PARABOLA-4

Line and Parabola:

Let equation of line be $y=m x+c$ and equation of parabola be $y^{2}=4 a x$.

$(\mathrm{mx}+\mathrm{c})^{2}=4 \mathrm{ax}$

$\mathrm{m}^{2} \mathrm{x}^{2}+2 \mathrm{x}(\mathrm{mc}-2 \mathrm{a})+\mathrm{c}^{2}=0$

$\mathrm{D}=\{2(\mathrm{mc}-2 \mathrm{a})\}^{2}-4 \cdot \mathrm{m}^{2} \cdot \mathrm{c}^{2}$

$=4\left(4 \mathrm{a}^{2}-4 \mathrm{amc}\right)$

If $\mathrm{D}<0$, line do not intersect parabol(a).

i.e. $\quad \mathrm{a}<\mathrm{mc}$

If $\mathrm{D}=0$ i.e. $\quad \mathrm{a}=\mathrm{mc}$, line touches the parabola (condition of tangency)

If $\mathrm{D}>0$ i.e. $\mathrm{a}>\mathrm{mc}$, line intersect the parabola at two points.

Equation of tangent (Point form)

Equation of parabola $\mathrm{y}^{2}=4 \mathrm{ax}$

Differentiate w.r.t.x

$2y \frac{d y}{d x}=4 a$

slope of tangent $=\frac{2 \mathrm{a}}{\mathrm{y} _{1}}$

Equation of tangent $y-y _{1}=\frac{2 a}{y _{1}}\left(x-x _{1}\right)$

$ \begin{aligned} & \mathrm{y} _{1}-\mathrm{y} _{1}^{2}=2 \mathrm{ax}-2 \mathrm{ax} _{1} \\ & \mathrm{y} _{1}=2 \mathrm{ax}+2 \mathrm{ax} _{1} \\ & \mathrm{y} _{1}=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x} _{1}\right) \end{aligned} $

Equation of tangent (Paramatric form)

$ \begin{aligned} & y \cdot 2 a t=2 a\left(x+a t^{2}\right) \\ & t y=x+a t^{2} \end{aligned} $

Equation of tangent (slope form)

$ \mathrm{y}=\mathrm{mx}+\frac{\mathrm{a}}{\mathrm{m}} $

Point of contact $\frac{\mathrm{a}}{\mathrm{m}^{2}}, \frac{2 \mathrm{a}}{\mathrm{m}}$

  • Equation of tangent to the parabola $(\mathrm{y}-\mathrm{k})^{2}=4 \mathrm{a}(\mathrm{x}-\mathrm{h})$ is

$ \mathrm{y}-\mathrm{k}=\mathrm{m}(\mathrm{x}-\mathrm{h})+\frac{\mathrm{a}}{\mathrm{m}} $

Equation of tangent:

Parabola Point form Pt. of contact Parametric form Pt. of contact slope form Pt. of contact
$\mathrm{y}^{2}=4 \mathrm{ax}$ $\mathrm{yy} _{1}=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x} _{1}\right)$ $\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)$ $\mathrm{ty}=\mathrm{x}+\mathrm{at}^{2}$ $\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$ $\mathrm{y}=\mathrm{mx}+\frac{\mathrm{a}}{\mathrm{m}}$ $\frac{\mathrm{a}}{\mathrm{m}^{2}}, \frac{2 \mathrm{a}}{\mathrm{m}}$
$\mathrm{y}^{2}=-4 \mathrm{ax}$ $\mathrm{yy} _{1}=-2 \mathrm{a}\left(\mathrm{x}+\mathrm{x} _{1}\right) $ $\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)$ $\mathrm{ty}=-\mathrm{x}+\mathrm{at}^{2}$ $\left(-\mathrm{at}^{2}, 2 \mathrm{at}\right)$ $\mathrm{y}=\mathrm{mx}-\frac{\mathrm{a}}{\mathrm{m}}$ $-\frac{\mathrm{a}}{\mathrm{m}^{2}}, \frac{-2 \mathrm{a}}{\mathrm{m}}$
$\mathrm{x}^{2}=4 \mathrm{ay}$ $\mathrm{xx} _{1}=2 \mathrm{a}\left(\mathrm{y}+\mathrm{y} _{1}\right) \quad $ $\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)$ $\mathrm{tx}=\mathrm{y}+\mathrm{at}^{2}$ $\left(2 \mathrm{at}, \mathrm{at}^{2}\right)$ $\mathrm{x}=\mathrm{my}+\frac{\mathrm{a}}{\mathrm{m}}$ $\frac{2 \mathrm{a}}{\mathrm{m}}, \frac{\mathrm{a}}{\mathrm{m}^{2}}$
$\mathrm{x}^{2}=-4 \mathrm{ay}$ $\mathrm{xx} _{1}=-2 \mathrm{a}\left(\mathrm{y}+\mathrm{y} _{1}\right) \quad $ $\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)$ $\mathrm{tx}=-\mathrm{y}+\mathrm{at}^{2}$ $\left(2 \mathrm{at},-\mathrm{at}^{2}\right)$ $\mathrm{x}=\mathrm{my}-\frac{\mathrm{a}}{\mathrm{m}} \quad$ $\frac{-2 \mathrm{a}}{\mathrm{m}}, \frac{-\mathrm{a}}{\mathrm{m}^{2}}$

Pair of Tangents from point $\left(x _{1}, y _{1}\right)$

Let eq of parabola be $\quad y^{2}=4 a x$

$S \equiv \mathrm{y}^{2}-4 \mathrm{ax}$

$S _{1} \equiv y _{1}^{2}-4 \mathrm{ax} _{1}$

$\mathrm{T} \equiv \mathrm{yy} _{1}-2 \mathrm{a}\left(\mathrm{x}+\mathrm{x} _{1}\right)$

Equation of pair of tangents is $\mathrm{SS} _{1}=\mathrm{T}^{2} \quad$ i.e.

$\left(y^{2}-4 a x\right)\left(y _{1}^{2}-4 a _{1}\right)=\left\{y _{1}-2 a\left(x+x _{1}\right)\right\}^{2}$

Properties of Tangents:

1. Point of intersection of two tangents of the parabola:-

Equation of tangent at $\mathrm{P}$ is $\mathrm{t} _{1} \mathrm{y}=\mathrm{x}+\mathrm{at} _{1}^{2}$

Equation of tangent at $\mathrm{Q}$ is $\mathrm{t} _{2} \mathrm{y}=\mathrm{x}+\mathrm{at} _{2}^{2}$

Solving these equations, we get

$\mathrm{x}=\mathrm{at} _{1} \mathrm{t} _{2}, \quad \mathrm{y}=\mathrm{at} _{1}+\mathrm{at} _{2}$

$\mathrm{A}\left(\mathrm{at} _{1} \mathrm{t} _{2}, \mathrm{a}\left(\mathrm{t} _{1}+\mathrm{t} _{2}\right)\right)$

2. Locus of foot of prependicular from focus upon any tangent is tangent at vertex:-

Equation of tangent at $\mathrm{P}$ is ty $=\mathrm{x}+\mathrm{at}^{2}$

Let the tangent meet $\mathrm{y}$-axis at $\mathrm{Q}$ then $\mathrm{Q}(0$, at

$ \begin{aligned} \therefore \quad & \text { slope of } Q S=\frac{-a t}{a}=-t \\ & \text { slope of tangent }=\frac{1}{t} \\ & \frac{1}{t} \times(-t)=-1 \quad S Q \perp \text { tangent } \end{aligned} $

3. Length of tangent between the pt. of contact and the point where tangent meets the directrix subtends right angle at focus:-

Eqation of tangent at $P(t)$

$ t y=x+a t^{2} $

Point of intersection with directrix $x=-a$ is

$ -\mathrm{a}, \mathrm{at}-\frac{\mathrm{a}}{\mathrm{t}} $

slope $\mathrm{SP}=\frac{2 \mathrm{at}}{\mathrm{at}^{2}-\mathrm{a}}=\frac{2 \mathrm{t}}{\mathrm{t}^{2}-1}$

$ \begin{aligned} \text { slope } Q S= & \frac{a t-\frac{a}{t}}{-2 a}=\frac{t^{2}-1}{-2 t} \\ & m _{1} m _{2}=-1 \\ & P S \perp Q S \end{aligned} $

4. Tangent at extremities of focal chord are perpendicular and intersect on directrix

(Locus of intersection point of tangents at extremities of focal chord is directrix)

Let $\mathrm{P}\left(\mathrm{at} \mathrm{t}^{2}\right.$, 2at) and $\mathrm{Q} \frac{\mathrm{a}}{\mathrm{t}^{2}}, \frac{-2 \mathrm{a}}{\mathrm{t}}$

Equation of tangent at $P \quad t y=x+a t^{2}……..(1)$

Equation of tangent at $Q \quad-\frac{1}{t} y=x+\frac{a}{t^{2}}$

$y=-t x-\frac{a}{t} …….(2)$

Point of intersection of both tangents, we get after sloving (1) & (2) i.e.

$ x+a=0 $

A point lies on the directrix.

Practice questions

1. If the tangents to the parabola $y^{2}=4 a x$ at the points $\left(x _{1}, y _{1}\right)$ and $\left(x _{2}, y _{2}\right)$ meet at the point $\left(x _{3}, y _{3}\right)$ then

(a). $\mathrm{y} _{3}^{2}=\sqrt{\mathrm{y} _{1} \mathrm{y} _{2}}$

(b). $2 \mathrm{y} _{3}=\mathrm{y} _{1}+\mathrm{y} _{2}$

(c).

(d). none of these

Show Answer Answer: (a)

2. A right angled triangle $\mathrm{ABC}$ is inscribed in parabola $\mathrm{y}^{2}=4 \mathrm{x}$, where $\mathrm{A}$ is vertex of parabola and $\angle \mathrm{BAC}=90^{\circ}$. If $\mathrm{AB}=$, then area of $\triangle \mathrm{ABC}$ is

(a). 40

(b). 10

(c). 20

(d). $4 \sqrt{5}$

Show Answer Answer: (c)

3. The locus of the point $(\sqrt{3 h}, \sqrt{3 k+2})$ if it lies on the line $x-y-1=0$ is a

(a). circle

(b). parabola

(c). straight line

(d). none of these

Show Answer Answer: (b)

4. The length of the chord of the parabola $y^{2}=x$ which is bisected at the point $(2,1)$ is

(a). 5

(b). 4

(c). $ 2 \sqrt{5}$

(d). $5 \sqrt{2}$

Show Answer Answer: (c)

5. If $y=m x+c$ touches the parabola $y^{2}=4 a(x+a)$, then

(a). $\mathrm{c}=\frac{\mathrm{a}}{\mathrm{m}}$

(b). $ \mathrm{c}=\mathrm{a}+\frac{\mathrm{a}}{\mathrm{m}}$

(c). $ \mathrm{c}=\frac{2 \mathrm{a}}{\mathrm{m}}$

(d). $ \mathrm{c}=\mathrm{am}+\frac{\mathrm{a}}{\mathrm{m}}$

$ \frac{\sqrt{25}}{\mathrm{y} _{3}}=\frac{1}{\mathrm{y} _{1}}+\frac{1}{\mathrm{y} _{2}} $

Show Answer Answer: (d)


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ