PARABOLA-6

Equation of Normal

(i) Point form :

$\mathrm{y}^{2}=4 \mathrm{ax}$

Differentiate w.r.t.x

$ \begin{aligned} & 2 y \frac{d y}{d x}=4 a \\ & \frac{d y}{d x}=\frac{2 a}{y} \end{aligned} $

Slope of normal $=-\frac{\mathrm{y} _{1}}{2 \mathrm{a}}$

Equation of normas at $\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)$ is

$ y-y _{1}=-\frac{y _{1}}{2 a}\left(x-x _{1}\right) $

(ii) Parametric form :

$\mathrm{P}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$

replace $x _{1}$ by $\mathrm{at}^{2}$ and $\mathrm{y} _{1}$ by 2 at

$ \begin{aligned} & y-2 a t=-\frac{2 a t}{2 a}\left(x-a t^{2}\right) \\ & y=-t x+a t^{3}+2 a t \\ & t x+y-a t^{3}-2 a t=0 \end{aligned} $

(iii) Slope form:

$ \begin{aligned} & \text { Replace } t \text { by }-m \\ & y=m x-2 a m-a^{3} \end{aligned} $

$y=m x+c$ is normal to parabola $y^{2}=4 a x$ if

$\mathrm{c}=-2 \mathrm{am}-\mathrm{am}^{3}$ ie., condition of normal.

Equation of Normal

Parabola Point form Pt.of contact Parametric form Point of contact slope Form Pt.of contact
$y^2=4 a x$ $y-y_1=\frac{-y_1}{2 a}\left(x-x_1\right)$ $\left(x_1, y_1\right)$ $y=-t x+2 a t+a t^3$ $\left(a t^2, 2 a t\right)$ $y=m x-2 a m-a m^3$ $\left(a m^2,-2 a m\right)$
$y^2=-4 a x$ $y-y_1=\frac{y_1}{2 a}\left(x-x_1\right)$ $\left(x_1, y_1\right)$ $y=-t x+2 a t+a t^3$ $\left(-a t^2, 2 a t\right)$ $y=m x+2 a m+a m^3$ $\left(-a m^2, 2 a m\right)$
$x^2=4 a y$ $x-x_1=-\frac{x_1}{2 a}\left(y-y_1\right)$ $\left(x_1, y_1\right)$ $x=-t y+2 a t+a t^3$ $\left(2 a t, a t^2\right)$ $y=m x+2 a+\frac{a}{m^2}$ $\left(-\frac{2 a}{m}, \frac{a}{m^2}\right)$
$x^2=-4 a y$ $x-x_1=\frac{x_1}{2 a}\left(y-y_1\right)$ $\left(x_1, y_1\right)$ $x=t y+2 a t+a t^3$ $\left(2 a t,-a t^2\right)$ $y=m x-2 a-\frac{a}{m^2}$ $\left(\frac{2 a}{m},-\frac{a}{m^2}\right)$

Equation of normal to the parabola $(\mathrm{y}-\mathrm{k})^{2}=4(\mathrm{x}-\mathrm{h})$ is

$ y-k=m(x-h)-2 a m-a m^{3} $

Properties of Normal

1. If the normal at the point $\mathrm{P}\left(\mathrm{at} _{1}{ } _{1}^{2}, 2 \mathrm{at} _{1}\right)$ meets the parabola at

$\mathrm{Q}\left(\mathrm{at} _{2}{ }^{2}, 2 \mathrm{at} _{2}\right)$, then $\mathrm{t} _{2}=-\mathrm{t} _{1}-\frac{2}{\mathrm{t} _{1}}$

Let equation of parabola be $\mathrm{y}^{2}=4 \mathrm{ax}$.

Equation of normal at $\mathrm{P}$ is

$ \mathrm{y}=-\mathrm{t} _{1} \mathrm{x}+2 \mathrm{at} _{1}+\mathrm{at} _{1}^{3} $

Point $\mathrm{Q}$ lies on the normal, so

$ \begin{aligned} & 2 \mathrm{at} _{2}=-\mathrm{at} _{1} \mathrm{t} _{2}{ }^{2}+2 \mathrm{at} _{1}+\mathrm{at} _{1}{ }^{3} \\ & 2 \mathrm{a}\left(\mathrm{t} _{2}-\mathrm{t} _{1}\right)=-\mathrm{at} _{1}\left(\mathrm{t} _{2}{ }^{2}-\mathrm{t} _{1}^{2}\right) \\ & 2=-\mathrm{t} _{1}\left(\mathrm{t} _{2}+\mathrm{t} _{1}\right) \\ & \therefore \mathrm{t} _{2}=-\mathrm{t} _{1}-\frac{2}{\mathrm{t} _{1}} \end{aligned} $

2. If the normal at the points $\left(a t _{1}{ }^{2}, 2 \mathrm{at} _{1}\right)$ and $\left(\mathrm{at} _{2}{ }^{2}, 2 \mathrm{at} _{2}\right)$ meet on the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$, then $\mathrm{t} _{1} \mathrm{t} _{2}=2$.

Let the equation of normal at $\left(\mathrm{at} _{1}{ }^{2}, 2 \mathrm{at} _{1}\right)$ and $\left(\mathrm{at} _{2}{ } _{2}^{2}, 2 \mathrm{at} _{2}\right)$ be

$ \mathrm{y}=-\mathrm{t} _{1} \mathrm{x}+2 \mathrm{at} _{1}+\mathrm{at} _{1}^{3} $

and $y=-\mathrm{t} _{2} \mathrm{x}+2 \mathrm{at} _{2}+\mathrm{at} _{2}{ }^{3}$

meet the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ at $\left(\mathrm{at} _{3}{ }^{2}, 2 \mathrm{at} _{3}\right)$ then

$ \begin{aligned} & \mathrm{t} _{3}=-\mathrm{t} _{1}-\frac{2}{\mathrm{t} _{1}} \text { and } \mathrm{t} _{3}=-\mathrm{t} _{2}-\frac{2}{\mathrm{t} _{2}} \\ & \therefore-\mathrm{t} _{1}-\frac{2}{\mathrm{t} _{1}}=-\mathrm{t} _{2}-\frac{2}{\mathrm{t} _{2}} \\ & \mathrm{t} _{2}-\mathrm{t} _{1}=2\left(\frac{1}{t _{1}} \frac{1}{t _{2}}\right) \Rightarrow t _{2}-t _{1}=2\left(\frac{t _{2}-t _{1}}{t _{1} t _{2}}\right) \\ & \Rightarrow \mathrm{t} _{1} \mathrm{t} _{2}=2 \end{aligned} $

3. No normal other than axis passes through focus.

Let equation of normal be $y=m x-2 a m-a m^{3}$

passes through $(a, 0)$ ie. focus

$ \begin{aligned} \therefore \quad & 0=m a-2 a m-a^{3} \\ & 0=-a m-a^{3} \\ & 0=-a m\left(\left(1+m^{2}\right) \Rightarrow m=0\right. \text { i.e. axis } \\ & 1+\mathrm{m}^{2}=0 \text { which is not possible. } \end{aligned} $

Example: 1 Three normals to $\mathrm{y}^{2}=4 \mathrm{x}$ pass through the point $(15,12)$. One of the normals is

(a) $x+y=27$

(b) $x+4 y=63$

(c) $3 x-y=33$

(d) $y+3 x=51$

Show Answer

Solution:

Let equation of normal be $y=m x-2 a m-a m^{3}$. $a=1$

$ \therefore \mathrm{y}=\mathrm{mx}-2 \mathrm{~m}-\mathrm{m}^{3} $

passes through $(15,12)$

$ 12=15 \mathrm{~m}-2 \mathrm{~m}-\mathrm{m}^{3} $

$ \begin{gathered} \mathrm{m}^{3}-13 \mathrm{~m}+12=0 \\ (\mathrm{~m}-1)(\mathrm{m}-3)(\mathrm{m}+4)=0 \\ \mathrm{~m}=1,3,-4 \\ \mathrm{~m}=1 \Rightarrow \mathrm{y}=\mathrm{x}-3 \\ \mathrm{~m}=3 \Rightarrow \mathrm{y}=3 \mathrm{x}-33 \\ \mathrm{~m}=-4 \Rightarrow \mathrm{y}+4 \mathrm{x}=72 \end{gathered} $

Answer: (c)

Example: 2 The minimum distance between the curves $x^{2}+y^{2}-12 x+31=0$ and $y^{2}=4 x$ is

(a) $\sqrt{5}$

(b) $2 \sqrt{5}$

(c) $6-\sqrt{5}$

(d) None of these.

Show Answer

Solution:

Centre $(6,0)$ radius $=\sqrt{36+0-31}=\sqrt{5}$

Minimum distance obtained along the common normal.

$ y^{2}=4 x $

Differentiate w.r.t.x

$2 \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}=4$

$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2}{\mathrm{y}}$

slope of normal at $\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)$ is $-\frac{\mathrm{y} _{1}}{2}$

Also slope of CQ $\quad=\frac{y _{1}-0}{x _{1}-6}=-\frac{y _{1}}{2}$

Points are $(0,0),(4,4),(4,-4)$

$ \Rightarrow y _{1}=0 \text { or } x _{1}=4 $

$\mathrm{OC}=6$

$\mathrm{QC}=2 \sqrt{5}$

$\mathrm{RC}=2 \sqrt{5}$

Minimum distance $\left\{\begin{array}{l}\mathrm{OC}-\mathrm{R}=6-\sqrt{5} \\ \mathrm{QC}-\mathrm{R}=2 \sqrt{5}-\sqrt{5}=\sqrt{5} \\ \mathrm{RC}-\mathrm{R}=2 \sqrt{5}-\sqrt{5}=\sqrt{5}\end{array}\right\}$ is $\sqrt{5}$

Answer: (a)

Important Properties :

  • If the tangent and normal at any point ’ $\mathrm{P}$ ’ of the parabola intersect the axis at $\mathrm{T}$ and $\mathrm{N}$ then $\mathrm{ST}$ $=\mathrm{SN}=\mathrm{SP}$ where $\mathrm{S}$ in the focus.
  • The portion of a tangent to a parabola cut off between the directrix & the curve subtends a right angle at the focus.

$ \angle \mathrm{PSQ}=90^{\circ} $

  • Any tangent to a parabola and the perpendicular on it from the focus meet on the tangent at the vertex.

$\angle \mathrm{PQS}=90^{\circ}$

  • If the tangents at $\mathrm{A}$ and $\mathrm{B}$ meet in $\mathrm{P}$ then $\mathrm{PA}$ and $\mathrm{PB}$ subtends equal angles at the focus $\mathrm{S}$. $(\mathrm{SP})^{2}=\mathrm{SA} \times \mathrm{SB}$

$\triangle \mathrm{SAP} \sim \triangle \mathrm{SPB}$

$\angle \mathrm{PSA}=\angle \mathrm{PSB}$.

  • The area of the triangle formed by three points on a parabola is twice the area of the triangle formed by the tangents at these points.

Practice questions

1. The normal at the point $(2,4)$ of the parabola $y^{2}=8 x$ meets the parabola at the point

(a). $(18,-12)$

(b). $(12,-18)$

(c). $(12,18)$

(d). $(18,12)$

Show Answer Answer: (a)

2. If $y+b=m _{1}(x+a)$ and $y+b=m _{2}(x+a)$ are two tangents to the parabola $y^{2}=4 a x$, then

(a). $\mathrm{m} _{1} \mathrm{~m} _{2}=1$

(b). $\mathrm{m} _{1} \mathrm{~m} _{2}=-1$

(c). $\mathrm{m} _{1}+\mathrm{m} _{2}=0$

(d). $\mathrm{m} _{1}-\mathrm{m} _{2}=0$

Show Answer Answer: (b)

3. If normals at the ends of the double ordinate $x=4$ of parabola $y^{2}=4 x$ meet the curve again in $\mathrm{P}$ and $\mathrm{P}^{\prime}$ respectively, then $\mathrm{P}=$

(a). 10

(b). 6

(c). 12

(d). 18

Show Answer Answer: (c)

4. Radius of the largest circle which passes through the focus of the parabola $y^{2}=4 x$ and contained in it, is

(a). 2

(b). 4

(c). 6

(d). 8

Show Answer Answer: (b)

5. If the normal at $(1,2)$ on the parabola $y^{2}=4 x$ meets the parabola again at the point $\left(t^{2}, 2 t\right)$, then $t$ is

(a). $3$

(b). $1$

(c). $2$

(d). $-3$

Show Answer Answer: (d)

6. If $x=m y+c$ is a normal to the parabola $\frac{x^{2}-\mathrm{a}}{4}+\frac{\mathrm{a}}{\mathrm{a} m \text { Then }} \mathrm{c}=$

(a). $2 a m+a^{3}$

(b).

(c). $-2 \mathrm{am}-\mathrm{am}^{3}$

(d). $-\frac{2 \mathrm{a}}{\mathrm{m}}-\frac{\mathrm{a}}{\mathrm{m}^{3}}$

Show Answer Answer: (c)


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ