PARABOLA-2 (Parabola)

A parabola is the locus of a point, whose distance from a fixed point is equal to the perpendicular distance from a fixed straight line.

Let $\mathrm{S}$ be the focus, $\mathrm{ZZ}^{\prime}$ be the directrix.

Consider $\mathrm{S}(\mathrm{a}, 0)$ and equation of $\mathrm{ZZ}^{\prime}$ is $\mathrm{x}+\mathrm{a}=0$.

Axis of parabola is $\mathrm{x}$-axis.

Now according to definition.

$\mathrm{PS}=\mathrm{PM}$

$ \begin{aligned} & \sqrt{(x-a)^{2}+y^{2}}=\left|\frac{x+a}{\sqrt{1}}\right| \\ & (x-a)^{2}+y^{2}=(x+a)^{2} \\ & y^{2}=4 a x \end{aligned} $

Vertex $(0,0)$

Tangent of latus rectum $\mathrm{x}=0$

Extremities of latus rectum (a, 2a), (a, $-2 \mathrm{a})$

Length of latus rectum. $=4 \mathrm{a}$

Focal distance (SP) $\quad \mathrm{SP}=\mathrm{PM}=\mathrm{x}+\mathrm{a}$

Parametric form $x=a t^{2}, y=2 a t, t$ is parameter.

Focal distance - the distance of a point on the parabola from the focus.

Focal chord - A chord of the parabola, which passes through the focus.

Double ordinate - A chord of the parabola perpendicular to the axis of the parabol(a).

Latus Rectum-A double ordinate passing through the focus or a focal chord perpendicular to the axis of parabol(a).

  • Perpendicular distance from focus on directrix = half the latus rectum.
  • Vertex is middle point of the focus and the point of intersection of directrix and axis.
  • Two parabolas are said to be equal if they have the same latus rectum.

Other Standard Forms of Parabola:

Equation of curve: $y^{2}=-4 a x$ $\mathrm{x}^{2}=4 \mathrm{ay}$ $\mathrm{x}^{2}=-4 \mathrm{ay}$
Vertex $(0,0)$ $(0,0)$ $(0,0)$
Focus $(-a, 0)$ $(0, a)$ $(0,-a)$
Directrix $x-a=0$ $y+a=0$ $y-a=0$
Equation of axis $y=0$ $x=0$ $x=0$
Tangent of vertex $x=0$ $y=0$ $y=0$
Parametric form $\left(-a t^{2}, 2 a t\right)$ $\left(2 a t, a t^{2}\right)$ $\left(2 a t,-a t^{2}\right)$

Position of a point with respet to Parabola

Equation of Parabola when vertex is shifte(d).

I. Axis is Parallel to $\mathrm{x}$-axis:

Let vertex $A$ be $(p, q)$ then equation of parabola be $(y-q)^{2}=4 a(x-p)$.

II. Axis is parallel to y-axis:

Let vertex $A$ be $(p, q)$ then equation of parabola is $(x-p)^{2}=4 a(y-q)$

Example: 1 The equation of parabola is $y=a x^{2}+b x+c$, find its vertex, focus, directrix,

Show Answer

Solution:

Equation of a is, length of latus rectum.

$ \begin{aligned} & y=a \quad x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}-\frac{b^{2}}{4 a^{2}}+c \\ & y-c=a \quad x+\frac{b}{2 a}^{2}-\frac{b^{2}}{4 a^{2}} \end{aligned} $

$ x+\frac{b}{2 a}^{2}=\frac{1}{a} y+\frac{b^{2}}{4 a}-c $

$X^{2}=4 A Y$ where $X=x+\frac{b}{2 a}, Y=y+\frac{b^{2}-4 a c}{4 a}, 4 A=\frac{1}{a}$

Vertex : $X=0, Y=0$ i.e. $-\frac{b}{2 a},-\frac{b^{2}-4 a c}{4 a}$

Focus: $\mathrm{X}=0, \mathrm{Y}=$ A i.e. $\quad-\frac{\mathrm{b}}{2 \mathrm{a}}, \frac{1+4 \mathrm{ac}-\mathrm{b}^{2}}{4 \mathrm{a}}$

Equation of directrix: $y+\frac{b^{2}-4 a c+1}{4 a}=0$

Equation of axis: $x+\frac{b}{2 a}=0$

Length of latus rectum $=\frac{1}{\mathrm{a}}$

Example: 2 The equation of parabola is $\mathrm{y}^{2}=\mathrm{ax}+\mathrm{ay}$. Find its vertex, focus, directrix, axis and length of latus rectum.

Show Answer

Solution:

$y^{2}-a y=a x$

$y^{2}-a y+\frac{a^{2}}{4}=a x+\frac{a^{2}}{4}$

$y-\frac{a}{2}^{2}=a x+\frac{a}{4}$

$\mathrm{Y}^{2}=4 \mathrm{AX}$

Where: $Y=y-\frac{a}{2}, X=x+\frac{a}{4}, 4 A=a$ ie. $A=\frac{a}{4}$

Vertex $-\frac{\mathrm{a}}{4}, \frac{\mathrm{a}}{2}$

Focus $0, \frac{\mathrm{a}}{2}$

Directrix $x+\frac{a}{2}=0$

Axis $y-\frac{a}{2}=0$

Length of latus rectum $=\mathrm{a}$

Practice questions

1. The equation of parabola whose focus is at $(-1,-2)$ and directrix is $x-2 y+3=0$ is

(a). $4 x^{2}-y^{2}-4 x y+4 x-32 y-16=0$

(b). $x^{2}+4 y^{2}+4 x y+x+6 y+16=0$

(c). $4 x^{2}+y^{2}+4 x y+4 x+32 y+16=0$

(d). $4 x^{2}+y^{2}-4 x y+4 x-32 y-1=0$

Show Answer Answer: (c)

2. The equation of parabola whose vertex is at $(4,-1)$ and focus is $(4,-3)$ is

(a). $y^{2}-8 x+8 y+24=0$

(b). $x^{2}-8 x+8 y+24=0$

(c). $y^{2}-8 x-8 y+24=0$

(d). $x^{2}+8 x-8 y-24=0$

Show Answer Answer: (b)

3. The focal distance of a point on the parabola $y^{2}=8 x$ is 8 , then coordinates of the point (s) is/are

(a). $(4 \sqrt{3}, 6)$

(b). $(6,4 \sqrt{3})$

(c). $(4 \sqrt{3},-6)$

(d). $(6,-4 \sqrt{3})$

Show Answer Answer: (b, d)

4. The equation of the parabola whose focus is $(0,0)$ and tangent at the vertex is $x-y+1=0$ is

(a). $x^{2}+y^{2}+2 x y-4 x+4 y-4=0$

(b). $x^{2}+y^{2}+4 x y+4 x+4 y+4=0$

(c). $x^{2}+y^{2}-4 x y+4 x+4 y-4=0$

(d). $x^{2}+y^{2}-4 x y-4 x-4 y-4=0$

Show Answer Answer: (a)


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ