COMPLEX NUMBER - 2 (Square Root and Polar Form)

Square root of a complex number

1. If the square root of $a+i b$ is to evaluated let $\sqrt{a+i b}=x+i y, x, y \in R$

2. Square both sides and equate real and imaginary part which will give value of $\left(x^{2}-y^{2}\right)$ and $2 x y$.

3. Find $x^{2}+y^{2}$ by $\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)^{2}+4 x^{2} y^{2}$

4. From $x^{2}-y^{2} \& x^{2}+y^{2}$, we get the value of $x$.

5. Put $x$ in $x y$, we obtained corresponding value of $y$.

6. Now $\sqrt{a+i b}=x+i y$

Direct Formula

The square root of $\mathrm{z}=\mathrm{a}+\mathrm{ib}$ are

$\pm\left[\sqrt{\frac{|z|+a}{2}}+i \sqrt{\frac{|z|-a}{2}}\right]$ for $b>0$

$\& \pm\left[\sqrt{\frac{|z|+a}{2}}-i \sqrt{\frac{|z|-a}{2}}\right]$ for $b<0$

Note:

i. $\sqrt{\mathrm{a}} \sqrt{\mathrm{b}}=\sqrt{\mathrm{ab}}$ is ture only when at least-one of $\mathrm{a} & \mathrm{~b}$ is non-negative.

ii. The square root of $\omega$ are $\pm \omega^{2}$

iii. The square root of $\omega^{2}$ are $\pm \omega$

iv. The square root of $i$ are $\pm\left(\frac{1+i}{\sqrt{2}}\right)$

v. The square root of $-i$ are $\pm\left(\frac{1-i}{\sqrt{2}}\right)$

Example: Find the square root of $-7-24 \mathrm{i}$

Show Answer

Solution: Here $\mathrm{a}=-7 \& \mathrm{~b}=-24<0$

$|z|=\sqrt{(-7)^{2}+(-24)^{2}}=25$

Now by using formula,

$ \sqrt{-7-24 \mathrm{i}}= \pm\left[\sqrt{\frac{|\mathrm{z}|+\mathrm{a}}{2}}-\mathrm{i} \sqrt{\frac{|\mathrm{z}|-\mathrm{a}}{2}}\right]= \pm\left[\sqrt{\frac{25-7}{2}}-\mathrm{i} \sqrt{\frac{25+7}{2}}\right]= \pm(3-4 \mathrm{i}) $

Geometrical Representation of a Point is

Modulus

The modulus of a complex number $x+i y$ is denoted by $|x+i y|=\sqrt{x^{2}+y^{2}}=$ non negative square root of $\mathrm{x}^{2}+\mathrm{y}^{2}$

e.g. $z=3-4 i$, then $|z|=\sqrt{(3)^{2}+(-4)^{2}}=5$

Argument or Amplitude of a complex number

$z=x+i y$

$\cos \theta=\frac{x}{\sqrt{x^{2}+y^{2}}} \& \sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}$

$\cos \theta=\frac{\mathrm{x}}{\mathrm{r}} \& \sin \theta=\frac{\mathrm{x}}{\mathrm{r}}$

$x=r \cos \theta \& x=r \sin \theta$

The argument of a complex number $z=x+i y$ is the value of $\theta$ which satisfies the two equations $\cos \theta=\frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}$ and $\sin \theta=\frac{\mathrm{y}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}$

Argument of $z$ is denoted by argument $z$ or amplitude $z$.

There will be infinite number of values of $\theta$ satisfying the above equations and all these values will be the argument of $z$ but usually we take only that value of $\theta$ to which $0 \leq \theta<2 \pi$

Example: $\mathrm{z}=-1-\mathrm{i}$ here $\mathrm{x}=-1, \mathrm{y}=-1$

Show Answer

Solution:

$\cos \theta=\frac{x}{\sqrt{x^{2}+y^{2}}}=-\frac{1}{\sqrt{2}} \quad \theta=\frac{3 \pi}{4}, \frac{5 \pi}{4}$

$\sin \theta=\frac{y}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}=-\frac{1}{\sqrt{2}} \quad \theta=\frac{5 \pi}{4}, \frac{7 \pi}{4}$

$\therefore \quad \operatorname{since} \theta=\frac{5 \pi}{4}$ satisfies both the equation

$\therefore \quad \operatorname{argument} \mathrm{z}=\frac{5 \pi}{4}$ and general value of argument $\mathrm{z}=2 \mathrm{n} \pi+\frac{5 \pi}{4}$, where $\mathrm{n}=0, \pm 1, \pm 2 \ldots$.

Another way of finding argument of a complex number

Working Rule

i. Take $\tan \theta=\left|\frac{y}{x}\right|$ and from this find the value of $\theta$ lying between 0 and $\frac{\pi}{2}$

ii. Then find in which quadrant the point $z$ lies.

iii. Argument of $z$ will be $\theta, \pi-\theta, \pi+\theta$ or $2 \pi+\theta$ according as the point $z$ lies in the $1^{\text {st }}, 2^{\text {nd }}$, $3^{\text {rd }}$ or $4^{\text {th }}$ quadrants.

Exercise: Let $\mathrm{z}=-1-\mathrm{i}$ here $\mathrm{x}=-1, \mathrm{y}=-1$

Show Answer

Solution:

$\tan \theta=\left|\frac{\mathrm{y}}{\mathrm{x}}\right|=\left|\frac{-1}{-1}\right|=1=\tan \frac{\pi}{4}$

$\Rightarrow \quad \theta=\frac{\pi}{4}$ (between 0 and $\frac{\pi}{2}$ )

Since the point $\mathrm{z}=-1-\mathrm{i} \equiv(-1,-1)$ lies in 3rd quadrant

$\therefore \quad$ argument $=\pi+\theta=\theta=\frac{\pi}{4}=\frac{5 \pi}{4}$

Principal vaule of the argument: There are infinite values of $\theta$ satisfying the equation

$\cos \theta=\frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}$ and $\sin \theta=\frac{\mathrm{y}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}$

But there will be a unique value of $\theta$ such that $-\pi<\theta \leq \pi$. The value of argument $\theta$ satisfying the inequality $-\pi<\theta \leq \pi$ is called principal value of argument.

For above example

Principal value of argument $=\frac{5 \pi}{4}-2 \pi=\frac{-3 \pi}{4}$

Note: If argument $>\pi$, subtract $2 \pi$ from it to get the principal value of argument and if argument $\leq-\pi$, add $2 \pi$ to it, to get the principal value of argument.

Polar form of a complex Number

$\mathrm{z}=\mathrm{x}+\mathrm{iy}$

$=r(\cos \theta+i \sin \theta)$ is called the polar form of complex Number.

For above example

$\mathrm{r}=|\mathrm{z}|=\sqrt{2}$

Polar form of $z$ is $\sqrt{2}\left[\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right]$

or $\quad \sqrt{2}\left[\cos \left(\frac{-3 \pi}{4}\right)+\mathrm{i} \sin \left(\frac{-3 \pi}{4}\right)\right]$

Complex Number

  • Cartesian Representation

    • $\mathrm{z}=\mathrm{a}+\mathrm{ib}$
  • Polar Repersentation

    • $\mathrm{z}=\mathrm{r} \cos \theta+\mathrm{i} \sin \theta$
    • $=\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)$
    • $=\mathrm{re}^{\mathrm{i} \theta}$ (using euler’s formula)
Algebraic operations Cartesian form Polar form
Complex No. $\mathrm{z}=\mathrm{a}+\mathrm{ib}, \mathrm{w}=\mathrm{c}+\mathrm{id}$ $\mathrm{z}=\mathrm{re}^{\mathrm{i} \theta}, \mathrm{w}=\mathrm{se}^{\mathrm{i} \varphi}$
Addition $\mathrm{z}+\mathrm{w}=(\mathrm{a}+\mathrm{c})+\mathrm{i}(\mathrm{b}+\mathrm{d})$ $\mathrm{z}+\mathrm{w}=(\mathrm{r} \cos \theta+\mathrm{s} \cos \varphi)+$ $\mathrm{i}(\mathrm{r} \sin \theta+\mathrm{s} \sin \varphi)$
Subtraction $\mathrm{z}-\mathrm{w}=(\mathrm{a}-\mathrm{c})+\mathrm{i}(\mathrm{b}-\mathrm{d})$ $z-w=(r \cos \theta-s \cos \varphi)+$ $i(r \sin \theta-s \sin \varphi)$
Multiplicaiton $z W=(a c-b d)+i$ $(a d+b c)$ $\mathrm{zW}=\operatorname{rse}^{\mathrm{i}(\theta+\phi)}$
Division $\frac{\mathrm{z}}{\omega}=\frac{(\mathrm{a}+\mathrm{id})(\mathrm{c}-\mathrm{id})}{(\mathrm{c}+\mathrm{id})(\mathrm{c}-\mathrm{id})}$ $=\frac{\mathrm{ac}+\mathrm{bd}}{\mathrm{c}^{2}+\mathrm{d}^{2}}+\mathrm{i} \frac{\mathrm{bc}-\mathrm{ad}}{\mathrm{c}^{2}+\mathrm{d}^{2}}$ $\frac{\mathrm{z}}{\mathrm{w}}=\frac{\mathrm{r}}{\mathrm{S}} \mathrm{e}^{\mathrm{i}(\theta-\varphi)}$

Conjugate of a Complex Number

The conjugate of a complex number $\mathrm{z}=\mathrm{x}+$ iy is denoted by $\bar{z}=\overline{x+i y}$ and is defined as $\bar{z}=x-i y$ and if $z=r e^{i \theta}$ (Eular’s form), then $\bar{z}=r e^{-i \theta}$

Equality of Complex Number

Two complex numbers $z _{1}=x _{1}+$ iy and $z _{2}=x _{2}+i y _{2}$ are said to be equal if and only if $x _{1}=x _{2} \& y _{1}=$ $+\mathrm{y} _{2}$

i.e. $z _{1}=z _{2}$, then $\operatorname{Re}\left(z _{1}\right)=\operatorname{Re}\left(z _{2}\right) \& \operatorname{Im}\left(z _{1}\right)=\operatorname{Im}\left(z _{2}\right)$

Properties of Conjugate

1. $|z|=|-z|=|\bar{z}|=|-\bar{z}|$

2. $\overline{\overline{\mathrm{Z}}}=\mathrm{z}$

3. $[\arg z-\arg \bar{z}]=\arg (-z)-\arg (-\bar{z})=\frac{\pi}{2}$

4. $\mathrm{z} \overline{\mathrm{z}}=|\overline{\mathrm{z}}|^{2}$

5. $\overline{\mathrm{z} _{1} \pm \mathrm{z} _{2}}=\overline{\mathrm{z} _{1}} \pm \overline{\mathrm{z} _{2}}$

6. $\left(\overline{z^{\mathrm{n}}}\right)=(\bar{z})^{\mathrm{n}}$

7. $\overline{\mathrm{z} _{1} \cdot \mathrm{z} _{2}}=\overline{\mathrm{z} _{1}} \cdot \overline{\mathrm{z} _{2}}$

8. $\overline{\left(\frac{z _{1}}{z _{2}}\right)}=\frac{\overline{z _{1}}}{\overline{z _{2}}}$

Example- Write the following in Polar form

(1) $\mathrm{z}=1+\sqrt{3} \mathrm{i}$

(2) $\mathrm{z}=-1+\sqrt{3} i$

(3) $z=-1-\sqrt{3} i$

(4) $z=1-\sqrt{3} i$

Show Answer

Solution : $z=1+\sqrt{3} i \equiv(1, \sqrt{3})$

$\mathrm{r}=|z|=\sqrt{(1)^{2}+(\sqrt{3})^{2}}=2$

Then $\tan \alpha=\left|\frac{y}{x}\right|=\left|\frac{\sqrt{3}}{1}\right|=\sqrt{3}=\tan \frac{\pi}{3}$

(1) As $z$ lies in 1st quadrant

so, $\operatorname{\arg z}=\theta=\alpha=\frac{\pi}{3}$

Therefore polar form of $z$ is

$2\left(\cos \frac{\pi}{3}+\mathrm{i} \sin \frac{\pi}{3}\right)$

(2) $z$ lies in 2nd quadrant so $\operatorname{\arg z}=\theta=\pi-\alpha=\frac{2 \pi}{3}$

Therefore polar form of $z$ is

$2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right) \Rightarrow 2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$

(3) $\mathrm{z}$ lies in 3rd quadrant so $\operatorname{argz}=\theta=\pi+\alpha=\frac{4 \pi}{3}$

Therefore polar form of $z$ is

$2\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right)$

(4) lies in 4th quadrant so $\operatorname{argz}=\theta=-\alpha=\frac{-\pi}{3}$

Therefore polar form of $\mathrm{z}$ is

$2\left(\cos \left(\frac{-\pi}{3}\right)+i \sin \left(\frac{-\pi}{3}\right)\right)$

Practice questions

1. $\operatorname{Im}(\mathrm{z})$ is equal to

(a). $\frac{1}{2}(\mathrm{z}+\overline{\mathrm{z}}) \mathrm{i}$

(b). $\frac{(z-\bar{z})}{2 i}$

(c). $ \frac{1}{2}(\bar{z}-z) i$

(d). none of these

Show Answer Answer: (c)

2. If $z _{1}=9 y^{2}-4-10 i x, z _{2}=8 y^{2}-20 i$ where $z _{1}=\bar{z} _{2}$ then $z=x+i y$ is equal to

(a). $-2+2 \mathrm{i}$

(b). $-2 \pm 2 \mathrm{i}$

(c). $-2-i$

(d). none of these

Show Answer Answer: (b)

3. If $z$ is a complex number satisfying the relation $|z+1|=z+2(1+i)$, then $z$ is

(a). $\frac{1}{2}(1+4 \mathrm{i})$

(b). $\frac{1}{2}(3+4 \mathrm{i})$

(c). $\frac{1}{2}(1-4 \mathrm{i})$

(d). $\frac{1}{2}(3-4 i)$

Show Answer Answer: (c)

4. For a complex number $z$, the minimum value of $|z|+|2-z|$ is

(a). $1$

(b). $2$

(c). $3$

(d). none of these

Show Answer Answer: (b)

5. If $|z|=1$, then $\frac{1+\bar{z}}{1+\bar{z}}$ is equal to

(a). $\mathrm{z}$

(b). $\overline{\mathrm{Z}}$

(c). $\mathrm{z}^{+} \overline{\mathrm{z}}$

(d). none of these

Show Answer Answer: (a)

6. If $\left|z _{1}-1\right|<1,\left|z _{2}-2\right|<2,\left|z _{3}-3\right|<3$, then $\left|z _{1}+z _{2}+z _{3}\right|$

(a). is less than 6

(b). is more than 3

(c). is less than 12

(d). is between 6 and 12

Show Answer Answer: (c)

7. If $z _{1}, z _{2}$ are two non-zero complex numbers such that $\left|z _{1}+z _{2}\right|=\left|z _{1}\right|+\left|z _{2}\right|$, then complex $\arg \left(\frac{z _{1}}{z _{2}}\right)$ is equal to

(a). $\pi$

(b). $-\pi$

(c). $0$

(d). $\frac{\pi}{2}$

Show Answer Answer: (c)

8. If $z=\frac{\sqrt{3}+i}{\sqrt{3}-\mathrm{i}}$, then the fundamental argument of $\mathrm{z}$ is

(a). $\frac{-\pi}{3}$

(b). $\frac{\pi}{3}$

(c). $\frac{\pi}{6}$

(d). none of these

Show Answer Answer: (b)

9. If $z=x+$ iy satisfies $\operatorname{amp}(z-1)=a m p(z+3 i)$ then the value of $(x-1)$ : $y$ is equal to

(a). $2 : 1$

(b). $1 : 3$

(c). $-1 : 3$

(d). none of these

Show Answer Answer: (b)

10. If $(1+x)^{n}=a _{0}+a _{1} x+a _{2} x^{2}+\ldots .+a _{n} x^{n}$, then $\left(a _{0}-a _{2}+\ldots \ldots\right)^{2}+\left(a _{1}-a _{3}+\ldots . .\right)^{2}$ is equal to

(a). $3^{n}$

(b). $ 2^{\mathrm{n}}$

(c). $\frac{1-2^{\mathrm{n}}}{1+2^{\mathrm{n}}}$

(d). none of these

Show Answer Answer: (b)

11. If $x=2+5 i$ and $2\left(\frac{1}{1 ! 9 !}+\frac{1}{3 ! 7 !}\right)+\frac{1}{5 !} 5 !=\frac{2}{b !}$, then the value of $x^{3}-5 x^{2}+33 x-19$ is equal to

(a). $ \mathrm{a}$

(b). $\mathrm{b}$

(c). $\mathrm{a}-\mathrm{b}$

(d). none of these

Show Answer Answer: (b)

12. If $x+$ iy such that $|z+1|=|z-1|$ and complex $\frac{z-1}{z+1}=\frac{\pi}{4}$ then

(a). $\mathrm{x}=\sqrt{2}+1, \mathrm{y}=0$

(b). $x=0, y=\sqrt{2}+1$

(c). $\mathrm{x}=0, \mathrm{y}=\sqrt{2}-1$

(d). $x=\sqrt{2}-1, y=0$

Show Answer Answer: (b)

13. If the square root of $\frac{x^{2}}{y^{2}}+\frac{y^{2}}{x^{2}}+\frac{1}{2 i}\left(\frac{y}{x}+\frac{x}{y}\right)+\frac{31}{16}$ is $\pm\left(\frac{\mathrm{x}}{\mathrm{y}}+\frac{\mathrm{y}}{\mathrm{x}}-\frac{\mathrm{i}}{\mathrm{m}}\right)$, then $\mathrm{m}$ is

(a). $2$

(b). $3$

(c). $4$

(d). none of these

Show Answer Answer: (c)

14. If $\mathrm{i}=\sqrt{-1}$, then $4+5\left[-\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{2}\right]^{334}+3\left[-\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{3}\right]^{365}$ is equal to

(a). $1-\mathrm{i} \sqrt{3}$

(b). $-1-i \sqrt{3}$

(c). $i \sqrt{3}$

(d). $-i \sqrt{3}$

Show Answer Answer: (c)

15. If $\mathrm{z} _{1}, \mathrm{z} _{2}$ and $\mathrm{z} _{3}$ are complex numbers such that $\left|\mathrm{z} _{1}\right|=\left|\mathrm{z} _{2}\right|=\left|\mathrm{z} _{3}\right|=\left|\frac{1}{\mathrm{z} _{1}}+\frac{1}{\mathrm{z} _{2}}+\frac{1}{\mathrm{z} _{3}}\right|=1$, then $\left|z _{1}+z _{2}+z _{3}\right|$ is

(a). equal to 1

(b). less than 1

(c). greater than 3

(d). equal to 3

Show Answer Answer: (a)

16. The complex number $\sin x+i \cos x$ and $\cos x-i \sin x$ are conjugate to each other for

(a). $ \mathrm{x}=\mathrm{n} \pi$

(b). $\mathrm{x}=0$

(c). $ \mathrm{x}=\left(\mathrm{n}+\frac{1}{2} \pi\right)$

(d). $\mathrm{x}=\frac{\pi}{4}$ or $\mathrm{x}=\mathrm{n} \pi+\frac{\pi}{4}$

Show Answer Answer: (d)


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ