CIRCLE-9 (Co - Axial System of Circles)

Co - Axial System of Circles

A system of circles or family of circles, every pair of which have the same radical axis are called co-axial circles

1. The equation of family of co-axial circles when the equation of radical axis and one circle are given

$\mathrm{L}=\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$

$\mathrm{S} \equiv \mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}=0$

Then equation of co-axial circle is $\mathrm{S}+\lambda \mathrm{L}=0$

2. The equation of co-axial system of a circles where the equation of any two circles of the system are

$\mathrm{S} _{1}=\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}=0$

$\mathrm{S} _{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{~g} _{1} \mathrm{x}+2 \mathrm{f} _{1} \mathrm{y}+\mathrm{c} _{1}=0$

respectively is $\mathrm{S} _{1}+\lambda\left(\mathrm{S} _{1}-\mathrm{S} _{2}\right)=0$

and $\mathrm{S} _{2}+\lambda\left(\mathrm{S} _{1}-\mathrm{S} _{2}\right)=0(\lambda \neq-1)$

$S _{1}+\lambda S _{2}=0(\lambda \neq-1)$

3. The equation of a system of co-axial circles in the simplest form is $\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}+\mathrm{c}=0$ where $\mathrm{g}$ is variable and $\mathrm{c}$ is a constant

The common radical axis is the $\mathrm{y}$-axis (centre on $\mathrm{x}$-axis)

The equation of system of co-axial circles in the simplest form is $x^{2}+y^{2}+2 f y+c=0$ where $f$ is a variable and $\mathrm{c}$ is a constant

The common radical axis is the $\mathrm{x}$-axis (centre on $\mathrm{y}$ axis)

Examples

1. Find the equation of the system of circles co-axial with the circles $x^{2}+y^{2}+4 x+2 y+1=0$ and $x^{2}+y^{2}-$ $2 x+6 y-6=0$. Also find the equation of that particular circles whose centre lies on radical axis.

Show Answer

Solution:

Given circles are

$ \begin{aligned} & S _{1} \equiv x^{2}+y^{2}+4 x+2 y+1=0 \\ & S _{2} \equiv x^{2}+y^{2}-2 x+6 y-6=0 \\ & S _{1}-S _{2}=0 \\ & 6 x-4 y+7=0 \end{aligned} $

System of co-axial circle is $\mathrm{S} _{1}+\lambda\left(\mathrm{S} _{1}-\mathrm{S} _{2}\right)=0$

$ \begin{aligned} & x^{2}+y^{2}+4 x+2 y+1+\lambda(6 x-4 y+7)=0 \\ & x^{2}+y^{2}+2 x(2+3 \lambda)+2 y(1-2 \lambda)+1+7 \lambda=0 \end{aligned} $

Centre of this circle is $(-(2+3 \lambda),-(1-2 \lambda))$

lies on radical axis

$ \begin{aligned} & \therefore 6(-2-3 \lambda)+4(1-2 \lambda)+7=0 \\ & -12-18 \lambda+4-8 \lambda+7=0 \\ & -1-26 \lambda=0 \\ & \lambda=\frac{-1}{26} \end{aligned} $

$\therefore$ Required particular member of co-axial circle is $26\left(x^{2}+y^{2}\right)+98 x+56 y+19=0$

2. If the circumference of the circle $x^{2}+y^{2}+8 x+8 y-b=0$ is bisected by the circle

$x^{2}+y^{2}-2 x+4 y+a=0$ then $a+b$ equal to

(a) $50$

(b) $56$

(c) $-56$

(d) $-34$

Show Answer

Solution: (c)

Equation of radical axis (common chord of these circles) is $10 x+4 y-b-a=0$

Centre of first circle is $(-4,-4)$

Since second circle bisects the first circle

Therefore centre of first circle must lie on common chord.

$ \begin{array}{ll} \therefore \quad & 10(-4)+4(-4)-b-a=0 \\ & -40-16-(a+b)=0 \end{array} $

$\therefore \quad \mathrm{a}+\mathrm{b}=-56$

3. The equation of the circle passing through the point of intersection of the circles $x^{2}+y^{2}-4 x-2 y=8$ and $x^{2}+y^{2}-2 x-4 y=8$ and the point $(-1,4)$ is

(a) $x^{2}+y^{2}+4 x+4 y-8=0$

(b) $x^{2}+y^{2}-3 x+4 y+8=0$

(c) $x^{2}+y^{2}+x+y-8=0$

(d) $x^{2}+y^{2}-3 x-3 y-8=0$

Show Answer

Solution: (d)

Equation of any circle passing through the point of intersection of the circles is $x^{2}+y^{2}-4 x-2 y-8+\lambda\left(x^{2}+y^{2}-2 x-4 y-8\right)=0$

This circle passes through the point $(-1,4$

$\therefore 1+16+4-8-8+\lambda(1+16+2-16-8)=0$

$5-5 \lambda=0$

$\lambda=1$

Required circle is $x^{2}+y^{2}-3 x-3 y-8=0$

4. If the common chord of the circles $x^{2}+(y-b)^{2}=16$ and $x^{2}+y^{2}=16$ subtends a right angle at the origin then $\mathrm{b}=$

(a) $4$

(b) $4 \sqrt{2}$

(c) $-4 \sqrt{2}$

(d) $8$

Show Answer

Solution:

The equation of common chord is

$\mathrm{S}-\mathrm{S} _{1}=0$

$(\mathrm{y}-\mathrm{b})^{2}-\mathrm{y}^{2}=0$

$\mathrm{b}^{2}-2 \mathrm{by}=0$

$\mathrm{b}(\mathrm{b}-2 \mathrm{y})=0 \quad \mathrm{~b} \neq 0$, so

$\therefore \mathrm{b}=2 \mathrm{y}$ or $1=\frac{2 \mathrm{y}}{\mathrm{b}}$

The combined equation of the straight lines joining the origin to the points if intersection of $\mathrm{y}=\mathrm{b} / 2$ and $\mathrm{x}^{2}+\mathrm{y}^{2}=16\left(\frac{2 \mathrm{y}}{\mathrm{b}}\right)^{2} \Rightarrow \mathrm{b}^{2} \mathrm{x}^{2}+\left(\mathrm{b}^{2}-64\right) \mathrm{y}^{2}=0$

This equation represents a pair of perpendicular lines

$\therefore \mathrm{b}^{2}+\mathrm{b}^{2}-64=0 \Rightarrow \mathrm{b}= \pm 4 \sqrt{2}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ