ELLIPSE-3

Topics covered

1. Auxilliary circle

2. Eccentric angle

3. Equation of chord

4. Position of a point with respect to an ellipse.

1. Auxiliary Circle

The circle described on the major axis of an ellipse as diameter is called an auxiliary circle of the ellipse

If $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is an ellipse then its auxiliary circle is $x^{2}+y^{2}=a^{2}$

2. Eccentric angle of a point

Let $\mathrm{P}$ be any point on the ellipse $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$

Draw PM perpendicular to major axis from $\mathrm{P}$ and produce MP to meet the auxiliary circle at Q. Join CQ. $\angle \mathrm{QCA}=\theta$ is called eccentric angle of point $\mathrm{P}$ Note that the angle ACP is not eccentric angle. i.e. eccentric angle of $\mathrm{P}$ on an ellipse is the angle which the radius through the corresponding point on, the auxiliary circle makes with the major axis

$\therefore \mathrm{Q}(\operatorname{acos} \theta, \operatorname{asin} \theta)$

$\therefore \mathrm{x}$-coordinate of $\mathrm{P}$ is acos $\theta$

$\frac{\mathrm{a}^{2} \cos ^{2} \theta}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$

$\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1-\cos ^{2} \theta$

$\mathrm{y}^{2} \quad=\mathrm{b}^{2} \sin ^{2} \theta$

$\mathrm{y}=\mathrm{b} \sin \theta$

$\therefore$ Coordinate of $\mathrm{P}$ is $(\operatorname{acos} \theta, \mathrm{bsin} \theta)$

i.e. $x=a \cos \theta$ and $y=b \sin \theta$ is the parameter equations of the ellipse.

$(a \cos \theta, b \sin \theta)$ is also called the point ’ $\theta$ '

3. Equation of the chord

$\operatorname{Let} \mathrm{P}(\operatorname{acos} \theta, b \sin \theta)$ and $\mathrm{Q}(\operatorname{acos} \phi, \mathrm{bsin} \phi)$ be any two points of the ellipse $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ then the equation of the chord joining these two points is

$y-b \sin \theta=\frac{b \sin \phi-b \sin \theta}{a \cos \phi-a \cos \theta}(x-a \cos \theta)$

Simplifying the equation we get

$\frac{\mathrm{x}}{\mathrm{a}} \cos \left(\frac{\theta+\phi}{2}\right)+\frac{\mathrm{y}}{\mathrm{b}} \sin \left(\frac{\theta+\phi}{2}\right)=\cos \frac{\theta-\phi}{2}$

$\theta \& \phi$ are eccentric angle of points $\mathrm{P}$ and $\mathrm{Q}$ of ellipse

4. Position of a point $(\mathrm{h}, \mathrm{k})$ with respect to an ellipse

Let ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Now P will lie outside, on or inside the ellipse $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ according as

$\frac{\mathrm{h}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{k}^{2}}{\mathrm{~b}^{2}}-1>,=,<0$

Examples

1. Find the equation of the curve whose parametric equation are $x=1+4 \cos \theta, y=2+3 \sin \theta \in \mathrm{R}$

Show Answer

Solution: We have $x =1+4 \cos \theta, y=2+3 \sin \theta$

$ \therefore \frac{\mathrm{x}-1}{4}=\cos \theta \text { and } \frac{\mathrm{y}-2}{3}=\sin \theta $

Squaring and adding we get

$ \begin{aligned} & \left(\frac{x-1}{4}\right)^{2}+\left(\frac{y-2}{3}\right)^{2}=\cos ^{2} \theta+\sin ^{2} \theta \\ & \frac{(x-1)^{2}}{16}+\frac{(y-2)^{2}}{9}=1 \end{aligned} $

Which is an ellipse.

2. Find the eccentric angle of a point on the ellipse $\frac{x^{2}}{6}+\frac{y^{2}}{2}=1$ whose distance from the centre of the ellipse is $\sqrt{5}$

Show Answer

Solution :

We have $\frac{\mathrm{x}^{2}}{6}+\frac{\mathrm{y}^{2}}{2}=1$

$ \begin{array}{ll} a^{2}=6 & b^{2}=2 \\ a=\sqrt{6} & b=\sqrt{2} \end{array} $

$\therefore$ any point on the ellipse with $\theta$ as eccentric angle is $\mathrm{P}(\sqrt{6} \cos \theta, \sqrt{2} \sin \theta)$

Here centre is origin

$ \begin{aligned} \therefore C P= & \sqrt{6 \cos ^{2} \theta+2 \sin ^{2} \theta}=\sqrt{5} \\ \Rightarrow & 6 \cos ^{2} \theta+2 \sin ^{2} \theta=5 \\ \Rightarrow & 4 \cos ^{2} \theta=3 \\ & \cos ^{2} \theta=\frac{3}{4} \\ & \cos \theta= \pm \frac{\sqrt{3}}{2} \\ \therefore & \theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6} \end{aligned} $

3. If $\alpha$ and $\beta$ are the eccentric angles of the extremities of a focal chord of an ellipse, then the eccentricity of the ellipse is

(a) $\frac{\cos \alpha+\cos \beta}{\cos (\alpha-\beta)}$

(b) $\frac{\sin \alpha-\sin \beta}{\sin (\alpha-\beta)}$

(c) $\frac{\cos \alpha-\cos \beta}{\cos (\alpha-\beta)}$

(d) $\frac{\sin \alpha+\sin \beta}{\sin (\alpha+\beta)}$

Show Answer

Solution : Equation of chord joining points having eccentric angles $\alpha$ and $\beta$ is

$ \frac{x}{a} \cos \left(\frac{\alpha+\beta}{2}\right)+\frac{y}{b} \sin \left(\frac{\alpha+\beta}{2}\right)=\cos \left(\frac{\alpha-\beta}{2}\right) $

Since these points are extremities of focal chord so it passes through focus (ae, 0 ) then

$\therefore \mathrm{e} \cos \left(\frac{\alpha+\beta}{2}\right)=\cos \left(\frac{\alpha-\beta}{2}\right)$

$e=\frac{\cos \left(\frac{\alpha-\beta}{2}\right)}{\cos \left(\frac{\alpha+\beta}{2}\right)}$

Multiply & divide by $2 \sin \left(\frac{\alpha+\beta}{2}\right)$ on right side

$e=\frac{2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)}{2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha+\beta}{2}\right)}$

$\mathrm{e}=\frac{\sin \alpha+\sin \beta}{\sin (\alpha+\beta)}$

4. An ellipse passes through the point $(4,-1)$ and touches the line $x+4 y-10=0$. Find its equation of its axes coincide with coordinate axes.

Show Answer

Solution : Let the equation of ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

It passes through $(4,-1)$

$ \therefore \frac{16}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}=1 \text { or } \mathrm{a}^{2}+16 \mathrm{~b}^{2}=\mathrm{a}^{2} \mathrm{~b}^{2} ………(1) $

$\mathrm{x}+4 \mathrm{y}-10=0$ is a tangent to the ellipse.

$y=-\frac{1}{4} x+\frac{10}{4} \Rightarrow y=m x+c$

$\mathrm{m}=-\frac{1}{4}, \mathrm{c}=\frac{10}{4}$

$c=\sqrt{a^{2} m^{2}+b^{2}}$ is a condition for tangent

$\frac{10}{4}=\sqrt{\mathrm{a}^{2} \times \frac{1}{16}+\mathrm{b}^{2}}$

$\frac{100}{16}=\frac{\mathrm{a}^{2}}{16}+\mathrm{b}^{2}$

$16 b^{2}=100-a^{2}$

$a^{2}+16 b^{2}=100$

From (1) we get

$100=\mathrm{a}^{2} \mathrm{~b}^{2}$

$\mathrm{b}^{2}=\frac{100}{\mathrm{a}^{2}}$

$\mathrm{a}^{2}+\frac{1600}{\mathrm{a}^{2}}=100$

$\mathrm{a}^{4}-100 \mathrm{a}^{2}+1600=0$

$\mathrm{a}^{4}-80 \mathrm{a}^{2}-20 \mathrm{a}^{2}+1600=0$

$\mathrm{a}^{2}\left(\mathrm{a}^{2}-80\right)-20\left(\mathrm{a}^{2}-80\right)=0$

$\left(a^{2}-80\right)\left(a^{2}-20\right)=0$

$\mathrm{b}^{2}=\frac{10}{8}=\frac{5}{4}$ or $\mathrm{b}^{2} \frac{100}{20}=5$

$\therefore$ Equation of ellipse is $\frac{\mathrm{x}^{2}}{80}+\frac{4 \mathrm{y}^{2}}{5}=1$

$ \text { or } \quad \frac{x^{2}}{20}+\frac{y^{2}}{5}=1 $

5. If $\frac{x}{a}+\frac{y}{b}=\sqrt{2}$ touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then find its eccentric angle $\theta$ of point of contact.

Show Answer

Solution : Let $\theta$ be the eccentric angle of the point of contact :

$\therefore$ coordinates of the point is $(a \cos \theta, b \sin \theta)$

Equation of tangent at this point is

$\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}-1=0 …….(1)$

Given that $\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}-\sqrt{2}=0………(2)$ is tangent

Comparing (1) and (2) as these two are identical, we get

$ \begin{aligned} & \frac{\cos \theta}{\frac{\mathrm{a}}{\mathrm{a}}}=\frac{\sin \theta}{\frac{\mathrm{b}}{\mathrm{b}}}=\frac{-1}{-\sqrt{2}} \\ & \cos \theta=\frac{1}{\sqrt{2}}=\sin \theta \\ & \therefore \theta=\frac{\pi}{4} \end{aligned} $

Practice questions

1. The sum of the squares of the reciprocals of two perpendicular diameter of an ellipse is

(a) $\frac{1}{4}\left(\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}\right)$

(b) $\frac{1}{2}\left(\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}\right)$

(c) $\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}$

(d) None of these

Show Answer Answer: (a)

2. Prove that any point on the ellipse whose foci are $(-1,0)$ and $(7,0)$ and eccentcicity $\frac{1}{2}$ is $(3+8 \cos \theta, 4 \sqrt{3} \sin \theta), \theta \in R$. Also find the eq of the ellipse

Show Answer Answer: $\frac{(x-3)^2}{64}+\frac{y^2}{48}=1$

3. Let $\mathrm{E}$ be the ellipse $\frac{\mathrm{x}^{2}}{9}+\frac{\mathrm{y}^{2}}{4}=1$ and $\mathrm{C}$ be the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=9$. Let $\mathrm{P}$ and $\mathrm{Q}$ be the points

$(1,2)$ and $(2,1)$ respectively. Then

(a) $Q$ lies inside $\mathrm{C}$ but outside $\mathrm{E}$

(b) $\mathrm{Q}$ lies outside both $\mathrm{C}$ and $\mathrm{E}$

(c) $\mathrm{P}$ lies inside both $\mathrm{C}$ and $\mathrm{E}$

(d) $\mathrm{P}$ lies inside $\mathrm{C}$ but outside $\mathrm{E}$

Show Answer Answer: (d)

4. $\mathrm{P}$ is a variable on the ellipse $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ with $\mathrm{AA}^{\prime}$ as the major axis. Then the maximum area of the triangle $\mathrm{APA}^{\prime}$ is

(a) $\mathrm{ab}$

(b) $2 \mathrm{ab}$

(c) $\mathrm{ab} / 2$

(d) None of these

Show Answer Answer: (a)

5. A man running round a race course notes that the sum of the distances of two flag-posts from him is always $10 \mathrm{~m}$ and the distance between the flag-posts is $8 \mathrm{~m}$. The area of the path he encloses in square meters is

(a) $15 \pi$

(b) $12 \pi$

(c) $18 \pi$

(d) $8 \pi$

Show Answer Answer: (a)

6. If the line $\ell \mathrm{x}+\mathrm{my}+\mathrm{n}=0$ cuts the ellipse $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{25}=1$ in points whose eccentric angles differ by $\frac{\pi}{2}$ then $\frac{\mathrm{a}^{2} \ell^{2}+\mathrm{b}^{2} \mathrm{~m}^{2}}{\mathrm{n}^{2}}$

(a) $1$

(b) $2$

(c) $4$

(d) $3 / 2$

Show Answer Answer: (b)

7. If $\mathrm{PSQ}$ is a focal chord if the ellipse $16 \mathrm{x}^{2}+25 \mathrm{y}^{2}=400$ such that $\mathrm{SP}=8$, then $\mathrm{SQ}=$

(a) 1

(b) 2

(c) 3

(d) 4

Show Answer Answer: (b)

8. If equation of the ellipse is $2 x^{2}+3 y^{2}-8 x+6 y+5=0$ then which of the following are true?

(a) equation of director circle is $x^{2}+y^{2}-4 x+2 y=10$

(b) director circle will pass through $(4,-1)$

(c) equation of auxillary circle is $x^{2}+y^{2}-4 x+2 y+2=0$

(d) None of these

Show Answer Answer: (c)

9. The foci of ellipse $\left(\frac{x}{5}\right)^{2}+\left(\frac{y}{3}\right)^{2}=1$ are $S$ and $S^{\prime}$. P is a point on ellipse whose eccentric angle is $\pi / 3$. The incentre of triangle $\mathrm{SPS}^{\prime}$ is

(a) $(2, \sqrt{3})$

(b) $\left(2, \frac{2}{\sqrt{3}}\right)$

(c) $\left(2, \frac{\sqrt{3}}{2}\right)$

(d) $(\sqrt{3}, 2)$

Show Answer Answer: (b)


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ