COMPLEX NUMBER - 4 (Practice Problems)

Examples

1. If $\alpha, \beta$ are two different complex numbers such that $|\alpha|=1$ or $|\beta|=1$ then the expression $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$ equals

(a). $\frac{1}{2}$

(b). $1$

(c). $2$

(d). None of these

Show Answer

Solution:

$ \begin{aligned} \left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right| & =\left|\frac{\beta-\alpha}{\alpha \bar{\alpha}-\bar{\alpha} \beta}\right| \quad \quad(\alpha \bar{\alpha}=\mid \alpha \\ & =\left|\frac{\beta-\alpha}{\bar{\alpha}(\alpha-\beta)}\right|=\frac{|\beta-\alpha|}{|\bar{\alpha}(\alpha-\beta)|} \\ & =\frac{|(-1)(\alpha-\beta)|}{|\bar{\alpha}||\alpha-\beta|}=\frac{|-1||\alpha-\beta|}{|\alpha||\alpha-\beta|}=\frac{1}{|\alpha|}=1 \end{aligned} $

2. If $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ such that $|\mathrm{z}+1|=|\mathrm{z}-1|$ and $\operatorname{amp}\left(\frac{\mathrm{z}-1}{\mathrm{z}+1}\right)=\pi / 4$, then

(a). $x=\sqrt{2}+1, y=0$

(b). $x=0, y=\sqrt{2}+1$

(c). $x=0, y=\sqrt{2}-1$

(d). $x=\sqrt{2}-1, y=0$

Show Answer

Solution:

let $z=x+i y$

$ \begin{aligned} & \because|\mathrm{z}+1|=|\mathrm{z}-1| \Rightarrow|(\mathrm{x}+1)+\mathrm{iy}|=|(\mathrm{x}-1)+\mathrm{iy}| \\ & \quad \Rightarrow \sqrt{(\mathrm{x}+1)^{2}+\mathrm{y}^{2}}=\sqrt{(\mathrm{x}-1)^{2}+\mathrm{y}^{2}} \\ & \quad \Rightarrow(\mathrm{x}+1)^{2}+\mathrm{y}^{2}=(\mathrm{x}-1)^{2}+\mathrm{y}^{2} \Rightarrow \mathrm{x}^{2}+2 \mathrm{x}+1=\mathrm{x}^{2}-2 \mathrm{x}+1 \\ & \quad \Rightarrow 4 \mathrm{x}=0 \Rightarrow \mathrm{x}=0 \end{aligned} $

$\begin{aligned} & \operatorname{amp}\left(\frac{\mathrm{z}-1}{\mathrm{z}+1}\right)=\pi / 4, \Rightarrow \operatorname{amp}\left(\frac{\mathrm{iy}-1}{\mathrm{iy}+1}\right)=\pi / 4………….(1) \\ & \because \frac{i y-1}{i y+1} \times \frac{i y-1}{i y-1}=\frac{1-y^2-2 i y}{-\left(y^2+1\right)}=\frac{-\left(1-y^2\right)}{\left(y^2+1\right)}+\frac{2 i y}{1+y^2} \\ & \frac{2 y}{y^2+1} \times \frac{-\left(y^2+1\right)}{\left(1-y^2\right)}=\tan \pi / 4 \Rightarrow \frac{-2 y}{1-y^2}=1 \\ & \Rightarrow 1-\mathrm{y}^2=-2 \mathrm{y} \\ & \Rightarrow \mathrm{y}^2-2 \mathrm{y}-1=0 \\ & y=\frac{2 \pm \sqrt{4+4}}{2}=\frac{2 \pm 2 \sqrt{2}}{2}=1 \pm \sqrt{2} \\ & \end{aligned}$

$1-\sqrt{2}$ can be neglected as it is negative but $\tan \theta$ lies in Ist quadrant.

3. For any complex number $z$, the maximum value of $|z|-|z-1|$ is

(a). $\frac{1}{2}$

(b). $1$

(c). $\frac{3}{2}$

(d). $2$

Show Answer

Solution:

$\because\left|z _{1}-z _{2}\right| \geq|| z _{1}|-| z _{2}|| \geq\left|z _{1}\right|-\left|z _{2}\right|$

$|z|-|z-1| \leq|z-(z-1)|=1$

$\therefore \quad$ Maximum value of $|z|-|z-1|=1$

4. If $z _{1} \& z _{2}$ are two complex numbers such that $\frac{z _{1}-2 z _{2}}{2-z _{1} \cdot \bar{z} _{2}}$ is uni moduler, while $z _{2}$ is not uni moduler, then the value of $\left|z _{1}\right|$ is

(a). $1$

(b). $2$

(c). $3$

(d). $4$

Show Answer

Solution:

$\left|\frac{z _{1}-2 z _{2}}{2-z _{1} \bar{z} _{2}}\right|=1 \Rightarrow \frac{\left|z _{1}-2 z _{2}\right|}{\left|2-z _{1} \bar{z} _{2}\right|}=1$

$\Rightarrow\left|z _{1}-2 z _{2}\right|^{2}=\left|2-z _{1} \bar{z} _{2}\right|^{2}$

$\Rightarrow\left(\mathrm{z} _{1}-2 \mathrm{z} _{2}\right) \overline{\left(\mathrm{z} _{1}-2 \mathrm{z} _{2}\right)}=\left(2-\mathrm{z} _{1} \overline{\mathrm{z}} _{2}\right)\left(\overline{\left(2-\mathrm{z} _{1} \overline{\mathrm{z}} _{2}\right)}\right.$

$\Rightarrow\left(\mathrm{z} _{1}-2 \mathrm{z} _{2}\right)\left(\overline{\mathrm{z}} _{1}-2 \overline{\mathrm{z}} _{2}\right)=\left(2-\mathrm{z} _{1} \overline{\mathrm{z}} _{2}\right)\left(2-\overline{\mathrm{z}} _{1} \mathrm{z} _{2}\right)$

$\Rightarrow \mathrm{z} _{1} \overline{\mathrm{z}} _{1}-2 \mathrm{z} _{1} \overline{\mathrm{z}} _{2}-2 \mathrm{z} _{2} \overline{\mathrm{z}} _{1}+4 \mathrm{z} _{2} \overline{\mathrm{z}} _{2}$

$=4-2 \mathrm{z} _{1} \overline{\mathrm{z}} _{2}-\overline{\mathrm{z}} _{1} \mathrm{z} _{2}+\mathrm{z} _{1} \overline{\mathrm{z}} _{1} \overline{\mathrm{z}} _{2} \overline{\mathrm{z}} _{2}$

$\Rightarrow\left|z _{1}\right|^{2}+4\left|z _{2}\right|^{2}=4+\left|z _{1}\right|^{2}\left|z _{2}\right|^{2}$

$\Rightarrow\left|z _{1}\right|^{2}\left(1-\left|z _{2}\right|^{2}\right)-4\left(1-\left|z _{2}\right|^{2}\right)=0$

$\Rightarrow\left(\left|z _{1}\right|^{2}-4\right)\left(1-\left|z _{2}\right|^{2}\right)=0$

$ \left|z _{2}\right|=1,\left|z _{1}\right|=2 \quad \text { since }\left|z _{2}\right| \neq 1 _{1}\left(\text { not unimodular) so, }\left|z _{1}\right|=2\right. $

5. If $|z-3+2 i| \leq 4$, then the sum of least and greatest values of $|z|$ is

(a) $2 \sqrt{11}$

(b) $3 \sqrt{11}$

(c) $2 \sqrt{13}$

(d) $3 \sqrt{13}$

Show Answer

Solution:

$|\mathrm{z}-3+2 \mathrm{i}| \leq 4$

$\Rightarrow|z-3+2 \mathrm{i}| \geq|| \mathrm{z}|-| 3-2 \mathrm{i}||$

$\Rightarrow|\mathrm{z}-3+2 \mathrm{i}| \geq|| \mathrm{z}|-\sqrt{13}|$

From (1) & (2)

$\Rightarrow 4 \geq|\mathrm{z}-3+2 \mathrm{i}| \geq|| \mathrm{z}|-\sqrt{13}|$

$\Rightarrow|| \mathrm{z}|-\sqrt{13}| \leq 4$

$\Rightarrow-4 \leq|z|-\sqrt{13} \leq 4$

$\Rightarrow \sqrt{13}-4 \leq|z| \leq 4+\sqrt{13}$

$\therefore$ greatest value of $|z|$ is $\sqrt{13}+4$

& least value of $|z|$ is $\sqrt{13}-4$

$\therefore$ their sum $=\sqrt{13}+4+\sqrt{13}-4$

$=2 \sqrt{13}$

6. If $\mathrm{z} _{1}, \mathrm{z} _{2}, \mathrm{z} _{3}$ are three distinct complex numbers and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are three positive real numbers such that

$\frac{a}{\left|z _{2}-z _{3}\right|}=\frac{b}{\left|z _{3}-z _{1}\right|}=\frac{c}{\left|z _{1}-z _{2}\right|}$, then $\frac{a^{2}}{z _{2}-z _{3}}+\frac{b^{2}}{z _{3}-z _{1}}+\frac{c^{2}}{z _{1}-z _{2}}$ is

(a). $\frac{\mathrm{a}^{2}\left(\mathrm{z} _{2}{ }^{2}+\mathrm{z} _{3}{ }^{2}\right)+\mathrm{b}^{2}\left(\mathrm{z} _{1}{ }^{2}+\mathrm{z} _{3}{ }^{2}\right)+\mathrm{c}\left(\mathrm{z} _{1}{ }^{2}+\mathrm{z} _{2}{ }^{2}\right)}{\mathrm{z} _{1}{ }^{2}+\mathrm{z} _{2}{ }^{2}+\mathrm{z} _{3}{ }^{2}}$

(b). $0$

(c) $\frac{\mathrm{a}^{2}\left(\mathrm{~b}^{2}-\mathrm{c}^{2}\right) \mathrm{z} _{1}{ }^{2}+\mathrm{b}^{2}\left(\mathrm{c}^{2}-\mathrm{a}^{2}\right) \mathrm{z} _{2}{ }^{2}+\mathrm{c}^{2}\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) \mathrm{z} _{3}{ }^{2}}{\mathrm{z} _{1} \mathrm{z} _{2}+\mathrm{z} _{2} \mathrm{z} _{3}+\mathrm{z} _{3} \mathrm{z} _{1}}$

(d). None of these

Show Answer

Solution:

Let $\frac{\mathrm{a}}{\left|\mathrm{z} _{2}-\mathrm{z} _{3}\right|}=\frac{\mathrm{b}}{\left|\mathrm{z} _{3}-\mathrm{z} _{1}\right|}=\frac{\mathrm{c}}{\left|\mathrm{z} _{1}-\mathrm{z} _{2}\right|}=\mathrm{k}$ (ray)

$\Rightarrow \quad \mathrm{a}^{2}=\mathrm{k}^{2}\left|\mathrm{z} _{2}-\mathrm{z} _{3}\right|^{2}$ etc

$\Rightarrow \frac{\mathrm{a}^{2}}{\left(\mathrm{z} _{2}-\mathrm{z} _{3}\right)}=\mathrm{k}^{2}\left(\overline{\mathrm{z}} _{2}-\overline{\mathrm{z}} _{3}\right)$

$ \frac{\mathrm{b}^{2}}{\mathrm{z} _{3}-\mathrm{z} _{1}}=\mathrm{k}^{2}\left(\overline{\mathrm{z}} _{3}-\overline{\mathrm{z}} _{1}\right) $

$ \frac{\mathrm{c}^{2}}{\mathrm{z} _{1}-\mathrm{z} _{2}}=\mathrm{k}^{2}\left(\overline{\mathrm{z}} _{1}-\overline{\mathrm{z}} _{2}\right) $

$\left.\left.\therefore \frac{\mathrm{a}^{2}}{\mathrm{z} _{2}-\mathrm{z} _{3}}+\frac{\mathrm{b}^{2}}{\mathrm{z} _{3}-\mathrm{z} _{1}}+\frac{\mathrm{c}^{2}}{\mathrm{z} _{1}-\mathrm{z} _{2}}=\mathrm{k}^{2} \right\rvert, \overline{\mathrm{z}} _{2}-\overline{\mathrm{z}} _{3}+\overline{\mathrm{z}} _{3}-\overline{\mathrm{z}} _{1}+\overline{\mathrm{z}} _{1}-\overline{\mathrm{z}} _{2}\right)=0$

Cube root of unity

$ \begin{aligned} & \mathrm{z}^{3}=1 \\ & \mathrm{z}^{3}-1=0 \\ & (\mathrm{z}-1)\left(\mathrm{z}^{2}+\mathrm{z}+1\right)=0 \\ & \mathrm{z}=1, \mathrm{z}^{2}+\mathrm{z}+1=0 \\ & \mathrm{z}=\frac{-1 \pm \sqrt{3} \mathrm{i}}{2} \\ & \mathrm{z}=1, \mathrm{z}=\frac{-1+\sqrt{3} \mathrm{i}}{\frac{2}{\downarrow}}, \mathrm{z}=\frac{-1-\sqrt{3} \mathrm{i}}{\frac{2}{\downarrow}} \end{aligned} $

$1+\omega+\omega^{2}=0$

$\omega^{3}=1$

$\mathrm{w}^{19}=\mathrm{w}^{3 \times 6+1}=(\mathrm{w} 3)^{2} \cdot \omega=\omega$

De Mover’s Theorem

$(\cos \theta+i \sin \theta)^{\mathrm{n}}=\operatorname{cosn} \theta+\mathrm{isinn} \theta$.

$n^{\text {th }}$ roots of unity

$ \begin{aligned} & 1=\cos 0+i \sin 0 \\ & 1^{1 / n}=(\cos 0+i \sin 0)^{1 / n} \\ & =\left[\cos \frac{2 r \pi+0}{n}+i \sin \frac{2 r \pi+0}{n}\right] \\ & =\cos \frac{2 r \pi}{n}+i \sin \frac{2 r \pi}{n} \end{aligned} $

$\mathrm{r}=0,1 / 2$ (n-1)

$=e^{\frac{i 2 r \pi}{n}}$ where $\mathrm{r}=0,1 / 2$ ..(n-1)

$=1, e^{\frac{i 2 r \pi}{n}}, e^{\frac{i 4 \pi}{n}}, e^{\frac{i 6 \pi}{n} \cdots \cdots \cdots \cdots} e^{\frac{i 2(n-1) \pi}{n}}$

$=1, \alpha, \alpha^{2} \ldots \ldots \ldots \ldots \ldots . . . \alpha^{\mathrm{n}-1}$ where $\alpha=\mathrm{e}^{\frac{\mathrm{i} 2 \mathrm{r} \pi}{\mathrm{n}}}$

(1) $1+\alpha+\alpha^{2}+\ldots$ $+\alpha^{\mathrm{n}-1}=0$

(2) $1 . \alpha \cdot \alpha^{2}$ $\alpha^{\mathrm{n}-1}=(-1)^{\mathrm{n}-1}$

Important Relations

$\begin{array}{ll}1. & x^2+x+1=(x-\omega)\left(x-\omega^2\right) \\ 2. & x^2-x+1=(x+\omega)\left(x-\omega^2\right) \\ 3. & x^2+2 y+y^2=(x-y \omega)\left(x-y \omega^2\right) \\ 4. & x^2-x y+y^2=(x+y \omega)\left(x+y \omega^2\right) \\ 5. & x^2+y^2=(x+i y)(x-i y) \\ 6. & x^3+y^3=(x+y)(x+y \omega)\left(x+y \omega^2\right) \\ 7. & x^3-y^3=(x-y)(x-y \omega)\left(x-y \omega^2\right) \\ 8. & x^2+y^2+z^2-x y-y z-z x=\left(x+y \omega+z \omega^2\right)\left(x+y \omega^2+z \omega\right) \\ 9. & x^3+y^3+z^3-3 x y z=(x+y+z)\left(x+y \omega+z \omega^2\right)\left(x+y w^2+z \omega\right)\end{array}$

Exercises

1. If $w$ is a cube root of unity, then $\omega+\omega^{\left(\frac{1}{2}+\frac{3}{8}+\frac{9}{32}+\frac{27}{128}+\ldots \ldots \ldots a\right)}$ is

(a). $+1$

(b). $\mathrm{i}^{2}$

(c). $0$

(d). None of these

Show Answer

Solution:

$\frac{1}{2}+\frac{3}{8}+\frac{9}{32}+\frac{27}{128}+\ldots \ldots \ldots . . . \alpha=\frac{1}{2}\left[1+\frac{3}{4}+\frac{9}{16}+\frac{27}{64}+\ldots \ldots \ldots . \alpha\right]=\frac{1}{2} \quad \frac{1}{1-\frac{3}{4}}=\frac{1}{2} \times \frac{4}{1}=2$

$\therefore \mathrm{w}+\mathrm{w}^{2}=-1=\mathrm{i}^{2}$

2. $\alpha, \beta$ real $\gamma$ are the roots of $x^{3}-3 x^{2}+3 x+7=0$

( $w$ is the cube root of unity), then $\left(\frac{\alpha-1}{\beta-1}+\frac{\beta-1}{\gamma-1}+\frac{\gamma-1}{\alpha-1}\right)$ is

(a). $3 / \omega$

(b). $\omega^{2}$

(c). $2 \omega^{2}$

(d). $3 \omega^{2}$

Show Answer

Solution:

we have

$ \begin{aligned} & x^{3}-3 x^{2}+3 x+7=0 \\ & \Rightarrow \quad(\mathrm{x}-1)^{3}+8=0 \quad \Rightarrow(\mathrm{x}-1)^{3}=(-2)^{3} \\ & \Rightarrow\left[\frac{x-1}{-2}\right]^{3}=1 \quad \Rightarrow \frac{x-1}{-2}=1, \omega, \omega^{2} \\ & \Rightarrow \quad \mathrm{x}=-2+1, \mathrm{x}-1=-2 \omega, \mathrm{x}-1,=-2 \omega^{2} \\ & x=-1, x=1-2 \omega, x=1-2 \omega^{2} \\ & \alpha=-1, \beta=1-2 \omega, \gamma=1-2 \omega^{2} \\ & \alpha-1=-2, \beta-1=-2 \omega, \gamma-1=-2 \omega^{2} \\ & \therefore \mathrm{G} \cdot \mathrm{E}=\frac{+2}{+2 \omega}+\frac{-2 \omega}{-2 \omega^{2}}+\frac{+2 \omega^{2}}{+2} \\ & =\omega^{2}+\omega^{2}+\omega^{2} \\ & =3 \omega^{2} \end{aligned} $

3. The common roots of equation

$z^{3}+2 z^{2}+2 z+1=0 \& z^{1985}+z^{100}+1=0$ are

(a). $1, \omega$

(b). $1, \omega^{2}$

(c). $\omega, \omega^{2}$

(d). None of these

Show Answer

Solution:

$ \begin{array}{ll} & z^{3}+2 z^{2}+2 z+1=0 \ldots \ldots \ldots \ldots \ldots . . . .(1) \\ \Rightarrow \quad & (z+1)\left(z^{2}+z+1\right)=0 \\ \Rightarrow \quad & z=-1, \omega, \omega^{2} \text { are the roots of }(1) \\ & z=-1, z^{1985}+z^{100}+1=1 \neq 0 \\ & z=\omega,(\omega)^{1985}+\omega^{100}+1=\omega^{2}+\omega+1=0 \\ & z=\omega^{2}, \omega^{3970}+\omega^{200}+1=0 \end{array} $

$\therefore$ The common roots are $\mathrm{w}, \mathrm{w}^{2}$

$\therefore$ (c) is correct.

4. If $\alpha, \beta, \gamma$ are the cube roots of $p, p<0$ then for arang $x, y \& z \frac{x \alpha+y \beta+z \gamma}{x \beta+y \gamma+z \alpha}$ is

(a). $\mathrm{w}^{2}$

(b). $-1$

(c) $\frac{x^{3}+y^{3}+z^{3}}{\alpha^{3}+\beta^{3}+\gamma^{3}}$

(d). None of these

Show Answer

Solution:

Let $\mathrm{x}^{3}=\mathrm{p}$

$\Rightarrow \mathrm{x}=(1 . \mathrm{p})^{1 / 3}$

$\Rightarrow \quad \mathrm{x}=\mathrm{p}^{1 / 3} \cdot 1^{1 / 3}$

$x=p^{1 / 3}, p^{1 / 3} \omega, p^{1 / 3} \omega^{2}$

$\therefore \quad$ Given expression $=\frac{x \cdot p^{1 / 3}+y p^{1 / 3} \omega+z p^{1 / 3} \omega^{2}}{x \cdot p^{1 / 3} \omega+y \cdot p^{1 / 3} \omega^{2}+z \cdot p^{1 / 3}}$

$=\frac{x+y \omega+z \omega^{2}}{x \omega+y \omega^{2}+z}=\frac{\omega^{2}\left(x+\omega y+\omega^{2} z\right)}{\left(x+\omega y+z \omega^{2}\right)} \quad$ (multiply and divide by $\left.\omega^{2}\right)$

$=\omega^{2}$

5. The value of the expression

$\left(1+\frac{1}{\omega}\right)\left(1+\frac{1}{\omega^{2}}\right)+\left(2+\frac{1}{\omega}\right)\left(2+\frac{1}{\omega^{2}}\right)+\left(3+\frac{1}{\omega}\right)\left(3+\frac{1}{\omega^{2}}\right)+\ldots \ldots \ldots+\left(n+\frac{1}{\omega}\right)\left(n+\frac{1}{\omega^{2}}\right)$

Show Answer

Solution:

$\mathrm{T} _{\mathrm{k}}=\left(\mathrm{k}+\frac{1}{\omega}\right)\left(\mathrm{k}+\frac{1}{\omega^{2}}\right)=\left(\mathrm{k}+\omega^{2}\right)(\mathrm{k}+\omega)=\mathrm{k}^{2}-\mathrm{k}+1$

$\therefore \mathrm{S} _{\mathrm{n}}=\sum _{\mathrm{k}=1}^{\mathrm{n}} \mathrm{T} _{\mathrm{k}}=\sum _{\mathrm{k}=1}^{\mathrm{n}}\left(\mathrm{k}^{2}-\mathrm{k}+1\right)$

$=\sum \mathrm{k}^{2}-\sum \mathrm{k}+\sum 1$

$=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}-\frac{\mathrm{n}(\mathrm{n}+1)}{2}+\mathrm{n}$

$=n\left[\frac{2 n^{2}+3 n+1}{6}-\frac{n+1}{2}+1\right]$

$=n\left[\frac{2 n^{2}+3 n+1-3 n-3+6}{6}\right]$

$=\mathrm{n}\left(\frac{2 \mathrm{n}^{2}+4}{6}\right)$

$=\frac{\mathrm{n}\left(\mathrm{n}^{2}+2\right)}{3}$

6. If $w$ and $w^{2}$ are the cube roots of unity and

$\frac{1}{a+\omega}+\frac{1}{b+\omega}+\frac{1}{c+\omega}=2 \omega^{2} \& \frac{1}{a+\omega^{2}}+\frac{1}{b+\omega^{2}}+\frac{1}{c+\omega^{2}}=2 \omega$ then the value of $\frac{1}{a+1}+$ $\frac{1}{\mathrm{~b}+1}+\frac{1}{\mathrm{c}+1}$ is

(a). $1$

(b). $-1$

(c). $\omega$

(d). $2$

Show Answer

Solution:

Note that $\omega \& \omega^{2}$ are roots of

$\frac{1}{\mathrm{a}+\mathrm{x}}+\frac{1}{\mathrm{~b}+\mathrm{x}}+\frac{1}{\mathrm{c}+\mathrm{x}}=\frac{2}{\mathrm{x}}$

$\frac{3 \mathrm{x}^{2}+2(\mathrm{a}+\mathrm{b}+\mathrm{c}) \mathrm{x}+\mathrm{bc}+\mathrm{ca}+\mathrm{ab}}{(\mathrm{a}+\mathrm{x})(\mathrm{b}+\mathrm{x})(\mathrm{c}+\mathrm{x})}=\frac{2}{\mathrm{x}}$

$\Rightarrow \mathrm{x}^{3}-(\mathrm{bc}+\mathrm{ca}+\mathrm{ab}) \mathrm{x}-2 \mathrm{abc}=0$

The roots of the equation are $\omega \& \omega^{2}$

If $\alpha$ in the third root of this equation then $\alpha+\omega^{+} \omega^{2}=0 \Rightarrow \alpha=1$

Put $\alpha=1$ on equation (1)

$\frac{1}{\mathrm{a}+1}+\frac{1}{\mathrm{~b}+1}+\frac{1}{\mathrm{c}+1}=2$.

Practice questions

1. The value of $\left(1-\omega+\omega^{2}\right)^{5}+\left(1+\omega-\omega^{2}\right)^{5}$, where $\omega$ and $\omega^{2}$ are the complex cube roots of unity, is

(a). $0$

(b). $32 \omega$

(c). $-32$

(d). $32$

Show Answer Answer: (d)

2. For any two complex numbers $z _{1}$ and $z _{2}$ and any real numbers $a$ and $b$, $\left|\mathrm{az} _{1}-\mathrm{bz} _{2}\right|^{2}+\left|\mathrm{bz} \mathrm{z} _{1}+\mathrm{az} _{2}\right|^{2}$ is equal to

(a). $\left(a^{2}+b^{2}\right)\left(\left|z _{1}\right|+\left|z _{2}\right|\right)$

(b). $\left(a^{2}+b^{2}\right)\left(\left|z _{1}\right|^{2}+\left|z _{2}\right|^{2}\right)$

(c). $\left(a^{2}+b^{2}\right)\left(\left|z _{1}\right|^{2}-\left|z _{2}\right|^{2}\right)$

(d). none of these

Show Answer Answer: (b)

3. For any two complex numbersz $z _{1}$ and $z _{2}$, the relation $\left|z _{1}+z _{2}\right|=\left|z _{1}\right|+\left|z _{2}\right|$ holds, if

(a). $ \arg \left(z _{1}\right)=\arg \left(z _{2}\right)$

(b). $ \arg \left(\mathrm{z} _{1}\right)+\arg \left(\mathrm{z} _{2}\right)=\frac{\pi}{2}$

(c). $\mathrm{z} _{1} \mathrm{Z} _{2}$

(d). $\left|\mathrm{z} _{1}\right|=\left|\mathrm{z} _{2}\right|$

Show Answer Answer: (a)

4. If $\omega$ and $\omega^{2}$ are the two imaginary cube roots of unity, then the equation whose roots are $a \omega^{317}$ and $a \omega^{382}$ is

(a). $\mathrm{x}^{2}+\mathrm{ax}-\mathrm{a}^{2}=0$

(b). $x^{2}+a^{2} x+a^{2}=0$

(c). $x^{2}+a x+a^{2}=0$

(d). $ x^{2}-a^{2} x+a=0$

Show Answer Answer: (c)

5. If $1, \mathrm{a} _{1}, \mathrm{a} _{2}$ $\ldots \mathrm{a} _{\mathrm{n}-1}$ are roots of unity, then the value of $\left(1-\mathrm{a} _{1}\right)\left(1-\mathrm{a} _{2}\right)$

(a). $0$

(b). $1$

(c). $\mathrm{n}$

(d). $\mathrm{n}^{2}$

Show Answer Answer: (c)

6. If $\omega \neq 1$ is a cube root of unity, then the value of

$ \left|\begin{array}{ccc} 1+\omega^{2}+2 \omega^{100} & \omega^{2} & 1 \\ 1& 1+\mathrm{w}^{100}+2 \omega^{200} & \omega \\ \omega & \omega^{2} & 2+\omega^{100}+\omega^{200} \end{array}\right| $

(a). $0$

(b). $1$

(c). $\omega$

(d). $\omega^{2}$

Show Answer Answer: (a)

7. If the area of the triangle formed by the points $\mathrm{z}, \mathrm{z}+\mathrm{iz}$ and iz is 50 sq. unit, then $|\mathrm{z}|$ is equal to

(a). $5$

(b). $8$

(c). $10$

(d). none of these

Show Answer Answer: (c)

8. Let $\omega$ be an imaginary roots of $x^{n}=1$. Then, $(5-\omega)\left(5-\omega^{2}\right)$ $\left(5-\omega^{\mathrm{n}-1}\right)$ is

(a). $1$

(b). $\frac{5^{\mathrm{n}}+1}{4}$

(c). $4^{\mathrm{n}}-1$

(d). $\frac{5^{\mathrm{n}}-1}{4}$

Show Answer Answer: (d)

9. If $\omega(\neq 1)$ is a cube root of unity and $(1+\omega)^{7}=\mathrm{A}+\mathrm{B} \omega$

(a). $0, 1$

(b). $1, 1$

(c). $1, 0$

(d). $-1,1$

Show Answer Answer: (b)

10. If $x=\omega-\omega^{2}-2$ then the value of $\mathrm{x}^{4}+3 \mathrm{x}^{3}+2 \mathrm{x}^{2}-11 \mathrm{x}-6$ is

(a). $1$

(b). $-1$

(c). $2$

(d). none of these

Show Answer Answer: (a)

11. If $z=\cos \theta+i \sin \theta$, then $\frac{z^{2 n}-1}{z^{2 n}+1}$ is equal to ( $n$ is an integer)

(a). $i \cot n \theta$

(b). $ i \tan n \theta$

(c). $\tan n$

(d). $\cot n \theta$

Show Answer Answer: (b)

12. The cube root of unity

(a). lie on the circle $|z|=1$

(b). are collinear

(c). form an equilateral triangle

(d). none of these

Show Answer Answer: (c)

13. The complex number $z$ satisfying the equation $|z|-4=|z-i|-|z+5 i|=0$, is

(a). $\sqrt{3}-\mathrm{i}$

(b). $2 \sqrt{3}$

(c). $-2 \sqrt{3}-2 \mathrm{i}$

(d). $0$

Show Answer Answer: (c)

14. If $z _{1}=8+4 i, z _{2}=6+4 i$ and $\arg \left(\frac{z-z _{1}}{z-z _{2}}\right)=\frac{\pi}{4}$, then $z$ satisfies

(a). $|z-7-4 i|=1$

(b). $|\mathrm{z}-7-5 \mathrm{i}|=\sqrt{2}$

(c). $|z-4 i|=8$

(d). $|\mathrm{z}-7 \mathrm{i}|=\sqrt{18}$

Show Answer Answer: (b)

15. If $z=\cos \theta+i \sin \theta$, then

(a). $\mathrm{z}^{\mathrm{n}}+\frac{1}{\mathrm{z}^{\mathrm{n}}}=2 \cos n \theta$

(b). $\mathrm{z}^{\mathrm{n}}+\frac{1}{\mathrm{z}^{\mathrm{n}}}=2^{\mathrm{n}} \cos n \theta$

(c). $ z^{n}-\frac{1}{z^{n}}=2^{n} i\sin n \theta$

(d). $z^{n}-\frac{1}{z^{n}}=(2 i)^{n} \sin n \theta$

Show Answer Answer: (a)


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ