi}{2}$

$\therefore$ Required line is parallel to $\mathrm{x}$-axis and it passes through $(1,2)$

$\therefore$ Equation of line is $\mathrm{y}=2$.

5. The equation of a circle is $x^{2}+y^{2}=4$. Find the centre of the smallest circle touching the circle and the line $x+y=5 \sqrt{2}$

Show Answer

Solution:

Here $\mathrm{OA}=2$ radius of circle $\mathrm{x}^{2}+\mathrm{y}^{2}=4$ with centre $(0,0)$

The distance of $(0,0)$ from $x+y=5 \sqrt{2}$ is

$\left|\frac{-5 \sqrt{2}}{\sqrt{2}}\right|=5$

$\therefore$ The radius of the smallest circle $=\frac{5-2}{2}=\frac{3}{2}$

and $\mathrm{OC}=2+\frac{3}{2}=\frac{7}{2}$

The slope of $\mathrm{OA}=1=\tan \theta$ $\therefore \cos \theta=\frac{1}{\sqrt{2}}$ and $\sin \theta=\frac{1}{\sqrt{2}}$

$\therefore$ Centre $(0+\mathrm{OC} \cos \theta, O+O C \sin \theta)=\left(\frac{7}{2 \sqrt{2}}, \frac{7}{2 \sqrt{2}}\right)$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ