ELLIPSE-5

Equations of Normals in different forms

(i) Point form

Let equation of ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Equation of normal is $\frac{a^{2} x}{x _{1}}-\frac{b^{2} y}{y _{1}}=a^{2}-b^{2}$

(ii) Parametric form

Let equation of ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Equation of normal is $a ~x\sec \phi-b ~ y\cosec \phi=\mathrm{a}^{2}-\mathrm{b}^{2}$

$(a \cos \phi, b \sin \phi)$ is parametric coordinates of $\mathrm{P}\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)$, i.e. $\mathrm{P}(\mathrm{a} \cos \phi, \mathrm{b} \sin \phi)$

(iii) Slope form

For an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Equation of normal in terms of slope $(\mathrm{m})$ is

$ y=m x \pm \frac{m\left(a^{2}-b^{2}\right)}{\sqrt{a^{2}+b^{2} m^{2}}} $

Condition of normality when $y=m x+c$ is the normal of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is

$ \begin{array}{r} \mathrm{c}^{2}=\frac{\mathrm{m}^{2}\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)^{2}}{\mathrm{a}^{2}+\mathrm{b}^{2} \mathrm{~m}^{2}} \\ \text { or } \quad \mathrm{c}= \pm \frac{\mathrm{m}\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2} \mathrm{~m}^{2}}} \end{array} $

Examples

1. If the normal at the point $P(\theta)$ to the ellipse $\frac{x^{2}}{14}+\frac{y}{5}=1$ intersects it again at the point $Q(2 \theta)$ then $\cos \theta$ is equal to

(a) $\frac{2}{3}$

(b) $-\frac{2}{3}$

(c) $\frac{3}{2}$

(d) $-\frac{3}{2}$

Show Answer

Solution :

The normal at $(a \sin \theta, b \sin \theta)$ is $\frac{a x}{\cos \theta}-\frac{b y}{\sin \theta}=a^{2}-b^{2}$

Here $\mathrm{a}^{2}=14 \& \mathrm{~b}^{2}=5$

$ a=\sqrt{14} \quad b=\sqrt{5} $

$\frac{\sqrt{14} \mathrm{x}}{\cos \theta}-\frac{\sqrt{5} \mathrm{y}}{\sin \theta}=14-5$

$\frac{\sqrt{14} \mathrm{x}}{\cos \theta}-\frac{\sqrt{5} \mathrm{y}}{\sin \theta}=9……..(1)$

$\therefore$ It meets the curve again at $\theta(2 \theta)(\operatorname{acos} 2 \theta, b \sin 2 \theta)$

i.e. $(\sqrt{14} \cos 2 \theta, \sqrt{5} \sin 2 \theta)$

$\therefore$ equation (1) satisfy this point

$\frac{14 \cos 2 \theta}{\cos \theta}-\frac{5 \sin 2 \theta}{\sin \theta}=9$

$\frac{14\left(2 \cos ^{2} \theta-1\right)}{\cos \theta}-\frac{5(2 \sin \theta \cos \theta)}{\sin \theta}=9$

$28 \cos ^{2} \theta-14-10 \cos ^{2} \theta=9 \cos \theta$

$18 \cos ^{2} \theta-9 \cos \theta-14=0$

$(6 \cos \theta-7)(3 \cos \theta+2)=0$

$\cos \theta=\frac{7}{6}>1$ not possible $(\because \cos \theta<1)$

$\cos \theta=\frac{-2}{3}$

$\therefore$ option (b) is correct.

2. The equation of the normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the end of the latus rectum in the first quadrant is

(a) $x+$ ey $-a e^{3}=0$

(b) $ \mathrm{x}-\mathrm{ey}+\mathrm{ae} \mathrm{e}^{3}=0$

(c) $\mathrm{x}-\mathrm{ey}-\mathrm{ae}^{3}=0$

(d) None of these

Show Answer

Solution :

The end of the latus rectum in the first quadrantal is $\left(\mathrm{ae}, \frac{\mathrm{b}^{2}}{\mathrm{a}}\right)$

Equation of normal at $\left(\mathrm{ae}, \frac{\mathrm{b}^{2}}{\mathrm{a}}\right)$ is

$ \begin{gathered} \frac{a^{2} x}{a e}-\frac{b^{2} y}{b^{2}}=a^{2}-b^{2}, \boxed{\frac{a^{2} x}{x _{1}}-\frac{b^{2} y}{y _{1}}=a^{2}-b^{2}} \\ \frac{a x}{e}-a y=a^{2}-b^{2} \\ a x-e a y=e a^{2}-e b^{2} \\ =e a^{2}-e\left(a^{2}-a^{2} e^{2}\right) \\ =e a^{2}-e a^{2}+a^{2} e^{3} \\ \therefore a x-a e y-a^{2} e^{3}=0 \\ x-e y-a e^{3}=0 \end{gathered} $

Correct option is c

3. The condition that the line $x \cos \alpha+y \sin \alpha=p$ may be a normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ then

(a) $\left(a^{2}-b^{2}\right)^{2}=p^{2}\left(a^{2} \sec ^{2} \alpha+b^{2} \operatorname{cosec}^{2} \alpha\right)$

(c) $\left(a^{2}+b^{2}\right)^{2}=p^{2}\left(a^{2} \sec ^{2} \alpha+b^{2} \operatorname{cosec}^{2} \alpha\right)$

(b) $\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)^{2}=\mathrm{p}^{2}\left(\mathrm{a}^{2} \operatorname{cosec}^{2} \alpha+\mathrm{b}^{2} \sec ^{2} \alpha\right)$

(d) None of these

Show Answer

Solution :

The equation of normal to $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ at ’ $\theta$ ’ is

$\frac{a^{2} x}{a \cos \theta}-\frac{b^{2} y}{b \sin \theta}-\left(a^{2}-b^{2}\right)=0 …….(1)$

Given that $x \cos \alpha+y \sin \alpha-p=0$ is normal to the ellipse comparing (1) & (2) we get

$ \begin{aligned} & \frac{\mathrm{a} / \cos \theta}{\cos \alpha}=\frac{-b / \sin \theta}{\sin \alpha}=\frac{a^{2}-b^{2}}{p} \\ & \text { or } \frac{a}{\cos \theta \cos \alpha}=\frac{-b}{\sin \theta \sin \alpha}=\frac{a^{2}-b^{2}}{p} \\ & \text { or } \frac{\cos \theta \cos \alpha}{a}=-\frac{\sin \theta \sin \alpha}{b}=\frac{p}{a^{2}-b^{2}} \\ & \cos \theta=\frac{a p}{\left(a^{2}-b^{2}\right) \cos \alpha}, \sin \theta=\frac{-b p}{\left(a^{2}-b^{2}\right) \sin \alpha} \end{aligned} $

Squaring and adding we get

$\cos ^{2} \theta+\sin ^{2} \theta=\frac{a^{2} p^{2}}{\left(a^{2}-b^{2}\right)^{2} \cos ^{2} \alpha}+\frac{b^{2} p^{2}}{\left(a^{2}-b^{2}\right)^{2} \sin ^{2} \alpha}$

$\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)^{2}=\mathrm{p}^{2}\left(\mathrm{a}^{2} \sec ^{2} \alpha+\mathrm{b}^{2} \operatorname{cosc}^{2} \alpha\right)$

$\therefore$ correct option is a

4. If the normals at $\mathrm{P}\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right), \mathrm{Q}\left(\mathrm{x} _{2}, \mathrm{y} _{2}\right)$ and $\mathrm{R}\left(\mathrm{x} _{3}, \mathrm{y} _{3}\right)$ to the ellipse are concurrent, then

(a) $\left|\begin{array}{lll}x _{2} & y _{2} & x _{2} y _{2} \\ x _{1} & y _{1} & x _{1} y _{1} \\ x _{3} & y _{3} & x _{3} y _{3}\end{array}\right|=-1$

(b) $\left|\begin{array}{lll}\mathrm{x} _{1} & \mathrm{y} _{1} & \mathrm{x} _{1} \mathrm{y} _{1} \\ \mathrm{x} _{2} & \mathrm{y} _{2} & \mathrm{x} _{2} \mathrm{y} _{2} \\ \mathrm{x} _{3} & \mathrm{y} _{3} & \mathrm{x} _{3} \mathrm{y} _{3}\end{array}\right|=0$

(c) $\left|\begin{array}{lll}x _{2} & y _{2} & x _{2} y _{2} \\ x _{3} & y _{3} & x _{3} y _{3} \\ x _{1} & y _{1} & x _{1} y _{1}\end{array}\right|=1$

(d) None of these

Show Answer

Solution :

The equations of the normals at $\mathrm{P}\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right), \mathrm{Q}\left(\mathrm{x} _{2}, \mathrm{y} _{2}\right)$ and $\mathrm{R}\left(\mathrm{x} _{3}, \mathrm{y} _{3}\right)$ to the ellipse $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ are

$\frac{a^2 x}{x_1}-\frac{b^2 y}{y_1}=a^2-b^2………..(1)$

$\frac{a^2 x}{x_2}-\frac{b^2 y}{y_2}=a^2-b^2………..(2)$

$\frac{a^2 x}{x_3}-\frac{b^2 y}{y_3}=a^2-b^2………..(3)$

respectively

These lines are concurrent, if

$ \left|\begin{array}{lll} \frac{a^{2}}{x _{1}} & \frac{-b^{2}}{y _{1}} & a^{2}-b^{2} \\ \frac{a^{2}}{x _{2}} & \frac{-b^{2}}{y _{2}} & a^{2}-b^{2} \\ \frac{a^{2}}{x _{3}} & \frac{-b^{2}}{y _{3}} & a^{2}-b^{2} \end{array}\right|=0 $

$a^{2} b^{2}\left(a^{2}-b^{2}\right)\left|\begin{array}{ccc}\frac{1}{x _{1}} & \frac{-1}{y _{1}} & 1 \\ \frac{1}{x _{2}} & \frac{-1}{y _{2}} & 1 \\ \frac{1}{x _{3}} & \frac{-1}{y _{3}} & 1\end{array}\right|=0$

$\mathrm{R} _{1} \rightarrow \mathrm{x} _{1} \mathrm{y} _{1} \mathrm{R} _{1} ; \mathrm{R} _{2} \rightarrow \mathrm{x} _{2} \mathrm{y} _{2} \mathrm{R} _{2} ; \mathrm{R} _{3} \rightarrow \mathrm{x} _{3} \mathrm{y} _{3}$ we get

$ \left|\begin{array}{lll} \mathrm{y} _{1} & -\mathrm{x} _{1} & \mathrm{x} _{1} \mathrm{y} _{1} \\ \mathrm{y} _{2} & -\mathrm{x} _{2} & \mathrm{x} _{2} \mathrm{y} _{2} \\ \mathrm{y} _{3} & -\mathrm{x} _{3} & \mathrm{x} _{3} \mathrm{y} _{3} \end{array}\right|=0 $

OR $\left|\begin{array}{lll}x _{1} & y _{1} & x _{1} y _{1} \\ x _{2} & y _{2} & x _{2} y _{2} \\ x _{3} & y _{3} & x _{3} y _{3}\end{array}\right|=0$

your correct option is b

Practice questions

1. In the normal at the end of latus rectum of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with eccentricity e, passes through one end of the minor axis, then :

(a) $\mathrm{e}^{2}\left(1+\mathrm{e}^{2}\right)=0$

(b) $\mathrm{e}^{2}\left(1+\mathrm{e}^{2}\right)=1$

(c) $\mathrm{e}^{2}\left(1+\mathrm{e}^{2}\right)=-1$

(d) $\mathrm{e}^{2}\left(1+\mathrm{e}^{2}\right)=2$

Show Answer Answer: (b)

2. If the normals to $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ at the ends of the chords $\ell _{1} \mathrm{x}+\mathrm{m} _{1} \mathrm{y}=1$ and $\ell _{2} \mathrm{x}+\mathrm{m} _{2} \mathrm{y}=1$ are concurrent, then :

(a) $\mathrm{a}^{2} \ell _{1} \ell _{2}+\mathrm{b}^{2} \mathrm{~m} _{1} \mathrm{~m} _{2}=1$

(b) $\mathrm{a}^{2} \ell _{1} \ell _{2}+\mathrm{b} _{2} \mathrm{~m} _{1} \mathrm{~m} _{2}=-1$

(c) $\mathrm{a}^{2} \ell _{1} \ell _{2}-\mathrm{b}^{2} \mathrm{~m} _{1} \mathrm{~m} _{2}=-1$

(d) None of these

Show Answer Answer: (b)

3. If the normal at an end of a latus rectum of an ellipse passes through one extremity of the minor axis, then the eccentricity of the ellipse is given by

(a) $\mathrm{e}^{4}+\mathrm{e}^{2}-1=0$

(b) $\mathrm{e}^{4}+\mathrm{e}^{2}-5=0$

(c) $\mathrm{e}^{3}=\sqrt{5}$

(d) None of these

Show Answer Answer: (a)

4. The number of normals that can be drawn from a point to a given ellipse is

(a) 2

(b) 3

(c) 4

(d) 1

Show Answer Answer: (c)

5. If the normal at any point $\mathrm{P}$ on the ellipse $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ meets the axes in $\mathrm{G}$ and $\mathrm{g}$ respectively, then $\mathrm{PG}: \mathrm{Pg}$ is equal to

(a) $a: b$

(b) $a^{2}: b^{2}$

(c) $b^{2}: a^{2}$

(d) $\mathrm{b}: \mathrm{a}$

Show Answer Answer: (c)

6. If normal to ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $\left(a e, \frac{b^{2}}{a}\right)$ is passing through $(0,-2 b)$, then value of eccentricity is

(a) $\sqrt{2}-1$

(b) $2(\sqrt{2}-1)$

(c) $\sqrt{2(\sqrt{2}-1)}$

(d) None of these

Show Answer Answer: (c)

7. If normal at any point $\mathrm{P}$ to the ellipse $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1, \mathrm{a}>\mathrm{b}$ meet the axes at $\mathrm{M}$ and $\mathrm{N}$ so that $\frac{\mathrm{PM}}{\mathrm{PN}}=\frac{2}{3}$, then value of eccentricity e is

(a) $\frac{1}{\sqrt{2}}$

(b) $\sqrt{\frac{2}{3}}$

(c) $\frac{1}{\sqrt{3}}$

(d) None of these

Show Answer Answer: (c)

8. If the tangent drown at point $\left(t^{2}, 2 t\right)$ on the parabola $y^{2}=4 \mathrm{x}$ is same as the normal drawn at point $(\sqrt{5} \cos \theta, 2 \sin \theta)$ on the ellipse $4 x^{2}+5 y^{2}=20$. Then the values of $\operatorname{tand} \theta$ are

(a) $\theta=\cos ^{-1}\left(\frac{-1}{\sqrt{5}}\right) \& \mathrm{t}=\frac{-1}{\sqrt{5}}$

(b) $\theta=\cos ^{-1}\left(\frac{1}{\sqrt{5}}\right) \& \mathrm{t}=\frac{1}{\sqrt{5}}$

(c) $\theta=\cos ^{-1}\left(\frac{-2}{\sqrt{5}}\right) \& \mathrm{t}=\frac{-2}{\sqrt{5}}$

(d) None of these

Show Answer Answer: (a)

9. The normals at four points on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ meet in the point $(h, k)$. Then the mean position of the four points is

(a) $\left(\frac{a^{2} h}{2\left(a^{2}+b^{2}\right)}, \frac{b^{2} k}{2\left(a^{2}+b^{2}\right)}\right)$

(b) $\left(\frac{a^{3} h}{2\left(a^{2}+b^{2}\right)}, \frac{b^{3} k}{2\left(a^{2}+b^{2}\right)}\right)$

(c) $\left(\frac{\mathrm{ah}}{2\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)}, \frac{\mathrm{bk}}{2\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)}\right)$

(d) $\left(\frac{a^{2} h}{2\left(a^{2}-b^{2}\right)}, \frac{b^{2} k}{2\left(a^{2}-b^{2}\right)}\right)$

Show Answer Answer: (d)

10. The equation of the normal at the point $(2,3)$ on the ellipse $9 x^{2}+16 y^{2}=180$ is

(a) $3 y=8 x-10$

(b) $3 y-8 x+7=0$

(c) $8 y+3 x+7=0$

(d) $3 x+2 y+7=0$

Show Answer Answer: (b)

11. Number of distinct normal lines that can be drawn to the ellipse $\frac{x^{2}}{169}+\frac{y^{2}}{25}=1$ from the point $P$ $(0,6)$ is

(a) one

(b) two

(c) three

(d) four

Show Answer Answer: (c)

12. Any ordinate MP of the ellipse $\frac{\mathrm{x}^{2}}{25}+\frac{\mathrm{y}^{2}}{9}=1$ meets the auxiliary circle at $\mathrm{Q}$, then locus of the point of intersection of normals at $\mathrm{P}$ and $\mathrm{Q}$ to the respective curve is

(a) $\mathrm{x}^{2}+\mathrm{y}^{2}=8$

(b) $x^{2}+y^{2}=34$

(c) $\mathrm{x}^{2}+\mathrm{y}^{2}=64$

(d) $x^{2}+y^{2}=15$

Show Answer Answer: (c)

13. If the normals at $\mathrm{P}(\theta)$ and $\mathrm{Q}\left(\frac{\pi}{2}+\theta\right)$ to the ellipse $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ meet the major axis at $\mathrm{G}$ and $\mathrm{g}$ respectively, then $\mathrm{PG}^{2}+\mathrm{Qg}^{2}=$

(a) $\mathrm{b}^{2}\left(1-\mathrm{e}^{2}\right)\left(2-\mathrm{e}^{2}\right)$

(b) $\mathrm{a}^{2}\left(\mathrm{e}^{4}-\mathrm{e}^{2}+2\right)$

(c) $\mathrm{a}^{2}\left(1+\mathrm{e}^{2}\right)\left(2+\mathrm{e}^{2}\right)$

(d) $\mathrm{b}^{2}\left(1+\mathrm{e}^{2}\right)\left(2+\mathrm{e}^{2}\right)$

Show Answer Answer: (b)


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ