PARABOLA-3

Parametric form

$y^{2}=4 a x$ $y^{2}=-4 a x$ $x^{2}=4 a y$ $x^{2}=-4 a y$
$x=a t^{2}$ $x=-a t^{2}$ $x=2 a t$ $x=2 a t$
$y=2 a t$ $y=2 a t$ $y=a t^{2}$ $y=-a t^{2}$
$\left(a t^{2}, 2 a t\right)$ $\left(-a t^{2}, 2 a t\right)$ $\left(2 a t, a t^{2}\right)$ $\left(2 a t,-a t^{2}\right)$

Properties of Focal chord:

1. If the chord joining $\mathrm{P}\left(\mathrm{t} _{1}\right)$ and $\mathrm{Q}\left(\mathrm{t} _{2}\right)$ is the focal chord then $\mathrm{t} _{1} \cdot \mathrm{t} _{2}=-1$.

$\mathrm{P}, \mathrm{S}$ and $\mathrm{Q}$ lies on the focal chord

$\therefore \quad \mathrm{P}, \mathrm{S}$ and $\mathrm{Q}$ are collinear slope of PS = slope of SQ

$ \begin{aligned} & \frac{2 \mathrm{at} _{1}}{\mathrm{at} _{1}^{2}-\mathrm{a}}=\frac{2 \mathrm{at} _{2}}{\mathrm{at} _{2}^{2}-\mathrm{a}} \\ & \frac{2 \mathrm{t} _{1}}{\mathrm{t} _{1}^{2}-1}=\frac{2 \mathrm{t} _{2}}{\mathrm{t} _{2}^{2}-1} \\ & \mathrm{t} _{1} \mathrm{t} _{2}^{2}-\mathrm{t} _{1}=\mathrm{t} _{2} \mathrm{t} _{1}^{2}-\mathrm{t} _{2} \\ & \mathrm{t} _{2}-\mathrm{t} _{1}=\mathrm{t} _{1} \mathrm{t} _{2}\left(\mathrm{t} _{1}-\mathrm{t} _{2}\right) \\ & -1=\mathrm{t} _{1} \mathrm{t} _{2} \quad \text { or } \quad \mathrm{t} _{2}=-\frac{1}{\mathrm{t} _{1}} \end{aligned} $

Extremities of a focal chord are $\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$ and $\frac{\mathrm{a}}{\mathrm{t}^{2}}, \frac{-2 \mathrm{a}}{\mathrm{t}}$.

2. Length of focal chord is a $t+\frac{1}{t}^{2}$

$ \begin{aligned} P Q & =P S+S Q \\ & =a t^{2}+a+\frac{a}{t^{2}}+a \\ & =a t^{2}+\frac{1}{t^{2}}+2 \\ & =a t+\frac{1}{t}^{2} \end{aligned} $

3. The length of the focal chord which makes an angle $\theta$ with the positive direction of $x$-axis is $4 \mathrm{a} \operatorname{cosec}^{2} \theta$.

We know $\mathrm{PQ}=\mathrm{a} \quad \mathrm{t}+\frac{1}{\mathrm{t}}^{2}$

$ \begin{aligned} & \text { slope }=\tan \theta=\frac{2 \mathrm{at}+\frac{2 \mathrm{a}}{\mathrm{t}}}{\mathrm{at}^{2}-\frac{\mathrm{a}}{\mathrm{t}^{2}}} \\ & \text { slope }=\tan \theta=\frac{2}{\mathrm{t}-\frac{1}{\mathrm{t}}} \\ & 2 \cot \theta=\mathrm{t}-\frac{1}{\mathrm{t}} \\ & \therefore \mathrm{PQ}=\mathrm{a} \mathrm{t}+\frac{1}{\mathrm{t}}^{2} \\ & =\mathrm{a} \quad \mathrm{t}-\frac{1}{\mathrm{t}}^{2}+4 \\ & =\mathrm{a}\left[4 \cot ^{2} \theta+4\right] \quad(\mid \operatorname{cosec} \theta \geq 1) \\ & =4 \mathrm{a} \operatorname{cosec}^{2} \theta \quad \end{aligned} $

  • Minimum length of $\mathrm{PQ}=4 \mathrm{a} \quad$ (i.e. latus rectum)

4. Semi latus rectum of a parabola is the harmonic mean between the segments of any focal chord of the parabola.

$ \begin{aligned} & \mathrm{SP}=\mathrm{a}+\mathrm{at}^{2}, \quad \mathrm{SQ}=\mathrm{a}+\frac{\mathrm{a}}{\mathrm{t}^{2}} \\ & \frac{1}{\mathrm{SP}}+\frac{1}{\mathrm{SQ}}=\frac{1}{\mathrm{a}+\mathrm{at}^{2}}+\frac{1}{\mathrm{a}+\frac{\mathrm{a}}{\mathrm{t}^{2}}}=\frac{1}{\mathrm{a}+\mathrm{at^{2 }}}+\frac{\mathrm{t}^{2}}{\mathrm{at}^{2}+\mathrm{a}}=\frac{1}{\mathrm{a}} \\ & \therefore 2 \mathrm{a}=2 x \frac{\mathrm{SP} x \mathrm{SQ}}{\mathrm{SP}+\mathrm{SQ}} \end{aligned} $

Semi latus rectum $=$ Harmonic Mean of SP and SQ.

5. Circle described on the focal length as diameter touches the tangent at vertex.

Equation of circle PS as diameter is

$\left(x-a t^{2}\right)(x-a)+(y-2 a t) y=0$

Equation of $y$-axis is $x=0$

After solving $\mathrm{y}^{2}-2 a t y+\mathrm{a}^{2} \mathrm{t}^{2}=0$

$ (y-a t)^{2}=0 $

$\therefore$ circle touches the $y$-axis at $(0$, at $)$.

Example: 1 The length of a focal chord of the parabola $y^{2}=4 a x$ at a distance $b$ from the vertex is $\mathrm{c}$, then

(a). $\mathrm{b}^{2}=4 \mathrm{ac}$

(b). $ b^{2} \mathrm{c}=\mathrm{a}^{3}$

(c). $ b^{2} \mathrm{c}=4 \mathrm{a}^{3}$

(d). $ 4 b^{2} c=a^{3}$

Show Answer

Solution: $\mathrm{PQ}=4 \mathrm{a} \operatorname{cosec}^{2} \theta=\mathrm{c}$

In $\triangle \mathrm{OMS}, \sin \theta=\frac{\mathrm{b}}{\mathrm{a}}$

$ \begin{aligned} & \operatorname{cosec}^{2} \theta=\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}} \\ \therefore & c=4 a \cdot \frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}} b^{2} c=4 \mathrm{a}^{3} \end{aligned} $

Answer: c

Example: 2 The coordinates of the ends of a focal chord of a parabola $y^{2}=4 a x$ are $\left(x _{1}, y _{1}\right)$ and $\left(\mathrm{x} _{2}, \mathrm{y} _{2}\right)$ then value of $\mathrm{x} _{1} \mathrm{x} _{2}+\mathrm{y} _{1} \mathrm{y} _{2}$ is equal to

(a). $ 3 \mathrm{a}^{2}$

(b). $-3 a^{2}$

(c). $\mathrm{a}^{2}$

(d). $-a^{2}$

Show Answer

Solution: Let $\left(\mathrm{at} _{1}^{2}, 2 \mathrm{at} _{1}\right) \equiv\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)$ and $\left(\mathrm{at} _{2}^{2}, 2 \mathrm{at} _{2}\right) \equiv\left(\mathrm{x} _{2}, \mathrm{y} _{2}\right)$ such that $\mathrm{t} _{1} \mathrm{t} _{2}=-1$

$\therefore \mathrm{x} _{1} \mathrm{x} _{2}+\mathrm{y} _{1} \mathrm{y} _{2}=\mathrm{a}^{2} \mathrm{t} _{1}^{2} \mathrm{t} _{2}^{2}+4 \mathrm{a}^{2} \mathrm{t} _{1} \mathrm{t} _{2}=\mathrm{a}^{2}-4 \mathrm{a}^{2}=-3 \mathrm{a}^{2}$

Answer: b

Practice questions

1. The focus of the parabola $x^{2}+8 x+12 y+4=0$ is

(a). $(4,2)$

(b). $(-2,-4)$

(c). $(2,4)$

(d). $(-4,-2)$

Show Answer Answer: (d)

2. The equation of the parabola with vertex at $(3,2)$ and focus at $(5,2)$ is

(a). $x^{2}-8 x-4 y-28=0$

(b). $y^{2}-8 x-4 y-28=0$

(c). $x^{2}+8 x-4 y-28=0$

(d). $y^{2}+8 x+4 y-28=0$

Show Answer Answer: (b)

3. The equation of the latus rectum of the parabola $x^{2}+4 x+2 y=0$ is

(a). $2 \mathrm{y}-3=0$

(b). $3 \mathrm{y}-2=0$

(c). $2 y+3=0$

(d). $3 y+2=0$

Show Answer Answer: (a)

4. The equation of the parabola whose axis is parallel to $x$-axis and which passes through the points $(0,4),(1,9)$ and $(-2,6)$ is

(a). $\mathrm{y}^{2}+5 \mathrm{x}-25 \mathrm{y}+139=0$

(b). $3 y^{2}+5 x-25 y+52=0$

(c). $2 \mathrm{y}^{2}-5 \mathrm{x}-25 \mathrm{y}+68=0$

(d). none of these

Show Answer Answer: (c)

5. The parametric equation $x=a^{2}+b t+c, y=a^{\prime} t^{2}+b^{\prime} t+c^{\prime}$ represents

(a). a circle

(b). a parabola

(c). an ellipse

(d). none of these

Show Answer Answer: (b)


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ