COORDINATE GEOMETRY - 5 (Straight Line)

Topics Covered

  1. Image of a point in different cases.

  2. Foot of the perpendicular.

  3. Family of lines.

1. Image of a point in different cases

i. The image of a point with respect to the line mirror

Image of $\mathrm{A}\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)$ with respect to line mirror $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ be $\mathrm{B}\left(\mathrm{x} _{2}, \mathrm{y} _{2}\right)$ is given by

$\frac{\mathrm{x} _{2}-\mathrm{x} _{1}}{\mathrm{a}}=\frac{\mathrm{y} _{2}-\mathrm{y} _{1}}{\mathrm{~b}}=\frac{2\left(\mathrm{ax} _{1}+\mathrm{by} _{1}+\mathrm{c}\right)}{\mathrm{a}^{2}+\mathrm{b}^{2}}$

$M$ is the foot of prependicular from $A$ on $a x+b y+c=0$

ii. The image of a point with respect to $x$-axis:-

Let $\mathrm{A}\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)$ be any point and $\mathrm{B}\left(\mathrm{x} _{2}, \mathrm{y} _{2}\right)$ its image after reflection in the $\mathrm{x}$-axis then. $x _{1}=x _{2} \& y _{2}=-y _{1}(M$ is the mid point of $A \& B)$

$\mathrm{M}$ is the foot of perpendicular from $\mathrm{A}$ on $\mathrm{x}$-axis

iii. The image of a point with respect to $y$-axis:-

Let $\mathrm{A}\left(\mathrm{x} _{1,} \mathrm{y} _{1}\right)$ be any point and $\mathrm{B}\left(\mathrm{x} _{2}, \mathrm{y} _{2}\right)$ its image after reflection in the mirror $\mathrm{y}$-axis then. $x _{2}=-x _{1} \& y _{1}=y _{2}(N$ is the mid point of $A \& B)$

$\mathrm{N}$ is the foot of perpendicular from $\mathrm{A}$ on $\mathrm{y}$-axis

iv. The image of a point with respect to the origin:

Let $A\left(x _{1,} y _{1}\right)$ be any point $B\left(x _{2,} y _{2}\right)$ be its image after reflection through the origin then.

$x _{2}=-x _{1} \& y _{2}=-y _{1}(O$ is the mid point of $A \& B)$

v. The image of a point with respect to the line $\mathbf{y}=\mathbf{x}$

Let $\mathrm{A}\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)$ be any point and $\mathrm{B}\left(\mathrm{x} _{2}, \mathrm{y} _{2}\right)$ be its image after reflection in the line $\mathrm{y}=\mathrm{x}$ then. $\mathrm{y} _{2}=\mathrm{x} _{1}$ and $\mathrm{x} _{2}=\mathrm{y} _{1}(\mathrm{M}$ is the mid point of $\mathrm{A} \& \mathrm{~B})$

vi. The image of a point with respect to the line $y=x \tan \theta$

Let $\mathrm{A}\left(\mathrm{x} _{1,} \mathrm{y} _{1}\right)$ be any point and $\mathrm{B}\left(\mathrm{x} _{2}, \mathrm{y} _{2}\right)$ be its image after reflection in the line $\mathrm{y}=\mathrm{x} \tan \theta$ or $\mathrm{y}=\mathrm{mx}$ then.

$\mathrm{x} _{2}=\mathrm{x} _{1} \cos 2 \theta+\mathrm{y} _{1} \sin 2 \theta \quad$ (M is the mid point of $\mathrm{A} \& \mathrm{~B}$ )

$\mathrm{y} _{2}=\mathrm{x} _{1} \cos 2 \theta-\mathrm{y} _{1} \sin 2 \theta$

Line parallel and perpendicular to given line

Given equation of straight line be $a x+b y+c=0$

A line parallel to given line is $a x+b y+d=0$ only constant term changes.

A line perpendicular to given line is $b x-a y+k=0$

Here change coordinate of $\mathrm{x}$ as coordinate of $\mathrm{y} \& $ coordinate of $\mathrm{y}$ as negative of coordinate of $x$ and constant term changes

It the lines $\mathrm{a} _{1} \mathrm{x}+\mathrm{b} _{1} \mathrm{y}+\mathrm{c} _{1}=0$ and $\mathrm{a} _{2} \mathrm{x}+\mathrm{b} _{2} \mathrm{y}+\mathrm{c} _{2}=0$ are prependecular then $\mathrm{a} _{1} \mathrm{a} _{2}+\mathrm{b} _{1} \mathrm{~b} _{2}=0$

i. Coincident, if $\frac{\mathrm{a} _{1}}{\mathrm{a} _{2}}=\frac{\mathrm{b} _{1}}{\mathrm{~b} _{2}}=\frac{\mathrm{c} _{1}}{\mathrm{c} _{2}}$

ii. Parallel, if $\frac{\mathrm{a} _{1}}{\mathrm{a} _{2}}=\frac{\mathrm{b} _{1}}{\mathrm{~b} _{2}} \neq \frac{\mathrm{c} _{1}}{\mathrm{c} _{2}}$

iii. Intersecting, if $\frac{\mathrm{a} _{1}}{\mathrm{a} _{2}} \neq \frac{\mathrm{b} _{1}}{\mathrm{~b} _{2}}$

Practice questions

1. If $t _{1}$ and $t _{2}$ are roots of the equation $t^{2}+\lambda t+1=0$, where $\lambda$ is an arbitrary constant. Then the line joining the points $\left(\mathrm{at} _{1}{ }^{2}, 2 a \mathrm{at} _{1}\right) \& \left(\mathrm{at}^{2}{ } _{2}, 2 \mathrm{at} \mathrm{t} _{2}\right)$ always passes through a fixed point

(a) $(\mathrm{a}, 0)$

(b) $(-\mathrm{a}, 0)$

(c) $(0, a)$

(d) $(0,-\mathrm{a})$

Show Answer Answer: (b)

2. The equation $x^{3}+y^{3}=0$ represents

(a) three real straight lines

(b) three points

(c) combined equation of a st. line $\& $ a circle

(d) None of these.

Show Answer Answer: (d)

3. The three lines whose combined equation is $y^{3}-4 x^{2} y=0$ form a triangle which is

(a) isosceles

(b) equilateral

(c) right angled

(d) None of these

Show Answer Answer: (d)

Comprehension type

$\mathrm{A}(1,3)$ and $\mathrm{C}\left(-\frac{2}{5},-\frac{2}{5}\right)$ are the vertices of a triangle $\mathrm{ABC}$ and the equation of the angle bisector of $\angle \mathrm{ABC}$ is $\mathrm{x}+\mathrm{y}=2$

4. Equation of side $\mathrm{BC}$ is

(a) $7 x+3 y=4$

(b) $7 x+3 y+4=0$

(c) $7 x-3 y+4=0$

(d) $7 x-3 y=4$

Show Answer Answer: (b)

5. Coordinates of vertex $B$ are

(a) $\left(\frac{3}{10}, \frac{17}{10}\right)$

(b) $\left(\frac{17}{10}, \frac{3}{10}\right)$

(c) $\left(-\frac{5}{2}, \frac{9}{2}\right)$

(d) $(1,1)$

Show Answer Answer: (c)

6. Equation of side $\mathrm{AB}$ is

(a) $3 x+7 y=24$

(b) $3 x+7 y+24=0$

(c) $ 13 x+7 y+8=0$

(d) $13 x-7 y+8=0$

Show Answer Answer: (a)

Assertion and reasoning type

7. Lines $L _{1} L _{2}$ given by $y-x=0$ and $2 x+y=0$ intersect the line $L _{3}$ given by $y+2=0$ at $P$ and $Q$, respectively. The bisector of the acute angle between $\mathrm{L} _{1}$ and $\mathrm{L} _{2}$ intersects $\mathrm{L} _{3}$ at $\mathrm{R}$.

Statement 1 : The ratio PR: RQ equals $2 \sqrt{2}: \sqrt{5}$.

Statement 2 : In any triangle, bisector of an angle divides the triangle into two similar triangles.

a. Statement 1 is true, Statement 2 is True; Statement 2 is a correct explanation for Statement1.

b. Statement 1 is True, Statement 2 is True; Statement 2 is NOT a correct explanation for Statement 1.

c. Statement 1 is True, Statement 2 is False.

d. Statement 1 is False, Statement 2 is True.

Show Answer Answer: (c)

Matrix-match

8. This question contains statements given in two columns which have to be matched. Statements a, $\mathrm{b}, \mathrm{c}, \mathrm{d}$ in column I have to be matched with statements p,q, r, s in column II. If the correct match is $\mathrm{a} \rightarrow \mathrm{p}, \mathrm{a} \rightarrow \mathrm{s}, \mathrm{b} \rightarrow \mathrm{q} \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{p}, \mathrm{c} \rightarrow \mathrm{q}$ and $\mathrm{d} \rightarrow \mathrm{s}$, then the correctly dubbled $4 \times 4$ matrix should be as follows :

Consider the lines given by

$\mathrm{L} _{1}: \mathrm{x}+3 \mathrm{y}-5=0$

$\mathrm{~L} _{2}: 3 \mathrm{x}-\mathrm{ky}-1=0$

$\mathrm{~L} _{3}: 5 \mathrm{x}+2 \mathrm{y}-12=0$

Column I Column II
a. $ \mathrm{L} _{1}, \mathrm{~L} _{2}, \mathrm{~L} _{3}$ are concurrent, if p. $\mathrm{k}=-9$
b. One of $\mathrm{L} _{1}, \mathrm{~L} _{2}, \mathrm{~L} _{3}$ is parallel to at least one of the other two, if q. $k=-6 / 5$
c. $ \mathrm{L} _{1}, \mathrm{~L} _{2}, \mathrm{~L} _{3}$ form a triangle, if r. $\mathrm{k}=5 / 6$
d. $ \mathrm{L} _{1}, \mathrm{~L} _{2}, \mathrm{~L} _{3}$ do not form a triangle, if s. $\mathrm{k}=5$
Show Answer Answer: a $\rarr$ s, b $\rarr$ p, q, c $\rarr$ r, d $\rarr$ p, q, s


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ