HYPERBOLA- 8 (Practice Problems)

Practice problems

1. Equation of conjugate axis of hyperbola $x y-3 y-4 x+7=0$ is

(a) $x+y=7$

(b) $x+y=3$

(c) $\mathrm{x}-\mathrm{y}=7$

(d) None of these

Show Answer

Solution:

$ \begin{aligned} & x y-3 y-4 x+7=0 \\ & x y-3 y-4 x+12=5 \\ & (x-3)(y-4)=5 \end{aligned} $

Equation of asymptotes are $x-3=0$ and $y-4=0$ Since the hyperbola is rectangular hyperbola, axes are bisectors of asymptotes

Hence their slopes are $\pm 1$

$\therefore$ Equation of conjugate axis is

$ \begin{aligned} & y-4=-1(x-3) \\ & x+y=7 \end{aligned} $

Answer: (a)

2. If $S _{1}$ and $S _{2}$ are the foci of the hyperbola whose transverse axis length is 4 and conjugate axis length is $6, S _{3}$ and $\mathrm{S} _{4}$ are the foci of the conjugate hyperbola, then the area of the quadrilateral $\mathrm{S} _{1} \mathrm{~S} _{3} \mathrm{~S} _{2} \mathrm{~S} _{4}$ is

(a) 156

(b) 36

(c) 26

(d) None of these

Show Answer

Solution :

$\mathrm{S} _{1} \mathrm{~S} _{3} \mathrm{~S} _{2} \mathrm{~S} _{4}$ forms a square.

So required area $=4 \times$ area of ${ } _{\Delta} \mathrm{S} _{1} \mathrm{OS} _{3}=4 \times \frac{1}{2}$ ae $\times \mathrm{be} _{1}$

$ \begin{aligned} & =2 \mathrm{abee} _{1}=2.2 .3 . \mathrm{e} \mathrm{e} _{1} \\ & =12 \mathrm{ee} _{1} \end{aligned} $

Now e $=\sqrt{1+\frac{9}{4}}=\frac{\sqrt{13}}{2} \& \mathrm{e} _{1}=\sqrt{1+\frac{9}{4}}=\frac{\sqrt{13}}{2}$

Hence area $=12 \times \frac{\sqrt{13}}{2} \times \frac{\sqrt{13}}{2}=26$ sq.units

Answer: (c)

3. The ellipse $4 x^{2}+9 y^{2}=36$ and the hyperbola $a^{2} x^{2}-y^{2}=4$ intersect at right angles then the equation of the circle through the points of intersection of two conic is

(a) $x^{2}+y^{2}=25$

(c) $5\left(x^{2}+y^{2}\right)-3 x-4 y=0$

(b) $5\left(x^{2}+y^{2}\right)+3 x+4 y=0$

(d) $\left(x^{2}+y^{2}\right)=5$

Show Answer

Solution:

Since ellipse and hyperbola intersect orthogonally, they are confocal.

$ \mathrm{e}=\sqrt{1-\frac{4}{9}}=\frac{\sqrt{5}}{3} $

foci of ellipse $( \pm \sqrt{5}, 0)$

$(a)^{2}=a^{2}+b^{2}$

$ 5=\frac{4}{a^{2}}+4 \Rightarrow a=2 $

Let point of intersection in the first quadrant be $\mathrm{P}\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)$.

$\mathrm{P}$ lies on both the curves.

$4x _{1}^{2}+9 y _{1}^{2}=36 \quad \text { and } 4 x _{1}^{2}-y _{1}^{2}=4$

Adding these two, we get $8 \mathrm{x} _{1}{ }^{2}+8 \mathrm{y} _{1}{ }^{2}=40$

$ \mathrm{x} _{1}^{2}+\mathrm{y} _{1}^{2}=5 $

Equation of circle is $x^{2}+y^{2}=5$

4. If $\mathrm{e}$ is the eccentricity of the hyperbola $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ and $2 \theta$ is angle between the asymptotes then $\cos \theta=$

(a) $\frac{1}{\mathrm{e}}$

(b) $\frac{1-e}{e}$

(c) $\frac{1+\mathrm{e}}{\mathrm{e}}$

(d) None of these

Show Answer

Solution:

$ e=\sqrt{1+\frac{b^{2}}{a^{2}}} $

we know $2 \theta=2 \tan ^{-1}\left(\frac{\mathrm{b}}{\mathrm{a}}\right) \Rightarrow \tan \theta=\frac{\mathrm{b}}{\mathrm{a}}$

$ \mathrm{e}=\sqrt{1+\tan \theta^{2}}=\sec \theta \Rightarrow \cos \theta=\frac{1}{\mathrm{e}} $

Answer: (a)

5. From a point $p(1,2)$ pair of tangents are drawn to a hyperbola in which one tangent to each arm of hyperbola. Equation of asymptotes of hyperbola are $\sqrt{3} x-y+5=0$ and $\sqrt{3} x+y-1=0$ then eccentricity of hyperbola is

(a) $\sqrt{3}$

(b) $\frac{2}{\sqrt{3}}$

(c) $2$

(d) None of these

Show Answer

Solution:

Equation of asymptotes are

$\sqrt{3} \mathrm{x}-\mathrm{y}+5=0$

$-\sqrt{3} \mathrm{x}-\mathrm{y}+1=0$

$\therefore \mathrm{a} _{1} \mathrm{a} _{2}+\mathrm{b} _{1} \mathrm{~b} _{2}=-3+1<0$

$\therefore$ origin lies in acute angle and $\mathrm{P}(1,2)$ lies in obtuse angle.

$\therefore \mathrm{e}=\sec \theta$ where $2 \theta$ is the angle between asymptotes.

$2 \theta=\frac{\pi}{3} \Rightarrow \theta=\frac{\pi}{6}$

$ \mathrm{e}=\sec \frac{\pi}{6}=\frac{2}{\sqrt{3}} $

Answer: (b)

6. If a variable line has its intercepts on the coordinate axes $\mathrm{e}, \mathrm{e}^{\prime}$ where $\frac{\mathrm{e}}{2}, \frac{\mathrm{e}^{\prime}}{2}$ are the eccentricities of a hyperbola and its conjugate hyperbola, then the line always touches the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{r}^{2}$, where $\mathrm{r}=$

(a) $4$

(b) $3$

(c) $2$

(d) Can not be decided

Show Answer

Solution:

Now $\frac{4}{\mathrm{e}^{2}}+\frac{4}{\left(\mathrm{e}^{\prime}\right)^{2}}=1 \Rightarrow 4=\frac{\mathrm{e}^{2}\left(\mathrm{e}^{\prime}\right)^{2}}{\mathrm{e}^{2}+\left(\mathrm{e}^{\prime}\right)^{2}}$

Line passing through the points $(e, 0)$ and $\left(0, e^{\prime}\right)$ is $e^{\prime} x+e y=e e^{\prime}$

It is a tangent to the circle $x^{2}+y^{2}=r^{2}$

$ \therefore\left|\frac{\mathrm{ee}^{\prime}}{\sqrt{\mathrm{e}^{2}+\left(\mathrm{e}^{\prime}\right)^{2}}}\right|=\mathrm{r} $

$2=\mathrm{r}$

Answer: (c)

7. If angle between asymptotes of hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $120^{\circ}$ and product of perpendiculars drawn from foci upon its any tangent is 9 , then locus of point of intersection of perpendicular tangents of the hyperbola can be

(a) $x^{2}+y^{2}=18$

(b) $\mathrm{x}^{2}+\mathrm{y}^{2}=6$

(c) $\mathrm{x}^{2}+\mathrm{y}^{2}=9$

(d) $\mathrm{x}^{2}+\mathrm{y}^{2}=3$

Show Answer

Solution:

$ \begin{aligned} & 2 \tan ^{-1} \frac{\mathrm{b}}{\mathrm{a}}=60^{\circ} \Rightarrow \frac{\mathrm{b}}{\mathrm{a}}=\frac{1}{\sqrt{3}} \\ & \mathrm{~b}^{2}=9 \\ & \therefore \mathrm{a}^{2}=27 \end{aligned} $

Required locus is director circle i.e. $\mathrm{x}^{2}+\mathrm{y}^{2}=27-9$

$ \mathrm{x}^{2}+\mathrm{y}^{2}=18 $

If $\frac{\mathrm{b}}{\mathrm{a}}=\tan 60^{\circ}=\sqrt{3}$

$\mathrm{a}^{2}=3$

Then equation of director circle is $\mathrm{x}^{2}+\mathrm{y}^{2}=3-9=-6$ which is not possible.

Answer: (a)

8. The equation of the transverse axis of the hyperbola

$(x-3)^{2}+(y+1)^{2}=(4 x+3 y)^{2}$ is

(a) $3 x-4 y=0$

(b) $4 x+3 y=0$

(c) $3 x-4 y=13$

(d) $4 x+3 y=9$

Show Answer

Solution:

$ \begin{aligned} & (x-3)^{2}+(y+1)^{2}=(4 x+3 y)^{2} \\ & (x-3)^{2}+(y+1)^{2}=25\left(\frac{4 x+3 y}{5}\right)^{2} \\ & \text { PS }=5 \mathrm{PM} \end{aligned} $

Directrix is $4 x+3 y=0$ and focus is $(3,-1)$

Equation of transverse axis is $y+1=\frac{3}{4}(x-3)$

$3x-4 y=13$

Answer: (c)

Practice questions

1. The equation of common tangents to the parabola $y^{2}=8 x$ and hyperbola $3 x^{2}-y^{2}=3$ is

(a) $x \pm 2 y-1=0$

(b) $x \pm 2 y+1=0$

(c) $2 \mathrm{x} \pm \mathrm{y}+1=0$

(d) $2 \mathrm{x} \pm \mathrm{y}-1=0$

Show Answer Answer: (c)

2. A tangent to the hyperbola $y=\frac{x+9}{x+5}$ passing through the origin is

(a) $x-2 y=0$

(b) $5 x-y=0$

(c) $5 \mathrm{x}+\mathrm{y}=0$

(d) $x+225 y=0$

Show Answer Answer: (b)

3. The equation of the common tangent to the curves $y^{2}=8 x$ and $x y=-1$ is

(a) $y=x+2$

(b) $y=2 x+1$

(c) $2 y=x+8$

(d) $3 y=9 x+2$

Show Answer Answer: (a)

4. Let $\mathrm{PQ}$ be a double ordinate of the hyperbola $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$. If $\mathrm{O}$ be the centre of the hyperbola and $\mathrm{OPQ}$ is an equilateral triangle, then eccentricity e is

(a) $>\sqrt{3}$

(b) $>2$

(c) $>\frac{2}{\sqrt{3}}$

(d) None of these

Show Answer Answer: (c)

5. The difference between the length $2 \mathrm{a}$ of the transverse axis of a hyperbola of eccentricity e and the length of its latus rectum is

(a) $\mathrm{a}\left(2 \mathrm{e}^{2}-1\right)$

(b) $2 \mathrm{a}\left(\mathrm{e}^{2}-1\right)$

(c) $2 \mathrm{a}\left|3-\mathrm{e}^{2}\right|$

(d) $2 \mathrm{a}\left|2-\mathrm{e}^{2}\right|$

Show Answer Answer: (d)

6. The slopes of common tangents to the hyperbolas $\frac{\mathrm{x}^{2}}{9}-\frac{\mathrm{y}^{2}}{16}=1$ and $\frac{\mathrm{y}^{2}}{9}-\frac{\mathrm{x}^{2}}{16}=1$ are

(a) $\pm 2$

(b) $\pm \sqrt{2}$

(c) $\pm 1$

(d) None of these

Show Answer Answer: (c)

7. The two conics $\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$ and $y^{2}=-\frac{b}{a} x$ intersect if $f$

(a) $0<\mathrm{b} \leq \frac{1}{2}$

(b) $0<\mathrm{a} \leq \frac{1}{2}$

(c) b $^{2}<\mathrm{a}^{2}$

(d) $b^{2}>a^{2}$

Show Answer Answer: (a)

8. The point on the hyperbola $\frac{x^{2}}{24}-\frac{y^{2}}{18}=1$ which is nearest to the line $3 x+2 y+1=0$ is

(a) $(-6,3)$

(b) $(3,-6)$

(c) $(-6,-3)$

(d) $(6,3)$

Show Answer Answer: (d)

9. If $(\operatorname{asec} \theta, b \tan \theta)$ and $(\operatorname{asec} \phi, b \tan \phi)$ be the coordinates of the ends of a focal chord of the hyperbola $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$, then $\tan \frac{\theta}{2} \tan \frac{\phi}{2}=$

(a) $\frac{1+\mathrm{e}}{1-\mathrm{e}}$

(b) $\frac{1-\mathrm{e}}{1+\mathrm{e}}$

(c) $\frac{\mathrm{e}-1}{\mathrm{e}+1}$

(d) None of these

Show Answer Answer: (b)

10. If the latus rectum of a hyperbola through one focus subtends $60^{\circ}$ angle at the other focus, then its eccentricity e is

(a) $\sqrt{2}$

(b) $\sqrt{3}$

(c) $\sqrt{5}$

(d) $\sqrt{6}$

Show Answer Answer: (b)


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ