PARABOLA-9

Exercises

1. A tangent PT is drawn at the point $\mathrm{P}(16,16)$ to the parabola $\mathrm{y}^{2}=16 \mathrm{x}$. PT tangent intersect the $\mathrm{x}$-axis at $\mathrm{T}$. If $\mathrm{S}$ be the focus of the parabola, then $\angle \mathrm{TPS}$ is equal to

(a). $\tan ^{-1} \frac{1}{2}$

(b). $\frac{\pi}{4}$

(c). $\frac{1}{2} \tan ^{-1} \frac{1}{2}$

(d). $\tan ^{-1} \frac{3}{4}$

Show Answer

Solution: $\mathrm{ST}=4+\mathrm{AT}=16+4=20$

$\mathrm{PS}=4+16=20$

$\Delta$ TPS is isosceles triangle

$\tan 2 \theta=\frac{16-0}{16-4}=\frac{4}{3}=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$

$2 \tan ^{2} \theta+3 \tan \theta-2=0$

$(2 \tan \theta-1)(\tan \theta+2)=0$

$\tan \theta=\frac{1}{2}, \quad \tan \theta=-2 \quad$ (Not possible)

$\theta=\tan ^{-1} \frac{1}{2}\quad$ ( $\theta$ is acute angle)

Answer: a

2. If a, b, $c$ are distinct positive real numbers such that the parabolas $y^{2}=4 a x$ and $y^{2}$ $=4 \mathrm{c}(\mathrm{x}-\mathrm{b})$ will have a common normal, then

(a). $0<\frac{\mathrm{b}}{\mathrm{a}-\mathrm{c}}<1$

(b). $ \frac{b}{a-c}<0$

(c). $ 1<\frac{\mathrm{b}}{\mathrm{a}-\mathrm{c}}<2$

(d). $\frac{b}{a-c}>2$

Show Answer

Solution: Equation of normals are

$\begin{aligned} & y=m x-2 a m-a m^3……..(1) \\ & y=m(x-b)-2 c m-c m^3….(2)\end{aligned}$

Equation 1 and 2 are identical then

$ \begin{aligned} & -2 a m-a m^{3}=-b m-2 c m-c m^{3} \\ & 2 a+a m^{2}=b+2 c+c m^{2} \\ & (a-c) m^{2}=b+2(c-a) \\ & m^{2}=\frac{b}{a-c}-2 \\ & m= \pm \sqrt{\frac{b}{a-c}-2} \end{aligned} $

For $m$ be real $\frac{b}{a-c}>2$

Answer: d

3. If $\mathrm{AB}$ be a chord of the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ with vertex at $\mathrm{A}$. $\mathrm{BC}$ is perpendicular to $\mathrm{AB}$ such that it meets the axis at $\mathrm{C}$. The projection of the $\mathrm{BC}$ on the axis of parabola is

(a). $2 \mathrm{a}$

(b). $4 \mathrm{a}$

(c). $8 \mathrm{a}$

(d). $16 \mathrm{a}$

Show Answer

Solution: Let coordinates of B be ( $\mathrm{x}, \mathrm{y})$

In $\triangle \mathrm{ABD}, \tan \theta=\frac{\mathrm{BD}}{\mathrm{AD}}=\frac{\mathrm{y}}{\mathrm{x}}$

In $\triangle \mathrm{BCD}, \tan (90-\theta)=\frac{\mathrm{BD}}{\mathrm{DC}}$

$\therefore \mathrm{DC}=\mathrm{y} \cdot \frac{\mathrm{y}}{\mathrm{x}}=\frac{4 \mathrm{ax}}{\mathrm{x}}=4 \mathrm{a}$

Answer: b

4. A circle is descirbed whose centre is the vertex and whose diameter is three-quarters of the latus rectum of the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$. If $\mathrm{PQ}$ is the common-chord of the circle and the parabola and $\mathrm{L} _{1} \mathrm{~L} _{2}$ is the latus rectum, then the area of the trapezium $\mathrm{PL} _{1} \mathrm{~L} _{2} \mathrm{Q}$ is

(a). $\frac{2+\sqrt{2}}{2} a^{2}$

(b). $4 a^{2}$

(c). $2 \sqrt{2}^{2}$

(d). $3 \sqrt{2} \mathrm{a}^{2}$

Show Answer

Solution: Centre of circle $(0,0)$

diameter $=\frac{3}{4} \cdot 4 \mathrm{a}=3 \mathrm{a}$

$\mathrm{Eq}^{\mathrm{n}}$ of circle $\mathrm{x}^{2}+\mathrm{y}^{2}=\frac{9 \mathrm{a}^{2}}{4}…..(1)$

$\mathrm{Eq}^{\mathrm{n}}$ of parabola $\mathrm{y}^{2}=4 \mathrm{ax}……(2)$

coordinates of $\mathrm{P}$ and $\mathrm{Q}$, we get after solving (1) and (2).

$ \begin{aligned} x^{2}+4 a x=\frac{9 a^{2}}{4} & \\ (x+2 a)^{2}=\frac{5 a}{2}^{2} \quad x & =-2 a \pm \frac{5 a}{2} \\ & x=\frac{a}{2}, \frac{-9 a}{2}(\text { not possible }) \end{aligned} $

$P \frac{a}{2}, \sqrt{2} a, Q \frac{a}{2},-\sqrt{2} a \quad y= \pm \sqrt{2} a$

$\mathrm{PQ}=2 \sqrt{2} \mathrm{a}, \quad \mathrm{L} _{1} \mathrm{~L} _{2}=4 \mathrm{a}$

Area of trapezium $\quad=\frac{1}{2}\left(\mathrm{PQ}+\mathrm{L} _{1} \mathrm{~L} _{2}\right) \mathrm{x}$ distance between them.

$ \begin{aligned} & =\frac{1}{2}(2 \sqrt{2} a+4 a) \times a-\frac{a}{2} \\ & =\frac{(\sqrt{2}+2)}{2} a^{2} \end{aligned} $

Answer: a

5. From the point $(15,12)$ three normals ae drawn to the parabola $y^{2}=4 x$, then centroid of triangle formed by three co-normal points is

(a). $(5,0)$

(b). $(5,4)$

(c). $(9,0)$

(d). $\frac{26}{3}, 0$

Show Answer

Solution: Let equation of normal be $\mathrm{y}=-\mathrm{tx}+2 \mathrm{t}+\mathrm{t}^{3}$

It passes through $(15,12)$. So $12=-15 t+2 t+t^{3}$

$ \begin{aligned} & t^{3}-13 t-12=0 \\ & (t+1)(t+3)(t-4)=0 \\ & t=-1,-3,4 \end{aligned} $

Points are (at ${ }^{2}$, 2at) i.e. $(1,-2),(9,-6),(16,8)$

Centroid is $\frac{1+9+16}{3}, \frac{-2-6+8}{3}=\frac{26}{3}, 0$

Answer: d

6. Aray of light travels along a line $\mathrm{y}=4$ and strikes the surface of a curve $y^{2}=4(x+y)$ then equation of the line along reflected ray travel is

(a). $x+1=0$

(b). $\mathrm{y}-2=0$

(c). $\mathrm{x}=0$

(d). $\mathrm{x}-2=0$

Show Answer

Solution: $y^{2}-4 y=4 x$

$(\mathrm{y}-2)^{2}=4(\mathrm{x}+1)$

Focus $(0,2)$

Incident ray is parallel to axis of the parabola, so reflected ray passes through focus $(0,2)$ i.e. $x=0$

Answer: c

7. Let $\mathrm{P}$ be a point of the parabola $\mathrm{y}^{2}=3(2 \mathrm{x}-3)$ and $\mathrm{M}$ is the foot of perpendicular drawn from

Pon the directrix of the parabola, then length of each side of an equilateral triangle SMP, where S is focus of the parabola is

(a). 6

(b). 8

(c). 10

(d). 11

Show Answer

Solution: Equation of parabola is

$\mathrm{y}^{2}=6 \quad \mathrm{x}-\frac{3}{2}$

focus $S(3,0)$

equation of directrix $x=0$

P $\frac{3}{2}+\frac{3}{2} \mathrm{t}^{2}, 3 \mathrm{t}$

Coordinates of $\mathrm{M}(0,3 \mathrm{t})$

$\mathrm{MS}=\sqrt{9+9 \mathrm{t}^{2}}$

$\mathrm{MP}=\frac{3}{2}+\frac{3}{2} \mathrm{t}^{2}$, But MS $=\mathrm{MP}$

$9+9 \mathrm{t}^{2}=\frac{9}{4}+\frac{9}{4} \mathrm{t}^{2}+\frac{9}{4} \mathrm{t}^{2}$

$\mathrm{t}^{2}=3$

Length of side $=6$

Answer: a

Practice questions

1. The point $(2 a, a)$ lies inside the region bounded by the parabola $x^{2}=4 y$ and its latus rectum. Then

(a). $0<\mathrm{a} \leq 1$

(b). $ 0<\mathrm{a}<1$

(c). $0 \leq \mathrm{a} \leq 1$

(d). $ \mathrm{a}<1$

Show Answer Answer: (b)

2. Two perpendicular tangents to $y^{2}=4 a x$ always intersect on the line

(a). $x+a=0$

(b). $\mathrm{x}-\mathrm{a}=0$

(c). $x+2 a=0$

(d). $y+2 a=0$

Show Answer Answer: (a)

3. $\mathrm{C} _{1}: \mathrm{y}^{2}=8 \mathrm{x}$ and $\mathrm{C} _{2}: \mathrm{x}^{2}+\mathrm{y}^{2}=2$. Then

(a). $\mathrm{C} _{1}$ and $\mathrm{C} _{2}$ have only two common tangents which are mutually perpendicular

(b). $\mathrm{C} _{1}$ and $\mathrm{C} _{2}$ have two common tangents which are parallel to each other.

(c). does not have any common tangent.

(d). $\mathrm{C} _{1}$ and $\mathrm{C} _{2}$ have four common tangents.

Show Answer Answer: (a)

4. Two common tangents to the circle $x^{2}+y^{2}=2 a^{2}$ and $y^{2}=8 a x$ are

(a). $y=(x+a)$

(b). $x= \pm(y+2 a)$

(c). $y= \pm(x+2 a)$

(d). $x= \pm(y+a)$

Show Answer Answer: (c)

5. The number of points with integral coordinates that lie in the interior of the circle $x^{2}+y^{2}=16$ and the parabola $\mathrm{y}^{2}=4 \mathrm{x}$ are

(a). 6

(b). 8

(c). 10

(d). 12

Show Answer Answer: (b)

6. The vertex of the parabola $x^{2}+y^{2}-2 x y-4 x+4=0$ is at

(a). $\left(-\frac{1}{2},-\frac{1}{2}\right)$

(b). $(-1,-1)$

(c). $(1,1)$

(d). $\left(+\frac{1}{2}, \frac{1}{2}\right)$

Show Answer Answer: (d)

7. The length of the latus rectum of the parabola $2\left\{(x-a)^{2}+(y-a)^{2}\right\}=(x+y)^{2}$ is

(a). $\sqrt{2}$ a

(b). $ 2 \mathrm{a}$

(c). $ 2 \sqrt{2}$ a

(d). $3 \sqrt{2} \mathrm{a}$

Show Answer Answer: (c)

8. The point on $y^{2}=4 a x$ nearest to the focus is

(a). $(0,0)$

(b). $(\mathrm{a}, 2 \mathrm{a})$

(c). $(a,-2 a)$

(d). $\left(\frac{a}{4}, a\right)$

Show Answer Answer: (a)

9. The angle between the tangents drawn from the origin to the parabola $y^{2}=4 a(x-a)$ is

(a). $45^{\circ}$

(b). $60^{\circ}$

(c). $90^{\circ}$

(d). $\tan ^{-1} \frac{1}{2}$

Show Answer Answer: (c)

10. The circle $x^{2}+y^{2}+2 \lambda x=0, \lambda \varepsilon R$, touches the parabola $y^{2}=4 x$ externally. Then

(a). $\lambda>0$

(b). $\lambda<0$

(c). $\lambda>1$

(d). none of these

Show Answer Answer: (a)


Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ