HYPERBOLA-3 (Equation of Hyperbola)

Equation of a Hyperbola referred to two perpendicular lines

Let equation of hyperbola be

$\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$

From diagram $\mathrm{PM}=\mathrm{y}$ and $\mathrm{PN}=\mathrm{x}$

$\frac{\mathrm{PN}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{PM}^{2}}{\mathrm{~b}^{2}}=1$

ie. if perpendicular distance of a point $P(x, y)$ from two mutually perpendicular lines say $\ell _{1}=a _{1} x+b _{1} y+c _{1}=0$ and $\ell _{2}=\mathrm{a} _{2} \mathrm{x}+\mathrm{b} _{2} \mathrm{y}+\mathrm{c} _{2}=0$ then

$ \frac{\left(\frac{a _{1} x+b _{1} y+c _{1}}{\sqrt{a _{1}^{2}+b _{1}^{2}}}\right)}{a^{2}}-\frac{\left(\frac{a _{2} x+b _{2} y+c _{2}}{\sqrt{a _{2}^{2}+b _{2}^{2}}}\right)}{b^{2}}=1 $

then the locus of point $\mathrm{P}$ denotes a hyperbola

  • centre of the hyperbola, we get after solving $\ell _{1}=0$ and $\ell _{2}=0$

  • Transverse axis : $\ell=0$

  • Conjugate axis $: \ell _{1}=0$

  • Foci : The foci of the hyperbola is the point of intersection of the lines $\frac{a _{1} x+b _{1} y+c _{1}}{\sqrt{a _{1}^{2}+b _{1}^{2}}}= \pm a e$ and $\ell _{2}=0$

  • Directrix: $\frac{a _{1} x+b _{1} y+c _{1}}{\sqrt{a _{1}^{2}+b _{1}^{2}}}= \pm \frac{a}{e}$

  • Length of transverse axis $=2 \mathrm{a}$

  • Length of conjugate axis $=2 b$

  • Length of latus Rectum $=\frac{2 b^{2}}{a}$

Examples

1. Find the eccentricity and centre of the hyperbola

$ \frac{(3 x-4 y-12)^{2}}{100}-\frac{(4 x+3 y-12)^{2}}{225}=1 $

Show Answer

Solution :

$1 _{1}=3 x-4 y-12,1 _{2}=4 x+3 y-12$

$\mathrm{a}=10, \mathrm{~b}=15$

$\mathrm{e}=\sqrt{1+\frac{225}{100}}=\frac{\sqrt{13}}{2}$

$3 \mathrm{x}-4 \mathrm{y}-12=0$

$4 \mathrm{x}+3 \mathrm{y}-12=0$

$\mathrm{x}=\frac{84}{25}, \mathrm{y}=-\frac{12}{25} \quad$ Centre $\left(\frac{84}{25},-\frac{12}{25}\right)$

2. Find the eccentricity of the conic $4(2 y-x-3)^{2}-9(2 x+y-1)^{2}=80$

Show Answer

Solution :

$ \begin{aligned} & \frac{4(2 y-x-3)}{80}^{2}-9 \frac{(2 x+y-1)^2}{80}=\frac{80}{80} \\ & \frac{(2 y-x-3)^{2}}{20}-\frac{(2 x+y-1)^{2}}{80 / 9}=1 \\ & a^{2}=20, b^{2}=\frac{80}{9} \\ & e=\sqrt{\frac{1+b^{2}}{a^{2}}}=\sqrt{1+\frac{80}{9 x 20}}=\sqrt{\frac{1+4}{9}}=\frac{\sqrt{13}}{3} \end{aligned} $

3. Find the coordinates of the centre, foci and vertices, length of axes and latus rectum, equation of axes and directries, and eccentricity of the conic $9 x^{2}-16 y^{2}-18 x+32 y-151=0$

Show Answer

Solution :

$ \begin{aligned} & 9 x^{2}-16 y^{2}-18 x+32 y-151=0 \\ & 9\left(x^{2}-2 x+1-1\right)-16\left(y^{2}-2 y+1-1\right)-151=0 \\ & 9(x-1)^{2}-16(y-1)^{2}=144 \\ & \frac{(x-1)^{2}}{16}-\frac{(y-1)^{2}}{9}=1 \end{aligned} $

Let $\mathrm{x}-1=\mathrm{X}, \mathrm{y}-1=\mathrm{Y}, \mathrm{a}=4, \mathrm{~b}=3$

Centre : $X=0, Y=0 \Rightarrow x=1$, $y=1$ i.e. $(1,1)$

Eccentricity : $\mathrm{e}=\sqrt{1+\frac{9}{16}}=\frac{5}{4}$

Foci : $X= \pm$ ae, $Y=0 \Rightarrow x=1 \pm 5$, $y=1$ i.e. $(6,1)$ and $(-4,1)$

Vertices : $X= \pm a, Y=0 \Rightarrow x=1 \pm 4$, $y=1$ i.e. $(5,1)$ and $(-3,1)$

Length of transverse axis $=2 \mathrm{a}=8$

Length of conjugate axis $=2 b=6$

Length of latus rectums $=\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=\frac{9}{2}$

Equation of transverse axis : $\mathrm{Y}=0 \Rightarrow \mathrm{y}-1=0$

Equation of conjugate axis : $\mathrm{X}=0 \Rightarrow \mathrm{x}-1=0$

Equation of directries $X= \pm \frac{a}{e} \Rightarrow x-1= \pm \frac{16}{5}$ i.e. $5 x-21=0$ and $5 x+11=0$

4. The equation of the transverse and conjugate axes of a hyperbola are respectively $3 x+4 y-7=0$, $4 x-3 y+8=0$ and their respective lengths are 4 and 6 . The equation of the hyperbola is

(a). $ 17 x^{2}+312 x y+108 y^{2}-634 x-312 y-715=0$

(b). $ 108 x^{2}+312 x y+17 y^{2}-312 x-634 y-715=0$

(c). $108 x^{2}-312 x y+17 y^{2}-312 x-634 y-715=0$

(d). none of these

Show Answer

Solution :

The equations of hyperbola is

$ \begin{aligned} & \frac{\left(\frac{3 x+4 y-7}{\sqrt{3^{2}+4^{2}}}\right)^{2}}{\left(\frac{4}{2}\right)^{2}}-\frac{\left(\frac{4 x-3 y+8}{\sqrt{4^{2}+3^{2}}}\right)^{2}}{\left(\frac{6}{2}\right)^{2}}=1 \\ & \frac{(3 x+4 y-7)^{2}}{100}-\frac{(4 x-3 y+8)^{2}}{225}=1 \\ & \begin{array}{l} 9\left(9 x^{2}+16 y^{2}+49+24 x y-42 x-56 y\right)-4\left(16 x^{2}+9 y^{2}+64-24 x y+64 x-48 y\right)=900 \\ 17x^{2}+312 x y+108 y^{2}-634 x-312 y-715=0 \end{array} \\ \end{aligned} $

Answer: a

Line and Hyperbola

Let equation of line be $y=m x+c$ and equation of hyperbola be $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

$ \begin{aligned} & \frac{x^{2}}{a^{2}}-\frac{(m x+c)^{2}}{b^{2}}=1 \\ & \frac{x^{2}}{a^{2}}-\frac{m^{2} x^{2}}{b^{2}}-\frac{c^{2}}{b^{2}}-\frac{2 m c}{b^{2}} x-1=0 \\ & x^{2}\left(\frac{1}{a^{2}}-\frac{m^{2}}{b^{2}}\right)-\frac{2 m c}{b^{2}} x-\left(\frac{c^{2}+b^{2}}{b^{2}}\right)=0 \\ & x^{2}\left(\frac{b^{2}}{a^{2}}-m^{2}\right)-2 m c x-\left(c^{2}+b^{2}\right)=0 \end{aligned} $

$\therefore \mathrm{D}=4 \mathrm{~m}^{2} \mathrm{c}^{2}+4 \cdot\left(\frac{\mathrm{b}^{2}-\mathrm{a}^{2} \mathrm{~m}^{2}}{\mathrm{a}^{2}}\right)\left(\mathrm{c}^{2}+\mathrm{b}^{2}\right)=4\left(\mathrm{~m}^{2} \phi^{2}+\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}} \mathrm{c}^{2}-\mathrm{m}^{2} \phi^{2}+\frac{\mathrm{b}^{4}}{\mathrm{a}^{2}}-\mathrm{m}^{2} \mathrm{~b}^{2}\right)=4 \mathrm{~b}^{2}\left(\frac{\mathrm{c}^{2}+\mathrm{b}^{2}-\mathrm{a}^{2} \mathrm{~m}^{2}}{\mathrm{a}^{2}}\right)$

i. $\quad \mathrm{D}<0$ i.e. $\mathrm{c}^{2}-\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}<0$ line do not intersect hyperbola .

ii. $\quad \mathrm{D}=0$ i.e. $\mathrm{c}^{2}-\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}=0$ line touches the hyperbola .

iii. $\quad \mathrm{D}>0$ i.e. $\mathrm{c}^{2}-\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}>0$ line intersect hyperbola at two points.

Hence $y=m x \pm \sqrt{a^{2} m^{2}-b^{2}}$ is a tangent to hyperbola .

Let this tangent passes through a point $(\mathrm{h}, \mathrm{k})$ then $\mathrm{k}=\mathrm{mh} \pm \sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2}}$ $(\mathrm{k}-\mathrm{mh})^{2}=\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2}$

$\mathrm{m}^{2}\left(\mathrm{~h}^{2}-\mathrm{a}^{2}\right)-2 \mathrm{mkh}+\mathrm{k}^{2}+\mathrm{b}^{2}=0$

Hence maximum two tangents can be drawn through a point $P$.

Now $\mathrm{m} _{1}+\mathrm{m} _{2}=\frac{2 \mathrm{kh}}{\mathrm{h}^{2}-\mathrm{a}^{2}}$

$\mathrm{m} _{1} \cdot \mathrm{m} _{2}=\frac{\mathrm{k}^{2}+\mathrm{b}^{2}}{\mathrm{~h}^{2}-\mathrm{a}^{2}}$

If $\theta$ is the angle between the two tangents, then

$\tan \theta=\left(\frac{\mathrm{m} _{1}-\mathrm{m} _{2}}{1+\mathrm{m} _{1} \mathrm{~m} _{2}}\right)$

$\Rightarrow \tan ^{2} \theta=\frac{\left(m _{1}+m _{2}\right)^{2}-4 m _{1} m _{2}}{\left(1+m _{1} m _{2}\right)^{2}}=\frac{\left(\frac{2 k h}{h^{2}-a^{2}}\right)^{2}-4\left(\frac{k^{2}+b^{2}}{h^{2}-a^{2}}\right)}{\left(1+\frac{k^{2}+b^{2}}{h^{2}-a^{2}}\right)^{2}}$

$\Rightarrow \tan ^{2} \theta=\frac{4 \mathrm{k}^{2} \mathrm{~h}^{2}-4\left(\mathrm{~h}^{2}-\mathrm{a}^{2}\right)\left(\mathrm{k}^{2}+\mathrm{b}^{2}\right)}{\left(\mathrm{h}^{2}+\mathrm{k}^{2}-\mathrm{a}^{2}+\mathrm{b}^{2}\right)^{2}}$

$\Rightarrow \tan ^{2} \theta=\frac{4\left(\mathrm{a}^{2} \mathrm{~b}^{2}+\mathrm{a}^{2} \mathrm{k}^{2}-\mathrm{h}^{2} \mathrm{~b}^{2}\right)}{\left(\mathrm{h}^{2}+\mathrm{k}^{2}-\mathrm{a}^{2}+\mathrm{b}^{2}\right)^{2}}$

If $\theta=90^{\circ}$ then $\mathrm{h}^{2}+\mathrm{k}^{2}-\mathrm{a}^{2}+\mathrm{b}^{2}=0$

i.e. $\mathrm{h}^{2}+\mathrm{k}^{2}=\mathrm{a}^{2}-\mathrm{b}^{2}$

Locus of $(h, k)$ is $x^{2}+y^{2}=a^{2}-b^{2}$

Hence, Locus of point of intersection of two perpendicular tangents is known as Director Circle. Its equation is $x^{2}+y^{2}=a^{2}-b^{2}$

If $\mathrm{a}=\mathrm{b}$, director circle is a point circle.

If $a<b$, no real director circle is possible.

For equation of hyperbola $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-h)^{2}}{b^{2}}=1$, equation of tangent in slope from is $y-k=m(x-$h) $\pm \sqrt{a^{2} m^{2}-b^{2}}$.

Practice questions

1. If the foci of the ellipse $\frac{\mathrm{x}^{2}}{232}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ and the hyperbola $\frac{\mathrm{x}^{2}}{144}-\frac{\mathrm{y}^{2}}{81}=1$ coincide then $\mathrm{b}^{2}=$

(a). 3

(b). 5

(c). 7

(d). 9

Show Answer Answer: (c)

2. If $\mathrm{PQ}$ is a double ordinate of the hyperbola $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ such that $\mathrm{OPQ}$ is an equilateral triangle, $O$ being the centre of the hyperbola, the range of eccentricity is

(a). $\left(0, \frac{2}{\sqrt{3}}\right)$

(b). $\left(\frac{2}{\sqrt{3}}, \infty\right)$

(c). $\left(0, \frac{4}{3}\right)$

(d). $\left(\frac{4}{3}, \infty\right)$

Show Answer Answer: (b)

3. An ellipse and hyperbola are confocal and the conjugate axis of the hyperbola is equal to the minor axis of the ellipse. If $\mathrm{e} _{1}$ and $\mathrm{e} _{2}$ are the eccentricities of the ellipse and hyperbola then

(a). $\mathrm{e} _{1}{ }^{2}+\mathrm{e} _{2}{ }^{2}=2$

(b). $\mathrm{e} _{1}+\mathrm{e} _{2}=2$

(c). $\frac{1}{\mathrm{e} _{1}}+\frac{1}{\mathrm{e} _{2}}=2$

(d). $\frac{1}{\mathrm{e} _{1}^{2}}+\frac{1}{\mathrm{e} _{2}^{2}}=2$

Show Answer Answer: (d)

4. The centre of a hyperbola $\frac{(3 x+4 y-7)^{2}}{100}-\frac{(4 x-3 y+8)^{2}}{225}=1$ is

(a). $\left(\frac{-11}{25}, \frac{52}{25}\right)$

(b). $\left(\frac{11}{25}, \frac{-52}{25}\right)$

(c). $(0,0)$

(d). $(10,15)$

Show Answer Answer: (a)

5. The equations of the transverse and conjugate axes of a hyperbola are $x+2 y-3=0$ and $2 x-y+4=0$ respectively and their respective lengths are $\sqrt{2}$ and $\frac{2}{\sqrt{3}}$, equation of hyperbola is

(a). $ 2(2 x-y+4)^{2}-3(x+2 y-3)^{2}=1$

(b). $2(x+2 y-3)^{2}-3(2 x-y+4)^{2}=1$

(c). $ 2(2 x-y+4)^{2}-3(x+2 y-3)^{2}=5$

(d). $2(x+2 y-3)^{2}-3(2 x-y+4)^{2}=5$

Show Answer Answer: (c)

6. For all real values of $m$ the straight line $y=m x+\sqrt{9 m^{2}-4}$ is a tangent to the hyperbola

(a). $4 x^{2}-9 y^{2}=36$

(b). $9 x^{2}-4 y^{2}=36$

(c). $x^{2}-36 y^{2}=9$

(d). $36 x^{2}-y^{2}=36$

Show Answer Answer: (a)

7. The equation of tangents to the curve $4 x^{2}-9 y^{2}=1$ which is parallel to $4 y=5 x+7$ is

(a). $4 y=5 x-30$

(b). $4 y=5 x+24$

(c). $24 \mathrm{y}-30 \mathrm{x}=\sqrt{161}$

(d). $30 \mathrm{x}-24 \mathrm{y}-\sqrt{161}=0$

Show Answer Answer: (c)

8. If the line $5 x+12 y=9$ touches the hyperbola $x^{2}-9 y^{2}=9$ then point of contact is

(a). $(5,4)$

(b). $\left(5, \frac{-4}{3}\right)$

(c). $\left(5, \frac{4}{3}\right)$

(d). $(5,-4)$

Show Answer Answer: (b)

9. If $\mathrm{y}=\mathrm{mx}+\sqrt{51}$ is a tangent to the hyperbola $\frac{\mathrm{x}^{2}}{100}-\frac{\mathrm{y}^{2}}{49}=1$, then $\mathrm{m}=$

(a). $1$

(b). $\sqrt{17}$

(c). $-1$

(d). $2$

Show Answer Answer: (c)

10. The locus of the point of intersection of perpendicular tangents to $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$ is:

(a). $ x^2+y^2=25$

(b). $x^2+y^2=16$

(c). $x^2+y^2=41$

(d). $x^2+y^2=9$

Show Answer Answer: (d)


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ