PARABOLA-7

Conormal points:

Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ be a point and equation of parabola be $\mathrm{y}^{2}=4 \mathrm{ax}$.

Equation of normal is

$ y=m x-2 a m-a m^{3} $

If passes through $(\mathrm{h}, \mathrm{k})$ so

$ \begin{aligned} & \mathrm{k}=\mathrm{mh}-2 \mathrm{am}-\mathrm{am}^{3} \\ & \mathrm{am}^{3}+2 \mathrm{am}-\mathrm{mh}+\mathrm{k}=0 \\ & \mathrm{am}^{3}+\mathrm{m}(2 \mathrm{a}-\mathrm{h})+\mathrm{k}=0 \end{aligned} $

Suppose $\mathrm{m} _{1}, \mathrm{~m} _{2}, \mathrm{~m} _{3}$ are the roots of this equation

$\therefore \quad \mathrm{m} _{1}+\mathrm{m} _{2}+\mathrm{m} _{3}=0$

$ \begin{aligned} & \mathrm{m} _{1} \mathrm{~m} _{2}+\mathrm{m} _{2} \mathrm{~m} _{3}+\mathrm{m} _{3} \mathrm{~m} _{1}=\frac{2 \mathrm{a}-\mathrm{h}}{\mathrm{a}} \\ & \mathrm{m} _{1} \cdot \mathrm{m} _{2} \cdot \mathrm{m} _{3}=-\frac{\mathrm{k}}{\mathrm{a}} \end{aligned} $

So maximum three normal say PM, PN, PQ drawn through P. Points M, N, Q are called co-normal points.

  • The algebraic sum of ordinates of the conormal points is zero. Let the coordinates of conormal points be $\mathrm{M}\left(\mathrm{am} _{1}{ }^{2},-2 \mathrm{am} _{1}\right), \mathrm{N}\left(\mathrm{am} _{2}{ }^{2},-2 \mathrm{am} _{2}\right)$ and $\mathrm{Q}\left(\mathrm{am} _{3}^{2},-2 \mathrm{am} _{3}\right)$. The ordinates of these points $\mathrm{y} _{1}+\mathrm{y} _{2}+\mathrm{y} _{3}=-2 \mathrm{am} _{1}-2 \mathrm{am} _{2}-2 \mathrm{am} _{3}$ $=-2 \mathrm{a}\left(\mathrm{m} _{1}+\mathrm{m} _{2}+\mathrm{m} _{3}\right)$ $=0$ $ \Rightarrow \mathrm{y} _{1}+\mathrm{y} _{2}+\mathrm{y} _{3}=0$

  • Centroid of the triangle formed by conormal points lies on the axis of parabola. Let coordinates of conormal points be $\mathrm{M}\left(\mathrm{x} _{2}, \mathrm{y} _{1}\right), \mathrm{N}\left(\mathrm{x} _{2}, \mathrm{y} _{2}\right) \mathrm{Q}\left(\mathrm{x} _{3}, \mathrm{y} _{3}\right)$ Then centroid is $\left(\frac{\mathrm{x} _{1}+\mathrm{x} _{2}+\mathrm{x} _{3}}{3}, \frac{\mathrm{y} _{1}+\mathrm{y} _{2}+\mathrm{y} _{3}}{3}\right)=\left(\frac{\mathrm{x} _{1}+\mathrm{x} _{2}+\mathrm{x} _{3}}{3}, 0\right)$ Since sum of ordinates is zero. Therefore centroid lies on the axis of parabola.

  • Normal drawn from a point $\mathrm{P}(\mathrm{h}, \mathrm{k})$ to the parabola are real and distinct if $\mathrm{h}>2 \mathrm{a}$.

$ \begin{aligned} & \mathrm{m} _{1}^{2}+\mathrm{m} _{2}^{2}+\mathrm{m} _{3}^{2}>0 \\ \Rightarrow & \left(\mathrm{m} _{1}+\mathrm{m} _{2}+\mathrm{m} _{3}\right)^{2}-2\left(\mathrm{~m} _{1} \mathrm{~m} _{2}+\mathrm{m} _{2} \mathrm{~m} _{3}+\mathrm{m} _{1} \mathrm{~m} _{3}\right)>0 \\ \Rightarrow & 0-\frac{2(2 \mathrm{a}-\mathrm{h})}{\mathrm{a}}>0 \\ \Rightarrow & 2 \mathrm{a}-\mathrm{h}<0 \\ \Rightarrow & \mathrm{h}>2 \mathrm{a} \end{aligned} $

This shows that position of point

$(h, k)$ should be in shaded region.

  • Equation of a circle passing through the conormal points

Let $\mathrm{M}\left(\mathrm{am} _{1}{ }^{2},-2 \mathrm{am} _{1}\right), \mathrm{N}\left(\mathrm{am} _{2}{ }^{2},-2 \mathrm{am} _{2}\right)$ and $\mathrm{Q}\left(\mathrm{am} _{3}{ }^{2},-2 \mathrm{am} _{3}\right)$ be three points on the parabola $\mathrm{y}^{2}=4ax.$

These three normals passes through point $\mathrm{p}(\mathrm{h}, \mathrm{k})$

$\therefore \mathrm{am}^{3}+(2 \mathrm{a}-\mathrm{h}) \mathrm{m}+\mathrm{k}=0 ……(1)$

$\begin{aligned} \Rightarrow \quad & m_1+m_2+m_3=0 \\ & m_1 m_2+m_2 m_3+m_1 m_3=\frac{2 a-h}{a} \\ & m_1 m_2 m_3=-\frac{k}{a}\end{aligned}$

Let equation of circle be $x^{2}+y^{2}+2 g x+2 f y+c=0$

If the point $\left(\mathrm{am}^{2},-2 \mathrm{am}\right)$ lies on the circle then

$\left(\mathrm{am}^{2}\right)^{2}+(-2 \mathrm{am})^{2}+2 \mathrm{~g}\left(\mathrm{am}^{2}\right)+2 \mathrm{f}(-2 \mathrm{am})+\mathrm{c}=0$

$\mathrm{a}^{2} \mathrm{~m}^{4}+4 \mathrm{a}^{2} \mathrm{~m}^{2}+2 \mathrm{gam}^{2}-4 \mathrm{afm}+\mathrm{c}=0$

$a^{2} m^{4}+\left(4 a^{2} m^{2}+2 g a\right) m^{2}-4 a f m+c=0………(2)$

This equation has four roots say $\mathrm{m} _{1}, \mathrm{~m} _{2}, \mathrm{~m} _{3}, \mathrm{~m} _{4}$ such

that the circle passes through the points $M\left(a m _{1}^{2},-2 \mathrm{am} _{1}\right)$

$\mathrm{N}\left(\mathrm{am} _{2}{ }^{2},-2 \mathrm{am} _{2}\right), \mathrm{Q}\left(\mathrm{am} _{3}{ }^{2},-2 \mathrm{am} _{3}\right)$ and $\mathrm{S}\left(\mathrm{am} _{4}{ }^{2},-2 \mathrm{am} _{4}\right)$

$ \begin{array}{rll} \therefore \mathrm{m} _{1}+\mathrm{m} _{2}+\mathrm{m} _{3}+\mathrm{m} _{4} & =0 & \text { (From equation (2)) } \\ 0+\mathrm{m} _{4} & =0 & \text { (Since } \left.\mathrm{m} _{1}+\mathrm{m} _{2}+\mathrm{m} _{3}=0\right) \\ \therefore \quad \mathrm{m} _{4} & =0 \end{array} $

Therefore circle passes through origin.

$ \therefore \mathrm{c}=0 $

Now equation (2) is

$ \begin{aligned} & a^{2} m^{4}+\left(4 a^{2}+2 g a\right) m^{2}-4 a f m=0 \quad(\div a m) \\ & a m^{3}+(4 a+2 g) m-4 f=0 \end{aligned} $

Now this equation is identical with equation (1)

$ \begin{aligned} & \frac{a}{a}=\frac{2 a-h}{4 a+2 g}=\frac{k}{-4 f} \\ & \Rightarrow 2 g=-(2 a+h), 2 f=-\frac{k}{2} \end{aligned} $

Equation of circle is

$ x^{2}+y^{2}-(2 a+h) x-\frac{k}{2} y=0 $



Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ