COMPLEX NUMBER - 7 (Rotation Theorem)

GEOMETRY OF COMPLEX NUMBERS

1. Distance between two complex numbers $z _{1} \& z _{2}$ is $\left|z _{1}-z _{2}\right|$

Section formula

2. Two points $P \& Q$ have affixes $z _{1} \& z _{2}$ respectively in the argand plane, then the affix of a point $\mathrm{R}$ dividing $\mathrm{PQ}$ is the ratio $\mathrm{m}: \mathrm{n}$

i. internally is $\frac{m z _{2}+n z _{1}}{m+n}$

ii. externally is $\frac{m z _{2}-n z _{1}}{m-n}$

iii. If $R$ is the mid point $P Q$, then affix of $R$ is $\frac{Z _{1}+Z _{2}}{2}$

Special points of a triangle

3.

Segment/Line Figure point of concurrency Formula
Perpendicular bisectors Circumcentre (Equidistant from vertices) $\mathrm{z} _{3}=\frac{\mathrm{z} _{1} \sin 2 \mathrm{~A}+\mathrm{z} _{2} \sin 2 \mathrm{~B}+\mathrm{z} _{3} \sin 2 \mathrm{C}}{\sin 2 \mathrm{~A}+\sin 2 \mathrm{~B}+\sin 2 \mathrm{C}}$ $\frac{\sum\left|\mathrm{z} _{1}\right|^{2}\left(\mathrm{z} _{2}-\mathrm{z} _{3}\right)}{\sum \overline{\mathrm{z}} _{1}\left(\mathrm{z} _{2}-\mathrm{z} _{3}\right)}$
Angle bisectors from the sides) Incentre (equidistant to the sides) $z _{3}=\frac{a z _{1}+b z _{2}+c z _{3}}{a+b+c}$ $a=\left|z _{2}-z _{3}\right|, b=\left|z _{1}-z _{3}\right|$, $c=\left|z _{1}-z _{2}\right|$
Medians Centroid ( distance from vertex to G is $\frac{2}{3}$ of total median) $\mathrm{G} _{\mathrm{z}}=\frac{\mathrm{z} _{1}+\mathrm{z} _{2}+\mathrm{z} _{3}}{3}$
Altitudes Orthocentre (can be inside, outside or on the right angle) $\mathrm{Z} _{\mathrm{H}}=\frac{\mathrm{z} _{1}(\tan \mathrm{A})+\mathrm{z} _{2}(\tan \mathrm{B})+\mathrm{z} _{3}(\tan \mathrm{C})}{\tan \mathrm{A}+\tan \mathrm{B}+\tan \mathrm{C}}$ $\frac{\sum \overline{\mathrm{Z}} _{1}\left(\mathrm{z} _{2}-\mathrm{z} _{3}\right)\left(\mathrm{z} _{2}+\mathrm{z} _{3}-\mathrm{z} _{1}\right)}{\sum \mathrm{z} _{1}\left(\mathrm{z} _{2}-\mathrm{z} _{3}\right)}$

4. Area of the triangle with vertices $\mathrm{z} _{1}, \mathrm{z} _{2}$ & $\mathrm{z} _{3}$ is $\frac{1}{4}\left|\overline{\mathrm{z}} _{1}\left(\mathrm{z} _{2}-\mathrm{z} _{3}\right)\right|$

Equilateral triangle

5. In equilateral $\triangle \mathrm{ABC}$, where the vertices are given by $\mathrm{z} _{1}, \mathrm{z} _{2}, \mathrm{z} _{3}$ and the circumcentre is $\mathrm{z} _{0}$,

i. $z _{1}^{2}+z _{2}^{2}+z _{3}^{2}=3 z _{0}^{2}$

ii. $\mathrm{z} _{1}^{2}+\mathrm{z} _{2}^{2}+\mathrm{z} _{3}^{2}=\mathrm{z} _{1} \mathrm{z} _{2}+\mathrm{z} _{2} \mathrm{z} _{3}+\mathrm{z} _{3} \mathrm{z} _{1}$

iii. $\frac{1}{z _{1}-z _{2}}+\frac{1}{z _{2}-z _{3}}+\frac{1}{z _{3}-z _{1}}=0$

6. If $z _{1}, z _{2}, z _{3}, z _{4}$ are vertices of a parallelogram if and only if $z _{1}+z _{3}=z _{2}+z _{4}$.

7. If $z _{1}, z _{2}, z _{3}, z _{4}$ are vertices of a square in the same order, then

i. $z _{1}+z _{3}=z _{2}+z _{4}$

ii. $\left|z _{1}-z _{2}\right|=\left|z _{2}-z _{3}\right|=\left|z _{3}-z _{4}\right|=\left|z _{4}-z _{1}\right|$

iii. $\left|z _{1}-z _{3}\right|=\left|z _{2}-z _{4}\right|$

iv. $\frac{\left|z _{1}-z _{3}\right|}{\left|z _{2}-z _{4}\right|}$ is purely imaginary

8. Equation of the straight line joining $z _{1} \& z _{2}$ is i. $ \arg \left(\frac{z-z _{1}}{z _{2}-z _{1}}\right)=\pi$ or 0 i.e. $\left(\frac{z-z _{1}}{z _{2}-z _{1}}\right)$ must be real i.e. $\frac{z-z _{1}}{z _{2}-z _{1}}=\frac{\bar{z}-\bar{z} _{1}}{\bar{z} _{2}-\bar{z} _{1}}$ or

$\left|\begin{array}{lll}\mathrm{z} & \overline{\mathrm{Z}} & 1 \\ \mathrm{z} _{1} & \overline{\mathrm{Z}} _{1} & 1 \\ \mathrm{z} _{2} & \overline{\mathrm{Z}} _{2} & 1\end{array}\right|=0$ (non-parametric form)

ii. $ \mathrm{z}=\lambda \mathrm{z} _{1}+(1-\lambda) \mathrm{z} _{2}$ (parametric form)

iii. General equation of $a$ line is $\bar{a} z+a \bar{z}+b=0$ where $b \in R$.

Note: Condition for 3 points $z _{1}, z _{2}, z _{3}$ to be collinear is that $\arg \frac{z _{3}-z _{1}}{z _{3}-z _{2}}=0$ or $\pi$

Two points $z _{1} \& z _{2}$ lie on the same side or opposite side of the line $\bar{a} \bar{z}+a \bar{z}+b=0$ according as $\overline{\mathrm{a}} \mathrm{z} _{1}+\mathrm{a} \overline{\mathrm{z} _{1}}+\mathrm{b}$ and $\overline{\mathrm{a}} \mathrm{z} _{2}+\mathrm{a} \overline{\mathrm{z} _{2}}+\mathrm{b}$ have same sign or opposite sign.

9. Slope of the line segment joining $z _{1} \& z _{2}$ is $\frac{z _{1}-z _{2}}{z _{1}-z _{2}}$. Two lines with slopes $\omega _{1} \& \omega _{2}$ are

(a). perpendicular if $\omega _{1}+\omega _{2}=0$

(b). parallel if $\omega _{1}=\omega _{2}$

10. Length of the perpendicular from $z _{1}$ to $\bar{a} \bar{z}+\bar{a} z+b=0$ is $\frac{a \overline{z _{1}}+\bar{a} z _{1}+b}{2|a|}$

11. Equation of the perpendicular bisector of the line segment joining $z _{1} \& z _{2}$ is $\mathrm{z}\left(\overline{\mathrm{z}} _{1}-\overline{\mathrm{z}} _{2}\right)+\overline{\mathrm{z}}\left(\mathrm{z} _{1}-\mathrm{z} _{2}\right)=\left|\mathrm{z} _{1}\right|^{2}-\left|\mathrm{z} _{2}\right|^{2}$

Equation of a circle

12. i. $\left|z-z _{0}\right|=r$ or $z \bar{z}-z _{0} \bar{z}-\overline{z _{0}} z+z _{0} \overline{z _{0}}-r^{2}=0$ where $z _{0}$ the centre $\& r$ is the radius

ii. $\left|z-z _{1}\right|^{2}+\left|z-z _{2}\right|^{2}=\left|z _{1}-z _{2}\right|^{2}$ (circle described on the line joining $z _{1} \& z _{2}$ as diameter)

iii. General equation of $a$ circle is $\overline{z z}+\bar{a} \bar{z}+\bar{a} z+b=0$ where $b \in R$. Centre is $-a$ and radius is $\sqrt{a \bar{a}-b}$

  • Four points $z _{1}, z _{2}, z _{3}, z _{4}$ are concyclic if and only if $\frac{\left(z _{1}-z _{3}\right)\left(z _{2}-z _{4}\right)}{\left(z _{1}-z _{4}\right)\left(z _{2}-z _{3}\right)}$ is purely real.

Loci in complex plane

13. i. $\left|z-z _{0}\right|=r$ circle with centre $z _{0} \&$ radius $\mathrm{r}$.

$1\left|z-z _{0}\right|<r$ : interior of this circle

$1\left|z-z _{0}\right|>r$ : exterior of this circle

$1\left|z-z _{1}\right|=\left|z-z _{2}\right|$

perpendicular bisector of the segment joining $z _{1} \& z _{2}$

iii. $\left|z-z _{1}\right|+\left|z-z _{2}\right|=k\left\{\begin{array}{l}\text { is an ellipse if } \mathrm{k}>\left|z _{1}-z _{2}\right| \\ \text { is a straight line if } k=\left|z _{1}-z _{2}\right|\end{array}\right.$

iv. $\left|z-z _{1}\right|-\left|z-z _{2}\right|=k\left\{\begin{array}{l}\text { is a hyperbola if } k<\left|z _{1}-z _{2}\right| \\ \text { is a straight line if } k=\left|z _{1}-z _{2}\right|\end{array}\right.$

v. argument $\left(\frac{z-z _{1}}{z-z _{2}}\right)=a, a$ fixed angle is a circle.

14. Complex number as a rotation arrow in the argand plane.

Let $\mathrm{z}=\mathrm{re}^{\mathrm{i} \theta}$

$\Rightarrow \mathrm{OP}=\mathrm{r} \& \angle \mathrm{XOP}=\theta$

$\mathrm{ze}^{\mathrm{i} \alpha}$ is a complex number whose modulus is $\mathrm{r}$ and argument $\angle \mathrm{XOP}=\theta+\alpha$. To obtain $\mathrm{ze}^{\mathrm{i} \alpha}$, rotate $\mathrm{OP}$ through an angle $\alpha$ in anticlockwise direction.

Note: Let $\mathrm{z} _{1} \& \mathrm{z} _{2}$ be two complex represented by $\mathrm{P} \& \mathrm{Q}$ such that $\angle \mathrm{POQ}=\alpha . \mathrm{z} _{1} \mathrm{e}^{\mathrm{i} \omega}$ is a vector of magnitude $\mathrm{OP}=\left|\mathrm{z} _{1}\right|$ along $\overline{\mathrm{OQ}} \cdot \frac{\mathrm{z} _{1}}{\left|\mathrm{z} _{1}\right|} \mathrm{e}^{\mathrm{i} \alpha}$ is a unit vector along $\overline{\mathrm{O}} \mathrm{Q}$.

$\therefore $ A vector of magnitude $\left|z _{2}\right|=$ OQ units is given by $\left|z _{2}\right| \frac{z _{1}}{z _{1} \mid} e^{i \omega}$

i.e. $ z _{2}=\frac{\left|z _{2}\right|}{\left|z _{1}\right|} z _{1} e^{i \omega}$

Note: general formula for rotation

If $A B$ is rotated to $A C$ but $A B \neq A C$, then

$\frac{\mathrm{z} _{3}-\mathrm{z} _{1}}{\mathrm{r} _{3}}=\frac{\mathrm{z} _{2}-\mathrm{z} _{1}}{\mathrm{r} _{2}} \mathrm{e}^{\mathrm{i} \varphi}$

$1$ Multiplication of $\mathrm{z}$ with $\mathrm{i}$ rotates the vector $\mathrm{z}$ through a right angle in anticlockwise direction $\left(\because \mathrm{i}=1 \mathrm{e}^{\mathrm{i} \pi / 2}\right)$

$1$ Multiplication of $z$ by -1 rotates the vector $z$ through an angle of $180^{\circ}$ in anticlockwise direction.

$1$ Let $\mathrm{AB} \& \mathrm{CD}$ intersect at $\mathrm{z} _{0}$. Let $\mathrm{P}\left(\mathrm{z} _{1}\right) \& \mathrm{Q}\left(\mathrm{z} _{2}\right)$ be two points on $A B \& C D$. Then the angle $\theta$ is given by $\theta=\arg \left(\frac{z _{2}-z _{0}}{z _{1}-z _{0}}\right)=\arg \left(z _{2}-z _{0}\right)-\arg \left(z _{1}-z _{0}\right)$

Solved Examples

1. If $z _{1}, z _{2}, z _{3}$ are the vertices of an equilateral triangle having its circumcentre at the origin such that $z _{1}=1+i$, find $z _{2}$ and $z _{3}$.

Show Answer

Solution: Clearly, $\overrightarrow{\mathrm{OB}}$ and $\overrightarrow{\mathrm{OC}}$ are obtained by rotating $\overrightarrow{\mathrm{OA}}$ through $2 \pi / 3$ and $4 \pi / 3$ respectively.

$\therefore \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OA}} \mathrm{e}^{\mathrm{i} \pi / / 3}$ and, $\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OA}} \mathrm{e}^{\mathrm{i} 4 \pi / 3}$

$\Rightarrow \mathrm{z} _{2}=\mathrm{z} _{1} \mathrm{e}^{\mathrm{i} 2 \pi / 3}$ and, $\mathrm{z} _{3}=\mathrm{z} _{1} \mathrm{e}^{\mathrm{i} 4 \pi / 3}$

$\Rightarrow \mathrm{z} _{2}=(1+\mathrm{i})(\cos 2 \pi / 3+\mathrm{i} \sin 2 \pi / 3)$ and, $\mathrm{z} _{3}=(1+\mathrm{i})(\cos 4 \pi / 3+\mathrm{i} \sin 4 \pi / 3)$

$\Rightarrow \mathrm{z} _{2}=(1+\mathrm{i})(-1 / 2+\mathrm{i} \sqrt{3} / 2)$ and $\mathrm{z} _{3}=(1+\mathrm{i})(-1 / 2-\mathrm{i} \sqrt{3} / 2)$

$\Rightarrow \mathrm{z} _{2}=-\left(\frac{\sqrt{3}+1}{2}\right)+\mathrm{i}\left(\frac{\sqrt{3}-1}{2}\right)$ and $\mathrm{z} _{3}=-\left(\frac{1-\sqrt{3}}{2}\right)-\mathrm{i}\left(\frac{1+\sqrt{3}}{2}\right)$

Example: 2 Let $\mathrm{z} _{1}$ and $\mathrm{z} _{2}$ are roots of the equation $\mathrm{z}^{2}+\mathrm{pz}+\mathrm{q}=0$, where the coefficients $\mathrm{p}$ and $\mathrm{q}$ may be complex numbers. Let $A$ and $B$ represent $z _{1}$ and $z _{2}$ in the complex plane. If $\angle A O B=\alpha \neq 0$ and $\mathrm{OA}=\mathrm{OB}$, where $\mathrm{O}$ is origin, prove that $\mathrm{p}^{2}=4 \mathrm{q} \cos ^{2} \alpha / 0$.

Show Answer

Solution: Since $z _{1}$ and $z _{2}$ are roots of the equation $z^{2}+p z+q=0$

$\therefore \mathrm{z} _{1}+\mathrm{z} _{2}=-\mathrm{p}$ and $\mathrm{z} _{1} \mathrm{z} _{2}=\mathrm{q}$

Since $\mathrm{OA}=\mathrm{OB}$. So, $\overrightarrow{\mathrm{OB}}$ is obtained by rotating $\overrightarrow{\mathrm{OA}}$ in

anticlockwise sense through angle $\alpha$.

$ \begin{aligned} & \therefore \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OA}} \mathrm{e}^{\mathrm{i} \alpha} \\ & \Rightarrow \mathrm{z} _{2}=\mathrm{z} _{1} \mathrm{e}^{\mathrm{i} \alpha} \\ & \Rightarrow \frac{z _{2}}{z _{1}}=\cos \alpha+i \sin \alpha \\ & \Rightarrow \frac{\mathrm{z} _{2}}{\mathrm{z} _{1}}+1=1+\cos \alpha+\mathrm{i} \sin \alpha \end{aligned} $

$ \begin{aligned} & \Rightarrow \frac{z _{2}+z _{1}}{z _{1}}=2 \cos \frac{\alpha}{2}\left(\cos \frac{\alpha}{2}+i \sin \frac{\alpha}{2}\right)=2 \cos \frac{\alpha}{2} e^{i \alpha / 2} \\ & \Rightarrow \frac{z _{2}+z _{1}}{z _{1}}=2 \cos \frac{\alpha}{2} \mathrm{e}^{\mathrm{i} \alpha / 2} \\ & \Rightarrow \left(\frac{\mathrm{z} _{2}+\mathrm{z} _{1}}{\mathrm{z} _{1}}\right)^{2}=4 \cos ^{2} \frac{\alpha}{2} \mathrm{e}^{\mathrm{i} \alpha} \\ & \Rightarrow \left(\frac{\mathrm{z} _{2}+\mathrm{z} _{1}}{\mathrm{z} _{1}}\right)^{2}=4 \cos ^{2} \frac{\alpha}{2}\left(\frac{\mathrm{z} _{2}}{\mathrm{z} _{1}}\right) \\ & \Rightarrow \left(\mathrm{z} _{2}+\mathrm{z} _{1}\right)^{2}=4 \mathrm{z} _{1} \mathrm{z} _{2} \cos ^{2} \frac{\alpha}{2} \\ & \Rightarrow (-\mathrm{p})^{2}=4 \mathrm{q} \cos ^{2} \frac{\alpha}{2} \\ & \Rightarrow \mathrm{p}^{2}=4 \mathrm{q} \cos ^{2} \frac{\alpha}{2} \end{aligned} $

Example: 3 If the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ represent the complex numbers $\mathrm{z} _{1}, \mathrm{Z} _{2}, \mathrm{z} _{3}$ respectively and the angles of the $\triangle \mathrm{ABC}$ at $\mathrm{B}$ and $\mathrm{C}$ are both $\left(\frac{\pi-\alpha}{2}\right)$. Prove that $\left(\mathrm{z} _{3}-\mathrm{z} _{2}\right)^{2}=4\left(\mathrm{z} _{3}-\mathrm{z} _{1}\right)\left(\mathrm{z} _{1}-\mathrm{z} _{2}\right) \sin ^{2}\left(\frac{\alpha}{2}\right)$.

Show Answer

Solution: We have,

$ \begin{aligned} & \angle \mathrm{B}=\angle \mathrm{C}=\frac{\pi-\alpha}{2} \\ & \therefore \quad \mathrm{A}=\pi-\left(\frac{\pi-\alpha}{2}+\frac{\pi-\alpha}{2}\right)=\alpha \end{aligned} $

Since $\overrightarrow{\mathrm{AC}}$ is obtained by rotating $\overrightarrow{\mathrm{AB}}$ through angle $\alpha$.

$ \begin{aligned} & \therefore \quad \overrightarrow{A C}=\overrightarrow{A B} e^{i \alpha} \\ & \Rightarrow \quad\left(z _{3}-z _{1}\right)=\left(z _{2}-z _{1}\right) e^{i \alpha} \\ & \Rightarrow \quad \frac{z _{3}-z _{1}}{z _{2}-z _{1}}=\cos \alpha+i \sin \alpha \\ & \Rightarrow \quad \frac{z _{3}-z _{1}}{z _{2}-z _{1}}-1=-1+\cos \alpha+i \sin \alpha \\ & \Rightarrow \quad \frac{z _{3}-z _{2}}{z _{2}-z _{1}}=-2 \sin ^{2} \frac{\alpha}{2}+2 i \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} \\ & \Rightarrow \quad \frac{z _{3}-z _{2}}{z _{2}-z _{1}}=2 i \sin \frac{\alpha}{2}\left(\cos \frac{\alpha}{2}+i \sin \frac{\alpha}{2}\right) \\ & \Rightarrow \quad \frac{z _{3}-z _{2}}{z _{2}-z _{1}}=2 i \sin \frac{\alpha}{2} e^{i \alpha / 2} \\ & \Rightarrow \quad\left(\frac{z _{3}-z _{2}}{z _{2}-z _{1}}\right)^{2}=4 i^{2} \sin ^{2} \frac{\alpha}{2}\left(e^{i \alpha / 2}\right)^{2} \\ & \Rightarrow \quad\left(\frac{z _{3}-z _{2}}{z _{2}-z _{1}}\right)^{2}=-4 \sin ^{2} \frac{\alpha}{2} e^{i \alpha} \\ & \Rightarrow \quad\left(\frac{z _{3}-z _{2}}{z _{2}-z _{1}}\right)^{2}=-4 \sin ^{2} \frac{\alpha}{2}\left(\frac{z _{3}-z _{1}}{z _{2}-z _{1}}\right) \\ & \Rightarrow \quad\left(z _{3}-z _{2}\right)^{2}=4\left(z _{3}-z _{1}\right)\left(z _{1}-z _{2}\right) \sin ^{2} \frac{\alpha}{2} \end{aligned} $

Example: 4 Show that the area of the triangle on the Argand plane formed by the complex numbers $z$, iz and $z+i z$ is $\frac{1}{2}|z|^{2}$

Show Answer

Solution: We have, $\mathrm{iz}=\mathrm{ze} \mathrm{e}^{\mathrm{i} \pi / 2}$

This implies that iz is the vector obtained by rotating vector

$\mathrm{z}$ in anticlockwise direction through $90^{\circ}$. Therefore, $\mathrm{OA} \perp \mathrm{AB}$. So,

Area of $\triangle \mathrm{OAB}=\frac{1}{2} \mathrm{OA} \times \mathrm{OB}$

$=\left.\quad \frac{1}{2}|z| i z\left|=\frac{1}{2}\right| z\right|^{2}$.

Example: 5 Let $z _{1}, z _{2}, z _{3}$ be the affixes of the vertices $A, B$ and $C$ respectively of a $\triangle A B C$. Prove that the triangle is equilateral if $z _{1}^{2}+z _{2}^{2}+z _{3}^{2}=z _{1} z _{2}+z _{2} z _{3}+z _{3} z _{1}$.

Show Answer

Solution: First, let $z _{1}, z _{2}, z _{3}$ be the affixes of the vertices $A, B, C$ of an equilateral triangle $A B C$.

Then, we have to prove that $z _{1}^{2}+z _{2}^{2}+z _{3}^{2}=z _{1} z _{2}+z _{2} z _{3}+z _{3} z _{1}$.

Since $\triangle \mathrm{ABC}$ is an equilateral triangle.

Therefore,

$\mathrm{AB}=\mathrm{BC}=\mathrm{AC}$ and $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\pi / 3$.

Clearly, $\overrightarrow{\mathrm{AC}}$ can be obtained by rotating $\overrightarrow{\mathrm{AB}}$ in anticlockwise sense through $60^{\circ}$.

$\therefore \quad \mathrm{z} _{3}-\mathrm{z} _{1}=\left(\mathrm{z} _{2}-\mathrm{z} _{1}\right) \mathrm{e}^{\mathrm{i} \pi / 3}………(1)$

Also $\overrightarrow{\mathrm{BC}}$ can be obtained by rotating $\overrightarrow{\mathrm{BA}}$ by $\frac{\pi}{3}$ anticlockwise

$\therefore \quad \mathrm{z} _{2}-\mathrm{z} _{3}=\left(\mathrm{z} _{1}-\mathrm{z} _{3}\right) \mathrm{e}^{\mathrm{i} \pi / 3}……..(2)$

From (1) and (2)

$\left(\frac{z _{3}-z _{1}}{z _{2}-z _{1}}\right)=\left(\frac{z _{2}-z _{3}}{z _{1}-z _{3}}\right)$

Solving we get $z _{1}^{2}+z _{2}^{2}+z _{3}^{2}=z _{1} z _{2}+z _{2} z _{3}+z _{3} z _{1}$.

Practice questions

1. The complex number $z=x+$ iy which satisfy the equation $\left|\frac{z-5 i}{z+5 i}\right|=1$ lie on

(a). the $\mathrm{x}$-axis

(b). the straight line $y=5$

(c). a circle passing through the origin

(d). none of these

Show Answer Answer: (a)

2. Let $z$ & w be two complex numbers such that $|z| \leq 1,|w| \leq 1$ and $|z+i w|=|z-i w|=2$ then $z=$

(a). 1 or $\mathrm{i}$

(b). i or $-\mathrm{i}$

(c). $1$ or $-1$

(d). $i$ or $-1$

Show Answer Answer: (c)

3. Let $z _{1} \& z _{2}$ be the nth roots of unity which subtend a right angle at the origin, then $n$ must be of the form (where $k \in z$ )

(a). $4 \mathrm{k}+1$

(b). $4 \mathrm{k}+2$

(c). $4 \mathrm{k}+3$

(d). $4 \mathrm{k}$

Show Answer Answer: (d)

4. The complex number $\mathrm{z} _{1}, \mathrm{z} _{2} \& \mathrm{z} _{3}$ satisfying $\left(\frac{\mathrm{z} _{1}-\mathrm{z} _{3}}{\mathrm{z} _{2}-\mathrm{z} _{3}}\right)=\frac{1-\mathrm{i} \sqrt{3}}{2}$ are the vertices of a triangle which is

(a). of area zero

(b). right angled isosceles

(c). equilateral

(d). obtuse-angled isosceles

Show Answer Answer: (c)

5. For all complex numbers $z _{1}, z _{2}$ satisfying $\left|z _{1}\right|=12$ and $\left|z _{2}-3-4 i\right|=5$, the minimum value of $\left|z _{1}-z _{2}\right|$ is

(a). $0$

(b). $2$

(c). $7$

(d). $17$

Show Answer Answer: (b)

6. The shaded region where $\mathrm{P}=(-1,0), \mathrm{Q}=(-1+\sqrt{2}, \sqrt{2}), \mathrm{R}=(-1+\sqrt{2},-\sqrt{2}), \mathrm{S}=(1,0)$ is represented by

(a). $|z+1|>2,|\arg (z+1)|<\frac{\pi}{4}$

(b). $|\mathrm{z}+1|<2,|\arg (\mathrm{z}+1)|<\frac{\pi}{2}$

(c). $|z+1|>2,|\arg (z+1)|>\frac{\pi}{4}$

(d). $|z-1|<2,|\arg (z+1)|>\frac{\pi}{2}$

Show Answer Answer: (a)

7. A man walks a distance of 3 units from the origin towards the North-East $\left(\mathrm{N} 45^{\circ} \mathrm{E}\right)$ direction. Form there, he walks a distance of 4 units towards the North-West $\left(\mathrm{N} 45^{\circ} \mathrm{W}\right)$ direction to reach a point $\mathrm{P}$. Then the position of $\mathrm{P}$ is the Argand plane is

(a). $ 3 \mathrm{e}^{\mathrm{i} \pi / 4}+4 \mathrm{i}$

(b). $(3-4 \mathrm{i}) \mathrm{e}^{\mathrm{i} / 4}$

(c). $(4+3 i) e^{i \pi / 4}$

(d). $(3+4 \mathrm{i}) \mathrm{e}^{\mathrm{i} / 4}$

Show Answer Answer: (d)

8. A particle $P$ starts from the point $z _{0}=1+2$ i. It moves first horizontally away from origin by 5 units and then vertically away from origin by 3 units to reach a point $z _{1}$. From $z _{1}$ the particle moves $\sqrt{2}$ units in the direction of the vector $\hat{i}+\hat{j}$ and then it moves through an angle $\frac{\pi}{2}$ in anticlockwise direction on a circle with centre at origin to reach a point $z _{2}$. The point $z _{2}$ is given by

(a). $6+7 \mathrm{i}$

(b). $-7+6 \mathrm{i}$

(c). $ 7+6 \mathrm{i}$

(d). $-6+7 \mathrm{i}$

Show Answer Answer: (d)

9. Match the following

Column I Column II
(a). The set of points $z$ satisfying $\mid z-i\mid z\mid=\mid z+i\mid z\mid \mid$ is contained in or equal to p. an ellipse with eccentricity $4 / 5$
(b). The set of points $z$ satisfying $\mid z+4\mid +\mid z-4\mid=0$ is contained in or equal to q. the set of points $z$ satisfying $im (z)=0$
(c). If $\mid w\mid=2$, then the set of points $\mathrm{z}=\mathrm{w}-\frac{1}{\mathrm{w}}$ is contained in or equal to r. the set of points $z$ satisfying $\mid\operatorname{Im}(z)\mid \leq 1$
(d). If $\mid w\mid=1$, then the set of points s. the set of points satisfying $|\operatorname{Re}(\mathrm{z})| \leq 2$
t. the set of points $z$ satisfying $\mid z\mid\leq 3$
Show Answer Answer: a $\rarr$ q, r ; b $\rarr$ p; c $\rarr$ p, s, t; d $\rarr$ q, r, s, t

10. If $a, b, c$ and $u, v, w$ are complex numbers representing the vertices of two triangles such that $\mathrm{c}=(1-\mathrm{r}) \mathrm{a}+\mathrm{rb}, \mathrm{w}=(1-\mathrm{r}) \mathrm{u}+\mathrm{rv}$, where $\mathrm{r}$ is a complex number, then the two triangles

(a). have the same area

(b). are similar

(c). are congruent

(d). none of these

Show Answer Answer: (b)

11. The locus of the centre of a circle which touches the circles $\left|z-z _{1}\right|=a$ and $\left|z-z _{2}\right|=b$ externally is

(a). an ellipse

(b). a hyperbola

(c). circle

(d). none of these

Show Answer Answer: (b)

12. If one of the vertices of the square circumscribing the circle $|z-1|=\sqrt{2}$ is $2+i \sqrt{3}$, then which of the following can be a vertex of it?

(a). $1-\sqrt{3} \mathrm{i}$

(b). $-\sqrt{3} \mathrm{i}$

(c). $1+\sqrt{3} \mathrm{i}$

(d). none of these

Show Answer Answer: (a, b, c)

13. Read the passage and answer the following questions:

$\mathrm{A}\left(\mathrm{z} _{1}\right), \mathrm{B}\left(\mathrm{z} _{2}\right), \mathrm{C}\left(\mathrm{z} _{3}\right)$ are the vertices a triangle inscribed in the circle $|\mathrm{z}|=2$. Internal angle bisector of the angle A meets the circum circle again at $\mathrm{D}\left(\mathrm{z} _{4}\right)$.

i. Complex number representing point $\mathrm{D}$ is

(a). $\mathrm{z} _{4}=\frac{\mathrm{z} _{1} \mathrm{z} _{2}}{\mathrm{z} _{3}}$

(b). $\mathrm{z} _{4}=\frac{\mathrm{Z} _{2} \mathrm{Z} _{3}}{\mathrm{z} _{1}}$

(c). $\mathrm{z} _{4}=\frac{\mathrm{z} _{1} \mathrm{z} _{2}}{\mathrm{z} _{3}}$

(d). none of these

Show Answer Answer: (d)

ii. argument $\left(\mathrm{z} _{4} /\left(\mathrm{z} _{2}-\mathrm{z} _{3}\right)\right.$ is

(a). $\frac{\pi}{4}$

(b). $\frac{\pi}{3}$

(c). $\frac{\pi}{2}$.

(d). $\frac{2 \pi}{3}$

Show Answer Answer: (c)

iii. For fixed positions of $\mathrm{B}\left(\mathrm{z} _{2}\right)$ and $\mathrm{C}\left(\mathrm{z} _{3}\right)$ all the bisectors(internal) of $\angle \mathrm{A}$ will pass through a fixed point which is

(a). H.M. of $z _{2}$ and $z _{3}$

(b). (a).M. of $z _{2}$ and $z _{3}$

(c). G.M. of $\mathrm{z} _{2}$ and $\mathrm{z} _{3}$

(d). none of these

Show Answer Answer: (c)


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ