COORDINATE GEOMETRY - 7 (Straight Line)

Examples

1. Locus of the image of the point $(2,3)$ in the line $(x-2 y+3)+\lambda(2 x-3 y+4)=0$ is

(a) $x^{2}+y^{2}-3 x-4 y-4=0$

(b) $2 x^{2}+2 y^{2}+2 x+4 y-7=0$

(c) $x^{2}+y^{2}-2 x-4 y+4=0$

(d) None

Show Answer

Solution :

$\begin{aligned} & x-2 y+3=0 \\ & 2 x-3 y+4=0\end{aligned} \quad P(1,2)$

Let image be $\mathrm{B}(\mathrm{h}, \mathrm{k})$ then $\mathrm{AP}=\mathrm{BP}$

$(\mathrm{h}-1)^{2}+(\mathrm{k}-2)^{2}=1^{2}+1^{2}$

$\mathrm{h}^{2}+\mathrm{k}^{2}-2 \mathrm{~h}-4 \mathrm{k}+5=2$

$\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}-4 \mathrm{y}+3=0$

Answer: d

2. If the lines $a x+y+1=0, x+b y+1=0$ and $x+y+c=0(a, b, c$ being distinct and different from 1$)$ are concurrent, then $\left(\frac{1}{1-\mathrm{a}}\right)+\frac{1}{1-\mathrm{b}}+\frac{1}{1-\mathrm{c}}=$

(a) 0

(b) 1

(c) $\frac{1}{a+b+c}$

(d) None

Show Answer

Solution :

$\mathrm{c} _{2} \rightarrow \mathrm{c} _{2}-\mathrm{c} _{1}, \mathrm{c} _{3} \rightarrow \mathrm{c} _{3}-\mathrm{c} _{1}$

$\left|\begin{array}{ccc}\mathrm{a} & 1 & 1 \\ 1 & \mathrm{~b} & 1 \\ 1 & 1 & \mathrm{c}\end{array}\right|=0 \Rightarrow\left|\begin{array}{ccc}\mathrm{a} & 1-\mathrm{a} & 1-\mathrm{a} \\ 1 & \mathrm{~b}-1 & 0 \\ 1 & 0 & \mathrm{c}-1\end{array}\right|=0$

$\mathrm{a}(\mathrm{b}-1)(\mathrm{c}-1)-(1-\mathrm{a})(\mathrm{c}-1)+(1-\mathrm{a})(1-\mathrm{b})=0$

divide by $(1-a)(1-b)(1-c)$ we get

$\Rightarrow \quad \frac{\mathrm{a}}{1-\mathrm{a}}+\frac{1}{1-\mathrm{b}}+\frac{1}{1-\mathrm{c}}=0$

$\Rightarrow \quad \frac{1}{1-\mathrm{a}}+\frac{1}{1-\mathrm{b}}+\frac{1}{1-\mathrm{c}}=1$

3. The set of values of ’ $b$ ’ for which the origin and the point $(1,1)$ lie on the same side of the st. line $\mathrm{a}^{2} \mathrm{x}+\mathrm{aby}+1=0 \quad \forall \mathrm{a} \in \mathrm{R}, \mathrm{b}>\mathrm{o}$ are

(a) $\mathrm{b} \in[2,4)$

(b) $\mathrm{b} \in(0,2)$

(c) $\mathrm{b} \in[0,2]$

(d) None of these

Show Answer

Solution : $(0,0) \&(1,1)$ are on the same side

$0+1>0$ so $a^{2}+a b+1>0$

$\Rightarrow \mathrm{D}<0$ i.e

$ b^{2}-4<0 $

$ b^{2}<4 $

$-2<b<2$ but $b>0$

$\therefore \mathrm{b} \in(0,2)$

4. Let $\mathrm{P}(-1,0), \mathrm{Q}(0,0)$ and $\mathrm{R}(3,3 \sqrt{3})$ be three points. Then the equation of the bisector of the angle $\mathrm{PQR}$ is

(a) $\frac{\sqrt{3}}{2} x+y=0$

(b) $x+\sqrt{3} y=0$

(c) $\sqrt{3} \mathrm{x}+\mathrm{y}=0$

(d) $x+\frac{\sqrt{3}}{2} y=0$

Show Answer

Solution :

$ \frac{\sqrt{3}-m}{1+\sqrt{3 m}}=\frac{m}{1+0} $

$ \begin{aligned} \sqrt{3}-m=m+\sqrt{3} m^{2} \Rightarrow & \sqrt{3} m^{2}+2 m-\sqrt{3}=0 \\ & \sqrt{3} m^{2}+3 m-m-\sqrt{3}=0 \\ & (\sqrt{3} m-1)(3+\sqrt{3})=0 \\ & m=\frac{1}{\sqrt{3}},-\sqrt{3} \end{aligned} $

$y=-\sqrt{3} x$

$\sqrt{3} x+y=0$


5. $\mathrm{OPQR}$ is a square and $\mathrm{M}, \mathrm{N}$ are the mid points of the sides $\mathrm{PQ}$ and $\mathrm{QR}$ respedively. If the ratio of the areas of the square and the triangle OMN is $\lambda: 6$, then $\frac{\lambda}{4}$ is equal to

(a) 2

(b) 4

(c) 12

(d) 16

Show Answer

Solution : ar. of square $=\mathrm{a}^{2}$

ar of $\Delta \mathrm{OMN}=\frac{1}{2}\left|\begin{array}{lll}0 & 0 & 1 \\ \mathrm{a} & \frac{\mathrm{a}}{2} & 1 \\ \frac{\mathrm{a}}{2} & \mathrm{a} & 1\end{array}\right|=\frac{1}{2} \cdot \frac{3 \mathrm{a}^{2}}{4}=\frac{3 \mathrm{a}^{2}}{8}$

$\frac{\mathrm{a}^{2}}{\frac{3 \mathrm{a}^{2}}{8}}=\frac{\lambda}{6} \Rightarrow \lambda=16$

6. A pair of perpendicular straight lines drawn through the origin form an inosceles triangle with line $2 x+3 y=6$, then area of the triangle so formed is

(a) $\frac{36}{13}$

(b) $\frac{12}{17}$

(c) $\frac{13}{5}$

(d) $\frac{17}{13}$

Show Answer

Solution : $\mathrm{OM}=\left|\frac{-6}{\sqrt{4+9}}\right|=\frac{6}{\sqrt{13}}, \mathrm{PQ}=2 \times \frac{6}{\sqrt{13}}$, area od $\triangle \mathrm{OPQ}=\frac{1}{2} \times \frac{2 \times 6}{\sqrt{13}} \times \frac{6}{\sqrt{13}}=\frac{36}{13}$

7. Match the column

Column I Column II
(a) Two vertices of a triangle are $(5,-1)$ and $(-2,3)$ if orthocentre (p) (-4,-7) is origin then third vertex is (p). $(-4, 7)$
(b) A point on the line $x+y=4$ which lies at a unit distance from the line $4 x+3 y=10$, is (q). $(-7, 11)$
(c) Orthocentre of the triangle made by the lines $x+y-1=0, x-y+3=0,2 x+y=7$ is (r). $(1, -2)$
(d) If a,b,c are in A.P., then lines $a x+b y=c$ always Pass through (s). $(-1, 2)$
Show Answer

Solution :

A - p ,B - q, C - s, D - s



Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ