ELLIPSE-4

Intersection of a line and an ellipse

Line $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ $ …….(1) \text {and ellipse} \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1……(2)$

Solving equations (1) & (2) we get

$\left(a^{2} m^{2}+b^{2}\right) x^{2}+2 a^{2} \mid c m x+a^{2}\left(c^{2}-b^{2}\right)=0$

If $D>0$ then $y=m x+c$ is a secant $\mathrm{D}=0$ then $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ is a tangent $\mathrm{D}<0 \mathrm{y}=\mathrm{mx}+\mathrm{c}$ does not meet ellipse

Point form

Equation of tangent to the ellipse at point $\left(x _{1}, y _{1}\right)$

Let the equation of ellipse be $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$

Then equation of tangent in point form is $\frac{\mathrm{xx} _{1}}{\mathrm{a}^{2}}+\frac{\mathrm{yy} _{1}}{\mathrm{~b}^{2}}=1$

Parametric form

Equation of tangent at point $(a \cos \theta, b \sin \theta)$ to the ellipse is $\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1$

Slope form

$y=m x \pm \sqrt{a^{2} m^{2}+b^{2}}$ is a tangent to an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and point of contact is $\left( \pm \frac{a^{2} m}{\sqrt{a^{2} m^{2}+b^{2}}}, \overline{+} \frac{b^{2}}{\sqrt{a^{2} m^{2}+b^{2}}}\right)$

Number of tangents through a given point $P(h, k)$

$y=m x+\sqrt{a^{2} m^{2}+b^{2}}$ is any tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

If it passes through $\mathrm{P}(\mathrm{h}, \mathrm{k})$ then

$\mathrm{k}=\mathrm{mh}+\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}}$

$\mathrm{k}-\mathrm{mh}=\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}}$

$(\mathrm{k}-\mathrm{mh})^{2}=\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}$

$\mathrm{m}^{2}\left(\mathrm{~h}^{2}-\mathrm{a}^{2}\right)-2 \mathrm{hkm}+\left(\mathrm{k}^{2}-\mathrm{b}^{2}\right)=0$

It is a quadratic in $m$ and will give two values of $m$ hence there are two tangents.

Examples

1. If the line $3 x+4 y=\sqrt{7}$ touches the ellipse $3 x^{2}+4 y^{2}=1$, then the point of contact is

(a) $\left(\frac{1}{\sqrt{7}}, \frac{1}{\sqrt{7}}\right)$

(b) $\left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right)$

(c) $\left(\frac{1}{\sqrt{7}}, \frac{-1}{\sqrt{7}}\right)$

(d) None of these

Show Answer

Solution : (a)

Let $\mathrm{P}\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)$ be point of contact the equation of tangent to the ellipse

$\frac{x^{2}}{\frac{1}{3}}+\frac{y^{2}}{\frac{1}{4}}=1$ is $\frac{x _{1}}{\frac{1}{3}}+\frac{y _{1}}{\frac{1}{4}}=1$

$3 \mathrm{xx} _{1}+4 \mathrm{yy} _{1}-1=0……..(1)$

Given that $3 x+4 x-\sqrt{7}=0………(2)$ touches the ellipse

$\therefore$ (1) and (2) are same

By comparing we get

$ \begin{aligned} & \frac{3 x _{1}}{3}=\frac{4 y _{1}}{4}=-\frac{-1}{-\sqrt{7}} \\ & x=\frac{1}{\sqrt{7}}, y _{1}=\frac{1}{\sqrt{7}} \\ & \left(\frac{1}{\sqrt{7}}, \frac{1}{\sqrt{7}}\right) \text { is the point of contact } \end{aligned} $

2. The number of values of c such that the line $y=4 x+c$ touches the curve $\frac{x^{2}}{4}+y^{2}=1$ is

(a) 0

(b) 1

(c) 2

(d) infinite.

Show Answer

Solution : Given ellipse is $\frac{x^{2}}{4}+\frac{y^{2}}{1}$

$ \mathrm{a}^{2}=4 \quad \mathrm{~b}^{2}=1 $

and a line $y=4 x+c$ is a tangent

$ \begin{aligned} & \mathrm{m}=4 \\ & \begin{aligned} \therefore \mathrm{c} & = \pm \sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}} \\ & = \pm \sqrt{4 \times 16+1} \\ & = \pm \sqrt{65} \end{aligned} \end{aligned} $

$\therefore$ c has 2 values

$ c=\sqrt{65} \text { or }-\sqrt{65} $

3. If $\sqrt{3} b x+a y=2 a b$ touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ then the eccentric angle of the point of contact is

(a) $\frac{\pi}{6}$

(b) $\frac{\pi}{4}$

(c) $\frac{\pi}{3}$

(d) $\frac{\pi}{2}$

Show Answer

Solution : (a)

Equation of tangent $\frac{x}{a} \frac{\sqrt{3}}{2}+\frac{y}{b} \frac{1}{2}=1……(1)$

and equation of tangent at the point $(a \cos \theta, b \sin \theta)$ is $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1…..(2)$

comparing (1) & (2) we get

$ \begin{aligned} & \cos \theta=\frac{\sqrt{3}}{2} \text { and } \sin \theta=\frac{1}{2} \\ & \therefore \tan \theta=\frac{1}{\sqrt{3}}=\tan \frac{\pi}{6} \\ & \therefore \theta=\frac{\pi}{6} \end{aligned} $

4. A tangent having slope of $\frac{-4}{3}$ to the ellipse $\frac{x^{2}}{18}+\frac{y^{2}}{32}=1$ intersects the major and minor axes at points $\mathrm{A}$ and $\mathrm{B}$ respectively. If $\mathrm{C}$ is the centre of the ellipses, then the area of the triangle $\mathrm{ABC}$ is

(a) 12 sq.u

(b) 24 sq.u

(c) 36 sq.u

(d) 48 sq.u

Show Answer

Solution : (b)

Equation of tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is

$ y=m x+\sqrt{a^{2} m^{2}+b^{2}} \quad(b>a) $

Here $\mathrm{m}=\frac{-4}{3}, \mathrm{a}^{2}=18, \mathrm{~b}^{2}=32$

$ \begin{aligned} & y=\frac{-4}{3} x+\sqrt{18 \times \frac{16}{9}+32} \\ & y=\frac{-4}{3} x+8 \end{aligned} $

Then points on the axis where tangents meet are $\mathrm{A}(6,0)$ and $\mathrm{B}(0,8)$

Then area of $\triangle \mathrm{ABC}$ is $\frac{1}{2} \times 6 \times 8=24$ sq.u

5. If the tangents to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ make angle $\alpha$ and $\beta$ with the major axis such that $\tan \alpha+\tan \beta=\lambda$, then the locus of their point intersection is

(a) $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$

(b) $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{b}^{2}$

(c) $x^{2}-a^{2}=2 \lambda x y$

(d) $\lambda\left(x^{2}-a^{2}\right)=2 x y$

Show Answer

Solution : (d)

Equation of tangent to the ellipse with slope $m$ is

$ y=m x+\sqrt{a^{2} m^{2}+b^{2}} $

If it is passes through the point $\mathrm{P}(\mathrm{h}, \mathrm{k})$ then

or $(\mathrm{k}-\mathrm{mh})^{2}=\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}}$

$ \mathrm{k}=\mathrm{mh}+\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}} $

$k^{2}+m^{2} h^{2}-2 m k h=a^{2} m^{2}+b^{2}$

$\mathrm{m}^{2}\left(\mathrm{~h}^{2}-\mathrm{a}^{2}\right)-2 \mathrm{mkh}+\mathrm{k}^{2}-\mathrm{b}^{2}=0$

It is a quadratic in $\mathrm{m}$ having two roots $\mathrm{m} _{1} & \mathrm{~m} _{2}$

$ \mathrm{m} _{1}+\mathrm{m} _{2}=\frac{2 \mathrm{kh}}{\mathrm{h}^{2}-\mathrm{a}^{2}} \text { and } \mathrm{m} _{1} \mathrm{~m} _{2}=\frac{\mathrm{k}^{2}-\mathrm{b}^{2}}{\mathrm{~h}^{2}-\mathrm{a}^{2}} $

Given that $\tan \alpha+\tan \beta=\lambda$

$ \begin{aligned} & \mathrm{m} _{1}+\mathrm{m} _{2}=\lambda \\ & \frac{2 \mathrm{kh}}{\mathrm{h}^{2}-\mathrm{a}^{2}}=\lambda \\ & 2 \mathrm{kh}=\lambda\left(\mathrm{h}^{2}-\mathrm{a}^{2}\right) \end{aligned} $

$\therefore$ locus of point $\mathrm{P}(\mathrm{h}, \mathrm{k})$ is

$ \lambda\left(\mathrm{x}^{2}-\mathrm{a}^{2}\right)=2 \mathrm{xy} $

Practice questions

1. If $\mathrm{P}(\mathrm{x}, \mathrm{y}), \mathrm{F} _{1}(3,0), \mathrm{F} _{2}(-3,0)$ and $16 \mathrm{x}^{2}+25 \mathrm{y}^{2}=400$, then $\mathrm{PF} _{1}+\mathrm{PF} _{2}$ equals

(a) 8

(b) 6

(c) 10

(d) 12

Show Answer Answer: (c)

2. The length of the major axis of the ellipse

$(5 x-10)^{2}+(5 y+15)^{2}=\frac{(3 x-4 y+7)^{2}}{4}$ is

(a) 10

(b) $\frac{20}{3}$

(c) $\frac{20}{7}$

(d) 4

Show Answer Answer: (b)

3. Angle subtended by common tangents of two ellipses $4(x-4)^{2}+25 y^{2}=100$ and $4(x+1)^{2}+y^{2}=4$ at origin is

(a) $\frac{\pi}{3}$

(b) $\frac{\pi}{4}$

(c) $\frac{\pi}{6}$

(d) $\frac{\pi}{2}$

Show Answer Answer: (b)

4. The distance of a point on the ellipse $\frac{x^{2}}{6}+\frac{y^{2}}{2}=1$ from the centre is 2 . Then the eccentric angle of the point is

(a) $\frac{\pi}{4}$

(b) $\frac{3 \pi}{4}$

(c) $\frac{5 \pi}{6}$

(d) $\frac{\pi}{6}$

Show Answer Answer: (a, b)

5. If the chord through the points whose eccentric angles are $\theta$ and $\phi$ on the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ passes through a focus, then the value of $\tan \frac{\theta}{2} \tan \frac{\phi}{2}$ is

(a) $\frac{1}{9}$

(b) $-9$

(c) $\frac{-1}{9}$

(d) $9$

Show Answer Answer: (c, d)

6. In an ellipse the distance between its foci is 6 and its minor axis is 8 , the eccentricity of the ellipse is

(a) $\frac{4}{5}$

(b) $\frac{3}{5}$

(c) $\frac{1}{\sqrt{52}}$

(d) $\frac{1}{2}$

Show Answer Answer: (b)

7. The number of values of $C$ such that the straight line $y=4 x+c$ touches the curve $\frac{x^{2}}{4}+y^{2}=1$, is

(a) $0$

(b) $2$

(c) $1$

(d) $\infty$

Show Answer Answer: (b)

8. The line $3 x+5 y=15 \sqrt{2}$ is a tangent to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$, at a point whose eccentric angle is

(a) $\frac{\pi}{6}$

(b) $\frac{\pi}{4}$

(c) $\frac{\pi}{3}$

(d) $\frac{2 \pi}{3}$

Show Answer Answer: (b)

9. Tangents are drawn to the ellipse $3 x^{2}+5 y^{2}=32$ and $25 x^{2}+9 y^{2}=450$ passing through the point $(3,5)$. The number of such tangents are

(a) $2$

(b) $3$

(c) $4$

(d) $0$

Show Answer Answer: (b)

10. Tangents are drawn to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ at ends of latus rectum. The area of quadrilateral so formed is

(a) $27$

(b) $\frac{27}{2}$

(c) $\frac{27}{4}$

(d) $\frac{27}{55}$

Show Answer Answer: (a)

11. An ellipse passes through the point (4,-1) and its axes are along the axes of coordinates. If the line $x+4 y-10=0$ is a tangent to it then its equation is

(a) $\frac{\mathrm{x}^{2}}{100}+\frac{\mathrm{y}^{2}}{5}=1$

(b) $\frac{x^{2}}{8}+\frac{y^{2}}{5 / 4}=1$

(c) $\frac{x^{2}}{20}+\frac{y^{2}}{5}=1$

(d) None of these

Show Answer Answer: (b, c)

12. Prove that the line $2 x+3 y=12$ touches the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=2$

13. The tangent at the point $\left(4 \cos \phi, \frac{16}{\sqrt{11}} \sin \phi\right)$ to the ellipse $16 x^{2}+11 y^{2}=256$ is also a tangent to the circle $x^{2}+y^{2}-2 x=15$, find the value of $\phi$.

Show Answer Answer: $\pm\frac{\pi}{6}$

14. Find the equations of tangents to the ellipse $9 x^{2}+16 y^{2}=144$ which pass through the point $(2,3)$.

Show Answer Answer: $y =3,x + y =5$

15. The angle between pair of tangents drawn to the ellipse $3 x^{2}+2 y^{2}=5$ from the point $(1,2)$ is $\tan ^{1}(12 /$ $\sqrt{5}$ )

16. Prove that the portion of the tangent to the ellipse intercepted between the curve and the directrix subtends a right angle at the corresponding focus.

Linked Comprehension Type.

17. For all real $\mathrm{p}$, the line $2 \mathrm{px}+\mathrm{y} \sqrt{1-\mathrm{p}^{2}}=1$ touches a fixed ellipse whose axes are coordinate axes.

(i). The eccentricity of the ellipse is

(a) $\frac{2}{3}$

(b) $\frac{\sqrt{3}}{2}$

(c) $\frac{1}{\sqrt{3}}$

(d) $\frac{1}{2}$

Show Answer Answer: (a)

(ii). The foci of ellipse are

(a) $(0, \pm \sqrt{3})$

(b) $(0, \pm 2 / 3)$

(c) $( \pm \sqrt{3} / 2,0)$

(d) None of these

Show Answer Answer: (d)

(iii). The locus of point of intersection of perpendicular tangents is

(a) $\mathrm{x}^{2}+\mathrm{y}^{2}=5 / 4$

(b) $\mathrm{x}^{2}+\mathrm{y}^{2}=3 / 2$

(c) $\mathrm{x}^{2}+\mathrm{y}^{2}=2$

(d) None of these

Show Answer Answer: (a)

18. $\mathrm{C} _{1}: \mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{r}^{2}$ and $\mathrm{C} _{2}=\frac{\mathrm{x}^{2}}{16}+\frac{\mathrm{y}^{2}}{9}=1$ intersect at four distinct points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and $\mathrm{D}$, Their common tangents form a parallelogram $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$.

(i). If $\mathrm{ABCD}$ is a square then $\mathrm{r}$ is equal to

(a) $\frac{12}{5} \sqrt{2}$

(b) $\frac{12}{5}$

(c) $\frac{12}{5 \sqrt{5}}$

(d) None of these

Show Answer Answer: (a)
(ii). If $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ is a square then $\mathrm{r}$ is equal to

(a) $\sqrt{20}$

(b) $\sqrt{12}$

(c) $\sqrt{15}$

(d) None of these

Show Answer Answer: (d)

(iii). If $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ is a square, then the ratio of area of the circle $\mathrm{C} _{1}$ to the area of the circumcircle of $\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ is

(a) $\frac{9}{16}$

(b) $\frac{3}{4}$

(c) $\frac{1}{2}$

(d) None of these

Show Answer Answer: (c)

19. The ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is such that it has the least area but contains the circle $(x-1)^{2}+y^{2}=1$

(i). The eccentricity of the ellipse is

(a) $\frac{\sqrt{2}}{3}$

(b) $\frac{1}{\sqrt{3}}$

(c) $\frac{1}{2}$

(d) None of these

Show Answer Answer: (a)

(ii). Equation of auxilliary circle of ellipse is

(a) $\mathrm{x}^{2}+\mathrm{y}^{4}=6.5$

(b) $x^{2}+y^{4}=5$

(c) $x^{2}+y^{4}=45$

(d) None of these

Show Answer Answer: (c)

(iii). Length of latus rectum of the ellipse is

(a) 2 units

(b) 1 unit

(c) 3 units

(d) 2.5 units

Show Answer Answer: (b)

20. The equation of the straight lines joining the foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ to the foci of the ellipse $\frac{x^{2}}{24}+\frac{y^{2}}{49}=1$ forms a parallelogram. Then the area of the figure formed by the foci of these two ellipse.

(a) 15

(b) 30

(c) 20

(d) 18

Show Answer Answer: (b)


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ