PARABOLA-5

Examples

1. The focal chord to $y^{2}=16 x$ is tangent to $(x-6)^{2}+y^{2}=2$, then the possible value of the slope of this chord, are

(a). $ \{-1,1\}$

(b). $\{-2,2\}$

(c). $ -2, \frac{1}{2}$

(d). $2,-\frac{1}{2}$

Show Answer

Solution: The focus of parabola is $(4,0)$. Let slope of focal chord be $m$. Equation of focal chord is $y=m(x-4)$. It is tangent to the circle then

$ \begin{aligned} & \left|\frac{6 m-4 m}{\sqrt{m^{2}+1}}\right|=\sqrt{2} \\ & 4 m^{2}=2\left(m^{2}+1\right) \\ & 2 m^{2}=2 \\ & m= \pm 1 \end{aligned} $

Answer: a

2. The curve represented by $\sqrt{\mathrm{ax}}+\sqrt{\mathrm{by}}=1$, where $\mathrm{a}, \mathrm{b}>0$ is

(a). a circle

(b). a parabola

(c). an ellipse

(d). a hyperbola

$\sqrt{\mathrm{ax}}=1-\sqrt{\mathrm{by}}$

Show Answer

Solution: $\mathrm{ax}=1+\mathrm{by}-2 \sqrt{\mathrm{by}}$

$ \begin{aligned} & (a x-b y-1)^{2}=(-2 \sqrt{b y})^{2} \\ & a^{2} x^{2}+b^{2} y^{2}+1-2 a b x y-2 a x+2 b y=4 b y \\ & a^{2} x^{2}-2 a b x y+b^{2} y^{2}-2 a x-2 b y+1=0 \\ & \begin{array}{rlr} \Delta=\left|\begin{array}{ccc} a^{2} & -a b & -a \\ -a b & b^{2} & -b \\ -a & -b & 1 \end{array}\right| \\ & =a^{2}\left(b^{2}-b^{2}\right)+a b(-a b-a b)-a\left(a b^{2}+a b^{2}\right) \\ & =0-2 a^{2} b^{2}-2 a^{2} b^{2} \\ & =-4 a^{2} b^{2} \neq 0 \end{array} \\ & h^{2}-a b=(-a b)^{2}-\left(a^{2}\right)\left(b^{2}\right)=0 \\ & \therefore \text { It is a parabola } \end{aligned} $

Answer: b

3. The equation of the directrix of the parabola $y^{2}+4 x+4 y+2=0$ is

(a). $\mathrm{x}=-1$

(b). $ \mathrm{x}=1$

(c). $x=\frac{-3}{2}$

(d). $ x=\frac{3}{2}$

Show Answer

Solution: $\mathrm{y}^{2}+4 \mathrm{y}=-4 \mathrm{x}-2$

$(y+2)^{2}=-4 x-\frac{1}{2}$

$y^{2}=-4 A X$

Equation of directrix is $\mathrm{X}=$ Ai.e. $\mathrm{x}-\frac{1}{2}=1$

$2 \mathrm{x}-3=0$ or $\mathrm{x}=\frac{3}{2}$

Answer: d

4. The locus of the midpoint of the segment joining the focus to a moving point on the parabola $y^{2}=4 a x$ is another parabola with directrix

(a). $y=0$

(b). $\mathrm{x}=-\mathrm{a}$

(c). $ \mathrm{x}=0$

(d). none of these

Show Answer

Solution: Let $\mathrm{P}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$ lies on the parabola

$\mathrm{y}^{2}=4 \mathrm{ax}$

Mid point of PS is Q.

$\mathrm{h}=\frac{\mathrm{at}{ }^{2}+\mathrm{a}}{2}, \mathrm{k}=\frac{0+2 \mathrm{at}}{2}$

$\frac{2 \mathrm{~h}-\mathrm{a}}{\mathrm{a}}=\mathrm{t}^{2}, \frac{\mathrm{k}}{\mathrm{a}}=\mathrm{t}$

$\frac{2 \mathrm{~h}-\mathrm{a}}{\mathrm{a}}=\frac{\mathrm{k}}{\mathrm{a}}^{2}$

$\mathrm{a}(2 \mathrm{~h}-\mathrm{a})=\mathrm{k}^{2}$

Locus of $(h, k)$ is $ y^{2}=2 a x-\frac{a}{2}$

Equaiton of directrix is $x-\frac{a}{2}=-\frac{a}{2}$

$ x=0 $

Answer: c

5. The angle between the tangents drawn from the point $(1,4)$ to the parabola $\mathrm{y}^{2}=4 \mathrm{x}$ is

(a). $\frac{\pi}{6}$

(b). $\frac{\pi}{4}$

(c). $\frac{\pi}{3}$

(d). $\frac{\pi}{2}$

Show Answer

Solution: Equation of tangent of the parabola $y^{2}=4 x$ is

$ \mathrm{y}=\mathrm{mx}+\frac{1}{\mathrm{~m}} $

This equation passes through $(1,4)$ i.e.

$4=\mathrm{m}+\frac{1}{\mathrm{~m}}$

$ m^{2}-4 m+1=0 $

$\mathrm{m} _{1} \cdot \mathrm{m} _{2}=1$ and $\mathrm{m} _{1}+\mathrm{m} _{2}=4$

Angle between the two tangents is $\tan \theta=\left|\frac{\mathrm{m} _{1}-\mathrm{m} _{2}}{1+\mathrm{m} _{1} \mathrm{~m} _{2}}\right|$

$\tan \theta=\left|\frac{\sqrt{(4)^{2}-4}}{1+1}\right|=\frac{\sqrt{12}}{2}=\sqrt{3}$

$\therefore \theta=\frac{\pi}{3}$

Answer: c

6. Tangent to the curve $y=x^{2}+6$ at a point $(1,7)$ touches the circle $x^{2}+y^{2}+16 x+12 y+c$ $=0$ at a point $\mathrm{Q}$ then coordinates of $\mathrm{Q}$ are

(a). $(-6,-11)$

(b). $(-9,-13)$

(c). $(-10,-15)$

(d). $(-6,-7)$

Show Answer

Solution: Equation of tangent at $(1,7)$ to the curve $y=x^{2}+6$ is

$\frac{\mathrm{y}+7}{2}=\mathrm{x}+6$

$2 \mathrm{x}-\mathrm{y}+5=0$

This line also touches the circle i.e.

Equation of normal of circle passing through

centre $(-8,-6)$.

$\mathrm{x}+2 \mathrm{y}+\lambda=0$

$-8-12+\lambda=0$

$\lambda=20$

$\therefore \mathrm{x}+2 \mathrm{y}+20=0$

$\mathrm{Q}$ is intersection point of (1) and (2)

$\mathrm{x}=-6$,

$y=-7$

$\mathrm{Q}(-6,-7)$

Answer: d

7. Consider the two curves $c _{1}: y^{2}=4 x, c _{2}: x^{2}+y^{2}-6 x+1=0$. Then

(a). $ \mathrm{c} _{1}$ and $\mathrm{c} _{2}$ touch each other only at one point.

(b). $ \mathrm{c} _{1}$ and $\mathrm{c} _{2}$ touch each other only at two points.

(c). $ \mathrm{c} _{1}$ and $\mathrm{c} _{2}$ intersect (but do not touch) at exactly two points.

(d). $ c _{1}$ and $c _{2}$ neither intersect nor touch each other.

Show Answer

Solution: Let eq $\mathrm{q}^{\mathrm{n}}$ of tangent of parabola be $\mathrm{y}=\mathrm{mx}+\frac{1}{\mathrm{~m}}$ is also a tangent to the circle then $\left|\frac{3 m+\frac{1}{m}}{\sqrt{1+m^{2}}}\right|=2 \sqrt{2}$ $\frac{\left(3 m^{2}+1\right)^{2}}{m^{2}}=8\left(1+m^{2}\right)$

$\mathrm{m}^{4}-2 \mathrm{~m}^{2}+1=0$

$\mathrm{m}^{2}=1 \mathrm{~m}= \pm 1 $ Two common tangents are possible.

8. If $b, c$ are intercepts of a focal chord of the parabola $y^{2}=4 a x$ then $c$ is equal to

(a). $\frac{\mathrm{b}}{\mathrm{b}-\mathrm{a}}$

(b). $\frac{\mathrm{a}}{\mathrm{b}-\mathrm{a}}$

(c). $\frac{a b}{a-b}$

(d). $\frac{\mathrm{ab}}{\mathrm{b}-\mathrm{a}}$

Show Answer

Solution: We know that $2 \mathrm{a}=\frac{2 \mathrm{xSAxSB}}{\mathrm{SA}+\mathrm{SB}}$

$2 a=\frac{2 b c}{b+c} \Rightarrow \begin{aligned} a b & =b c-a c \\ a b & =(b-o) c\end{aligned}$

$\mathrm{ab}+\mathrm{ac}=\mathrm{bc}$

$\frac{a b}{b-a}=c$

Answer: d

9. The circle $x^{2}+y^{2}-2 x-6 y+2=0$ intersects the parabola $y^{2}=8 x$ orthogonally at the point $\mathrm{P}$. The equation of the tangent to the parabola at $\mathrm{P}$ can be

(a). $2 x-y+1=0$

(b). $ 2 x+y-2=0$

(c). $ x+y-4=0$

(d). $x-y-4=0$

Show Answer

Solution: Let $y=m x+\frac{2}{m}$ be tangent to $y^{2}=8 x$. Since circle intersects the parabola orthogonally. So this tangent is the normal for the circle. Every normal of the circle passes through its centre. So centre $(1,3)$.

$ \begin{aligned} & 3=m+\frac{2}{m} m^{2}-3 m+2=0 \\ & (m-2)(m-1)=0 \\ & m=1,2 \\ & y=x+2 \text { or } y=2 x+1 \\ \end{aligned} $

Answer: a



Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ