COMPLEX NUMBERS AND QUADRATIC EQUATIONS - 2

Quadratic Equations(Location of Roots)

Let $f(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}, \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}, \mathrm{a} \neq 0$ and $\alpha, \beta(\alpha<\beta)$ be the roots of $f(\mathrm{x})=0$. Let $\mathrm{k}$ be any real number

Cases Figure Condition
$\alpha<\mathrm{k}$ and
$\beta<\mathrm{k}$ Both the
roots are less than $\mathrm{k}$
i. $\mathrm{D} \geq 0$ (roots may be equal)
ii. $\mathrm{a} . f(\mathrm{k})>0$
iii. $2 \mathrm{k}>\alpha+\beta$ i.e $2 \mathrm{k}>$
sum of roots or $\mathrm{k}>\frac{-\mathrm{b}}{2 \mathrm{a}}$
$\alpha>\mathrm{k}$ and $\beta>\mathrm{k}$
Both the roots are
greater than $\mathrm{k}$
i. $\mathrm{D} \geq 0$ (roots may be equal)
ii. a. $f(\mathrm{k})>0$
iii. $2 \mathrm{k}<\alpha+\beta$ i.e $2 \mathrm{k}<$
sum of roots or $\mathrm{k}<\frac{-\mathrm{b}}{2 \mathrm{a}}$
$\alpha<\mathrm{k}<\beta$
$\mathrm{k}$ lies between
the roots
i. $\mathrm{D}> $ (distinct roots)
ii. a $f(\mathrm{k})<0$

Wavy Curve Method

Let $f(\mathrm{x})=\left(\mathrm{x}-\mathrm{a} _{1}\right)^{\mathrm{k} _{1}}\left(\mathrm{x}-\mathrm{a} _{2}\right)^{\mathrm{k} _{2}} \ldots \ldots\left(\mathrm{x}-\mathrm{a} _{\mathrm{n}}\right)^{\mathrm{k} _{\mathrm{n}}}$

Where $\mathrm{k} _{\mathrm{i}} \in \mathrm{N} \forall \mathrm{i} \& a _{i} \in R$ such that $\mathrm{a} _{1}<\mathrm{a} _{2}<\ldots \ldots<\mathrm{a} _{\mathrm{n}}$. Mark $\mathrm{a} _{1}, \mathrm{a} _{2} \ldots \ldots \mathrm{a} _{\mathrm{n}}$ on real axis check the sign of $f(\mathrm{x})$ in each interval. The solution of $f(\mathrm{x})>0$ is the union of all intervals in which we have put plus sign and the solution of $f(\mathrm{x})<0$ is the union of all intervals in which we have put the minus sign.

Exponential Equations

If we have an equation of the form

$\mathrm{a}^{\mathrm{x}}=\mathrm{b}$ where $\mathrm{a}>0$, then

$\mathrm{x} \in \phi$ if $\mathrm{b} \leq 0 ; \quad \mathrm{x}=\log _{\mathrm{a}} \mathrm{b}$ if $\mathrm{b}>0, \mathrm{a} \neq 1 ;$

$x \in \phi$ if $a=1, b \neq 1 ; x \in R$, if $a=1, b=1$

Lagrange’s Identity

If $\mathrm{a} _{1}, \mathrm{a} _{2}, \mathrm{a} _{3}, \mathrm{~b} _{1}, \mathrm{~b} _{2}, \mathrm{~b} _{3} \in \mathrm{R}$ then

$\left(a _{1}^{2}+a _{2}^{2}+a _{3}^{2}\right)\left(b _{1}^{2}+b _{2}^{2}+b _{3}^{2}\right)-\left(a _{1} b _{1}+a _{2} b _{2}+a _{3} b _{3}\right)^{2}$

$=\left(a _{1} b _{2}-a _{2} b _{1}\right)^{2}+\left(a _{2} b _{3}-a _{3} b _{2}\right)^{2}+\left(a _{3} b _{1}-a _{1} b _{3}\right)^{2}$

Note: If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}$, then each ratio is equal to

i. $\frac{\mathrm{a}+\mathrm{c}+\mathrm{e}+\ldots}{\mathrm{b}+\mathrm{d}+\mathrm{f}+\ldots}$

ii. $\left(\frac{\mathrm{pa}^{\mathrm{n}}+\mathrm{qc}^{\mathrm{n}}+\mathrm{re}^{\mathrm{n}}+\ldots .}{\mathrm{pb}^{\mathrm{n}}+\mathrm{qd}^{\mathrm{n}}+\mathrm{rf}^{\mathrm{n}}+\ldots .}\right)^{1 / \mathrm{n}}$ where $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{n} \in \mathrm{R}$

iii. $\frac{\sqrt{\mathrm{ac}}}{\sqrt{\mathrm{bd}}}=\frac{\sqrt[n]{\mathrm{ace} \ldots}}{\sqrt[n]{\mathrm{bdf} \ldots}}$

Solved examples

1. The values of $m$ for which both roots of the equation $x^{2}-m x+1=0$ are less than unity is

(a). $(-\infty,-2)$

(b). $(-\infty,-2]$

(c). $(-2, \infty)$

(d). none of these

Show Answer

Solution:

Answer: b

2. The values of $m(m \in R)$, for which both roots of the equation $x^{2}-6 m x+9 m^{2}-2 m+2=0$ exceed 3 is

(a). $(-\infty, 1]$

(b). $(-\infty, 1)$

(c). $[1, \infty)$

(d). none of these

Show Answer

Solution:

From (1), (2) and (3) $\mathrm{m} \in\left(\frac{11}{9}, \infty\right)$

Answer: d

3. The values of $p$ for which 6 lies between the roots of the equation $x^{2}+2(p-3) x+9=0$ is

(a). $\left(-\infty,-\frac{3}{4}\right)$

(b). $\left(-\infty,-\frac{3}{4}\right]$

(c). $(-\infty, 1]$

(d). none of these

Show Answer

Solution: $\mathrm{D}>0$

$(-2(\mathrm{p}-3))^{2}$
$-4.1 .9>0$
a.$f(6)<0$
$\mathrm{p}^{2}-6 \mathrm{p}>0$ 1.$(36+12(\mathrm{p}-3)+9))<0$
$\mathrm{p}(\mathrm{p}-6)>0$ $\Rightarrow 12 \mathrm{p}+9<0$
$\mathrm{p}>0, \mathrm{p}>6…….(1)$ $\mathrm{P}<\frac{-3}{4}……..(2)$

From (1) and (2) $\mathrm{p} \in\left(-\infty, \frac{-3}{4}\right)$

Answer: a

4. If $a, b, c \in R$, and the equation $a x^{2}+b x+c=0$ has no real roots, then

(a). $(a+b+c)>0$

(b). $ a(a+b+c)>0$

(c). $ b(a+b+c)>0$

(d). $ \mathrm{c}(\mathrm{a}+\mathrm{b}+\mathrm{c})<0$

Show Answer

Solution:

$a>0$ $a<0$
$f(0)>0 \Rightarrow \mathrm{c}>0$ $f(0)<0 \Rightarrow \mathrm{c}<0$
$f(1)>0 \Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}>0$ $f(1)<0 \Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}<0$
$\mathrm{a} f(1)>0 \& \mathrm{c} f(1)>0$ $\therefore a f(1)>0 \& \mathrm{c} . f(1)>0$
$\mathrm{a}(\mathrm{a}+\mathrm{b}+\mathrm{c})>0$ and $\mathrm{c}(\mathrm{a}+\mathrm{b}+\mathrm{c})>0$ $\mathrm{a}(\mathrm{a}+\mathrm{b}+\mathrm{c})>0$ and $\mathrm{c}(\mathrm{a}+\mathrm{b}+\mathrm{c})>0$

Answer: b

Practice questions

1. If the roots of equation $x^{2}-2 a x+a^{2}+a-3$ are less than 3 , then

(a). $ \mathrm{a}<2$

(b). $ \mathrm{a}>4$

(c). $3<\mathrm{a}<4$

(d). $-2<\mathrm{a}<3$

Show Answer Answer: (a)

2. Read the following passage and answer the questions:-

$f(x)=a x^{2}+b x+c=a(x-\alpha)(x-\beta)$, where $\alpha<\beta$ are the roots of $f(x)=0$. If $\Delta=b^{2}-4 a c$ is negative, then its sign is same as that of $a$, the coefficient of $x^{2}$. If $f(x)=a(x-\alpha)(x-\beta)$, where $\alpha<\beta$, a is positive, then for any number $\mathrm{p}$ which lies between $\alpha \& \beta ; f(\mathrm{p})$ is negative and for any number q or $\mathrm{r}$ which do not lie between $\alpha \& \beta, f(\mathrm{q})$ or $f(\mathrm{r})$ both will be positive. Also if $\mathrm{a}^{2}$ $<\mathrm{x}^{2}<\mathrm{b}^{2}$, then $\mathrm{a}<\mathrm{x}<\mathrm{b}$ or $-\mathrm{b}<\mathrm{x}<-\mathrm{a}$.

i. If $x^{2}-2(4 \lambda-1) x+15 \lambda^{2}-2 \lambda-7>0 \forall x \in R$, then $\lambda \in$

(a). $(0,2)$

(c). $(2,4)$

(b). $(1,3)$

(d). none of these

Show Answer Answer: (c)

ii. Let $f(\mathrm{x})$ be a quadratic expression which is positive for all real $\mathrm{x}$.If $\mathrm{g}(\mathrm{x})=f(\mathrm{x})$ $+f^{\prime}(\mathrm{x})+f^{\prime \prime}(\mathrm{x})$, then for any real $\mathrm{x}$,

(a). $\mathrm{g}(\mathrm{x})>0$

(b). $g(x) \geq 0$

(c). $g(x) \leq 0$

(d). $\mathrm{g}(\mathrm{x})<0$

Show Answer Answer: (a)

iii. The inequality $\frac{x^{2}-|x|-2}{2|x|-x^{2}-2}>2$ holds only if

(a). $-1<\mathrm{x}<\frac{-2}{3}$ only

(b). only for $\frac{2}{3}<x<1$

(c). $-1<\mathrm{x}<1$

(d). $-1<\mathrm{x}<\frac{2}{3}$ or $\frac{2}{3}<\mathrm{x}<1$

Show Answer Answer: (d)

iv. for real $x$, the function $\frac{(x-a)(x-b)}{x-c}$ will assume all real values, provided

(a). $ \mathrm{a}<\mathrm{b}<\mathrm{c}$

(b). $\mathrm{a}>\mathrm{b}>\mathrm{c}$

(c). $ \mathrm{a}>\mathrm{c}>\mathrm{b}$

(d). $\mathrm{a}<\mathrm{c}<\mathrm{b}$

Show Answer Answer: (c, d)

3. Values of ’ $a$ ’ for which the roots of the equation $(a+1) x^{2}-3 a x+4 a=0(a \neq-1)$ greater than unity is

(a). $\mathrm{a} \in\left[\frac{-16}{7},-1\right]$

(b). $ \mathrm{a} \in\left(\frac{-16}{7},-1\right)$

(c). $ \mathrm{a} \in\left(\frac{-16}{7},-1\right]$

(d). none of these

Show Answer Answer: (a)

4. If $x \in R$ satisfies $\left(\log _{10}(100 x)\right)^{2}+\left(\log _{10}(10 x)\right)^{2}+\log _{10} x \leq 14$, then the solution set contains the interval

(a). $(1,10]$

(b). $\left\lfloor 10^{-9 / 2}, 1\right\rfloor$

(c). $(0, \infty)$

(d). $(-1, \infty)$

Show Answer Answer: (a, b)

5. If $a, b$ are the real roots of $x^{2}+p x+1=0$ and $c, d$ are the real roots of $x^{2}+q x+1=0$, then $(a-c)(b-c)(a+d)(b+d)$ is divisible by

(a). $ \mathrm{a}-\mathrm{b}-\mathrm{c}-\mathrm{d}$

(b). $ \mathrm{a}+\mathrm{b}+\mathrm{c}-\mathrm{d}$

(c). $ \mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$

(d). $a+b-c-d$

Show Answer Answer: (c, d)

6. Match the following:-

Column I Column II
(a). The value of $x$ for which $\log_{e}(x-3)<1$ is (p) $\left(0, \frac{\sqrt{5}-1}{2}\right]$
(b). The value of $x$ for which $\log _{1 / 2} x \geq \log _{1 / 3} x$ is (q) $(0,1)$
(c). If $\log _{0.3}(x-1)<\log _{0.09}(x-1)$, then $x$ lies in the interval (r) $(2,8)$
(d). If $\log _{\cos x} \sin x \geq 2$ and $x \in[0,3 \pi]$ then sin $x$ lies in the interval (s) $(3,3+\mathrm{e})$
(t) $\left(0, \frac{\sqrt{5}+1}{2}\right]$
Show Answer Answer: a $\rarr$ s; b $\rarr$ q; c $\rarr$ r; d $\rarr$ p

7. Read the paragraph and answer the questions that follow:

Let $(a+\sqrt{b})^{e(x)}+(a-\sqrt{b})^{e(x)-2 \lambda}=A$, where $\lambda \in N, A \in R$ and $a^{2}-b=1 \therefore(a+\sqrt{b})(a-\sqrt{b})=1$

i.e $\Rightarrow(a \pm \sqrt{b})=(a+\sqrt{b})^{ \pm 1}$ or $(a-\sqrt{b})^{ \pm 1}$

i. If $(4+\sqrt{5})^{[x]}+(4-\sqrt{5})^{[x]}=62$, then

(a). $ x \in[-3,-2) \cup[1,2)$

(b). $ x \in[-3,2) \cup[-2,1)$

(c). $ \mathrm{x} \in[-2,-1) \cup[2,3)$

(d). $ \mathrm{x} \in[-2,3) \cup[-1,2)$

Show Answer Answer: (c)

ii. Solution of $(2+\sqrt{3})^{x^{2}-2 x+1}+(2-\sqrt{3})^{x^{2}-2 x-1}=\frac{4}{2-\sqrt{3}}$ are

(a). $1 \pm \sqrt{3}, 1$

(b). $1 \pm \sqrt{2}, 1$

(c). $1 \pm \sqrt{3}, 2$

(d). $1 \pm \sqrt{2}, 2$

Show Answer Answer: (b)

iii. The number of real solutions of the equation $(15+4 \sqrt{14})^{t}+(15-4 \sqrt{14})^{t}=30$ are where $\mathrm{t}=\mathrm{x}^{2}-2|\mathrm{x}|$

(a). 0

(b). 2

(c). 4

(d). 6

Show Answer Answer: (c)

8. The maximum value of $f(x)=\frac{3 x^{2}+9 x+17}{3 x^{2}+9 x+7}$ is $5 \mathrm{k}+1$, Then $k$ is

(a). 41

(b). 40

(c). 8

(d). none of these

Show Answer Answer: (c)

9. If $\frac{x^{2}-y z}{a}=\frac{y^{2}-z x}{b}=\frac{z^{2}-x y}{c}$, then $(x+y+z)(a+b+c)$ is

(a). $a x+b y+c z$

(b). $a+b+c$

(c). $\frac{\mathrm{x}+\mathrm{y}+\mathrm{z}}{3}$

(d). none of these

Show Answer Answer: (a)

10. The value of $x$ satisfying the equation $|x-1|^{\log _{3} x^{2}-2 \log _{x} 9}=(x-1)^{7}$ is

(a). 3

(b). 9

(c). 27

(d). 81

Show Answer Answer: (d)

11. If $\left|x^{2}-9 x+20\right|>x^{2}-9 x+20$ then which is true?

(a). $ \mathrm{x} \leq 4$ or $\mathrm{x} \geq 5$

(b). $4 \leq \mathrm{x} \leq 5$

(c). $4<x<5$

(d). none of these

Show Answer Answer: (c)

12. If $x^{2}+p x+1$ is a factor of $a x^{3}+b x+c$, then

(a). $\mathrm{a}^{2}+\mathrm{c}^{2}=-\mathrm{ab}$

(b). $ \mathrm{a}^{2}-\mathrm{c}^{2}=-\mathrm{ab}$

(c). $ a^{2}-c^{2}=a b$

(d). none of these

Show Answer Answer: (c)

13. If $\lambda \neq \mu$ and $\lambda^{2}=5 \lambda-3, \mu^{2}=5 \mu-3$, then the equation whose roots one $\frac{\lambda}{\mu}$ and $\frac{\mu}{\lambda}$ is

(a). $x^{2}-5 x-3=0$

(b). $ 3 x^{2}+19 x+3=0$

(c). $ 3 x^{2}-19 x+3=0$

(d). $x^{2}+5 x-3=0$

Show Answer Answer: (c)

14. If the equation $(\cos p-1) x^{2}+x(\cos p)+\sin p=0$, in the variable $x$, has real roots then ’ $p$ ’ can take any value in the interval.

(a). $(0,2 \pi)$

(b). $(-\pi, 0)$

(c). $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

(d). $(0, \pi)$

Show Answer Answer: (d)

15. If $(\cos \alpha+\mathrm{isin} \alpha)$ is a root of the equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0, \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$, then

(a). $ a \cos 2 \alpha+b \sin \alpha+c=0$

(b). $ a \cos 2 \alpha+b \cos \alpha+c=0$

(c). $ a \sin 2 \alpha+b \sin \alpha+c=0$

(d). none of these

Show Answer Answer: (b)


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ