COMPLEX NUMBER - 1 (Algebra of Complex Number)

Our motive for the introduction of complex numbers is to make every algebraic equation solvable. Let us consider the equation $z^{2}+4=0$. This equation has no solution in the set of real numbers. There is no real no. $\mathrm{x}$ whose square is -4 . In order to remedy this situation, a new kind of numbers were introduced and were given the name complex nos. Eular was the first to introduce the symbol $\mathrm{i}$ for $\sqrt{-1}$ with the property $\mathrm{i}^{2}=-1$. $\mathrm{i}$ is also called the symbol as the imaginary unit. $\mathrm{i}$ is called an imaginary number.

Powers of $i$

Complex numbers

An expression of the form $\mathrm{x}+\mathrm{iy}$, where $\mathrm{x} \& \mathrm{y}$ are real numbers and $\mathrm{i}$ is a symbol, is called a complex number and usually denoted by $z$.

Addition of complex number

Let $z _{1}=a _{1}+i b _{1} \& z _{2}=a _{2}+i b _{2}$ be two complex number Then their sum $z _{1}+z _{2}$ is defined as the complex number $\left(a _{1}+a _{2}\right)+i\left(b _{1}+b _{2}\right)$

Multiplication of Complex Number

Let $z _{1}=a _{1}+i b _{1} \& z _{2}=a _{2}+i b _{2}$ be two complex number. Then the multiplication of $z _{1}$ with $z _{2}$ is denoted by $z _{1} z _{2}$ and is defined as $\left(a _{1} a _{2}-b _{1} b _{2}\right)+i\left(a _{1} a _{2}+b _{1} b _{2}\right)$.

Division of Complex Number

The division of a complex number $z _{1}$ by a non-zero complex $z _{2}$ is defined as the multiplicaiton of $z _{1}$ by the multiplication inverse of $z _{2}$ and is denoted by $\frac{z _{1}}{z _{2}}$

$\frac{z _{1}}{z _{2}}=\frac{\left(a _{1}+i b _{1}\right)}{\left(a _{2}+i b _{2}\right)}=\frac{\left(a _{1}+i b _{1}\right)}{\left(a _{2}+i b _{2}\right)} \frac{\left(a _{2}-i b _{2}\right)}{\left(a _{2}-i b _{2}\right)}$

$=\frac{\left(a _{1} a _{2}+b _{1} b _{2}\right)}{a _{2}^{2}+b _{2}^{2}}+\frac{i\left(a _{2} a _{1}-b _{1} b _{2}\right)}{a _{2}^{2}+b _{2}^{2}}$

Conjugate of $\mathrm{Z}$

Let $z=a+i b$ be a complex number. Then the conjugate of $z$ is denoted by $z$ and is equal to $a-i b$ thus $\mathrm{z}=\mathrm{a}+\mathrm{ib}$

$\Rightarrow \quad \overline{\mathrm{z}}=\mathrm{a}-\mathrm{ib}$

e.g. if $z=3+4 i$ then $\bar{z}=3-4 i$

Modulus of Z

The modulus of a complex number $x+$ iy is denoted by $|x+i y|$ and is denoted as $|x+i y|=$ $\sqrt{x^{2}+y^{2}}=$ non-negative square root of $x^{2}+y^{2}$ e.g. $z=3-4 i$, then $|z|=\sqrt{(3)^{2}+(-4)^{2}}=5$.

Equality of complex number

Two complex nos $\mathrm{z} _{1}=\mathrm{x} _{1}+\mathrm{i} \mathrm{y} _{1} \& \mathrm{z} _{2}=\mathrm{x} _{2}+\mathrm{iy} _{2}$ are said to be equal if and only if $\mathrm{x} _{1}=\mathrm{x} _{2} \& \mathrm{y} _{1}=\mathrm{y} _{2}$ i.e. $Z _{1}=Z _{2} \Rightarrow \operatorname{Re}\left(z _{1}\right)=\operatorname{Re}\left(z _{2}\right) \& \operatorname{Im}\left(z _{1}\right)=\operatorname{Im}\left(z _{2}\right)$.

Examples

1. Evaluate $\left[i^{-53}+\left\{i^{n}+i^{n+1}+i^{n+2}+i^{n+3}+4\right\}^{\frac{1}{2}} i\right]$

Show Answer Solution: $ \begin{aligned} & \text { G.E }=i^{-(4 \times 13+1)}+\left[\mathrm{i}^{\mathrm{n}}\left(1+\mathrm{i}+\mathrm{i}^{2}+\mathrm{i}^{3}\right)+4\right]^{\frac{1}{2}} \cdot \mathrm{i} \\ & =\left[i^{-1}+\left\{i^{n}+(1+i+(-1)+(-i))+4\right\}^{\frac{1}{2}} \cdot i\right] \\ & =\left[i^{-1}+\left\{i^{n}(0)+4\right\}^{\frac{1}{2}} \cdot i\right] \\ & =\left[i^{-1}+(4)^{\frac{1}{2}} \cdot i\right] \\ & \Rightarrow\left[i^{-1}+2 i\right] \\ & \Rightarrow\left[\frac{1}{i}+2 i\right] \Rightarrow \frac{i}{i^{2}}+2 i \Rightarrow-i+2 i=i \end{aligned} $

2. Show that the polynomial $x^{4 p}+x^{4 q+1}+x^{4 r+2}+x^{4 s+3}$ is divisible by $\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1$, where $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s} \in \mathrm{N}$.

Show Answer

Solution: Let $\mathrm{f}(\mathrm{x})={ } _{x} 4 p+x^{4 q+1}+x^{4 r+2}+x^{4 s+3}$

Now $\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1=\left(\mathrm{x}^{2}+1\right)(\mathrm{x}+1)=(\mathrm{x}+\mathrm{i})(\mathrm{x}-\mathrm{i})(\mathrm{x}+1)$

$\mathrm{f}(-\mathrm{i})=(-i)^{4 p}+(-i)^{(4 q+1)}+(-i)^{(4 r+2)}+(-i)^{(4 s+3)}=+1+(-i)(+1)+(-\mathrm{i})^{2}+(-\mathrm{i})^{3}=1-i-1+\mathrm{i}=0$ $\mathrm{f}(-1)=0$

Thus by division theorem $\mathrm{x}^3+\mathrm{x}^2+\mathrm{x}+1$ is factor of $x^{4 p}+x^{4 q+1}+x^{4 r+2}+x^{4 s+3}$

3. Express $\frac{1}{1-\cos \theta+2 i \sin \theta}$ in the form $\mathrm{x}+\mathrm{iy}$

Show Answer

Solution: $ \begin{aligned} & \frac{1}{1-\cos \theta+2 i \sin \theta}=\frac{1}{2 \sin ^{2} \frac{\theta}{2}+4 \sin \frac{\theta}{2} \cos \frac{\theta}{2}} i \\ & =\frac{\left(\sin \frac{\theta}{2}-2 i \cos \frac{\theta}{2}\right)}{2 \sin \frac{\theta}{2}\left[\sin \frac{\theta}{2}+2 i \cos \frac{\theta}{2}\right]\left[\sin \frac{\theta}{2}-2 i \cos \frac{\theta}{2}\right]}=\frac{\sin \frac{\theta}{2}-2 i \cos \frac{\theta}{2}}{2 \sin \frac{\theta}{2}\left[\sin ^{2} \frac{\theta}{2}+4 \cos ^{2} \frac{\theta}{2}\right]} \\ & =\frac{\left(\sin \frac{\theta}{2}-2 i \cos \frac{\theta}{2}\right)}{\sin \frac{\theta}{2}\left[2 \sin ^{2} \frac{\theta}{2}+8 \cos ^{2} \frac{\theta}{2}\right]} \\ & =\frac{\left(\sin \frac{\theta}{2}-2 i \cos \frac{\theta}{2}\right)}{\sin \frac{\theta}{2}[1-\cos \theta+4+4 \cos \theta]} \end{aligned} $

$ =\frac{\left(\sin \frac{\theta}{2}-2 i \cos \frac{\theta}{2}\right)}{\sin \frac{\theta}{2}(5+3 \cos \theta)} $

$=\frac{1}{5+3 \cos \theta}+\frac{-2 \cot \frac{\theta}{2} i}{5+3 \cos \theta}$

4. Find the multiplicative inverse of complex no $3+2 \mathrm{i}$

Show Answer

Solution:

Let $\mathrm{z}=3+2 \mathrm{i}$

$\frac{1}{z}=\frac{1}{3+2 i}$

$=\frac{3-2 i}{(3+2 i)(3-2 i)}=\frac{3-2 i}{9+4}=\frac{3}{13}-\frac{2}{13} i$

Practice questions

1. If $a<0, b>0$, then $\sqrt{a} \cdot \sqrt{b}$ is equal to

(a). $-\sqrt{|a| b}$

(b). $-\sqrt{|a| \cdot b i}$

(c). $\sqrt{|\mathrm{a}| \mathrm{b}}$

(d). none of these

Show Answer Answer: (b)

2. The value of the sum $\sum _{n=1}^{13}\left(i^{n}+i^{n+1}\right)$, where $\mathrm{i}=\sqrt{-1}$, is

(a). $i$

(b). $i-1$

(c). $-\mathrm{i}$

(d). $0$

Show Answer Answer: (b)

3. The smallest positive integral value of $\mathrm{n}$ of which $\left(\frac{1-i}{1+i}\right)^{n}$ is purely imaginary with positive imaginary part, is

(a). $1$

(b). $3$

(c). $5$

(d). none of these

Show Answer Answer: (b)

4. If $\mathrm{n}$ is an odd integer, $\mathrm{i}=\sqrt{-1}$, then $(1+\mathrm{i})^{6 \mathrm{n}}+(1-\mathrm{i})^{6 \mathrm{n}}$ is equal to

(a). $0$

(b). $2$

(c). $-2$

(d). none of these

Show Answer Answer: (a)

5. If $\frac{3+2 i \sin \theta}{1-2 i \sin \theta}$ is a real number and $0<\theta<2 \pi$, then $\theta=$

(a). $\pi$

(b). $\frac{\pi}{2}$

(c). $\frac{\pi}{2}$

(d). $\frac{\pi}{6}$

Show Answer Answer: (a)

6. If $\mathrm{b}+\mathrm{c}=(1+\mathrm{a}) \mathrm{z}$ and $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=1$, then $\frac{1+i z}{1-i z}$

(a). $\frac{a-i b}{1-c}$

(b). $\frac{a-i b}{1+c}$

(c). $\frac{a+i b}{1-c}$

(d). $\frac{a+i b}{1+c}$

Show Answer Answer: (d)

7. If $(x+i y)^{\frac{1}{3}}=a+i b$ then $\frac{x}{a}+\frac{y}{b}=$

(a). $0$

(b). $1$

(c). $-1$

(d). none of these

Show Answer Answer: (d)

8. If $(a+i b)^{5}=\alpha+i \beta$, then $(b+a i)^{5}$ is equal to

(a). $\beta+i \alpha$

(b). $\alpha-i \beta$

(c). $\beta-i \alpha$

(d). $-\alpha-i \beta$

Show Answer Answer: (a)

9. The set of values of $a \in R$ for which $x^{2}+i(a-1) x+5=0$ will have a pair of conjugate complex roots is

(a). $\mathrm{R}$

(b). $\{1\}$

(c). $\left\{a:\left|\cdot a^{2}-2 a+21\right|>0\right\}$

(d). none of these

Show Answer Answer: (b)

10. The relation between the real numbers $a$ and $b$, which satisfy the equation $\frac{1-i x}{1+i x}=a-i b$, for some real value of $x$, is

(a). $(a-b)(a+b)=1$

(b). $\frac{a-b}{a+b}$

(c). $a^{2}+b^{2}=1$

(d). none of these

Show Answer Answer: (c)


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ