SEQUENCES AND SERIES - 2 (Geometric Progression)

A sequence of non-zero numbers is called a geometric progression if ratio of a term and the term preceding to it is always a constant. This constant is called the common ratio of the G.P.

i.e. $a _{1}, a _{2}, \ldots \ldots \ldots ., a _{n}$ is in G.P. if $\frac{a _{n+1}}{a _{n}}=r=$ const., $\forall n \varepsilon N$.

$n^{\text {th }}$ term of a G.P. $=a _{n}=a r^{n-1}$.

$n$th term from end of a G.P $=a _{n} \cdot\left(\frac{1}{r}\right)^{n-1}$ where $a _{n}$ is the last term and $r$ the common ratio of the G.P.

Sign of a $\mathbf{+ v e}$ $\mathbf{+ v e}$ $\mathbf{- v e}$ $-\mathbf{v e}$
Range of $\mathrm{r}$ $\mathrm{r}>1$ $0<\mathbf{r}<1$ $\mathrm{r}>1$ $0<\mathbf{r}<1$
G.P. is increasing decreasing decreasing increasing

If $\mathrm{r}=1$, the sequence will be a constant sequence. If $\mathrm{r}$ is negative the terms of G.P. are alternately positive and negative and so the G.P is neither increasing nor decreasing.

Sum of $\mathbf{n}$ terms of a G.P

Let the first term of G.P be a common ratio $r$ and last term $a _{n}$, then

i. Sum to $n$ terms

$ \mathrm{S} _{\mathrm{n}}=\left\{\begin{aligned} \frac{\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right)}{\mathrm{r}-1} \text { or } \mathrm{a}\left(\frac{1-\mathrm{r}^{\mathrm{n}}}{1-\mathrm{r}}\right) & ; \text { when } \mathrm{r} \neq 1 \\ \mathrm{na} & ; \text { when } \mathrm{r}=1 \end{aligned}\right. $

Also $S _{n}=\frac{a-a _{n} r}{1-r}$ or $\frac{a _{n} r-a}{r-1} ; \quad$ when $\mathrm{r} \neq 1$

Sum of an Infinite G.P

Sum of an infinite G.P. with first term a and common ratio $\mathrm{r}(-1<\mathrm{r}<1 ; \mathrm{r} \neq 0$ or $0<|\mathrm{r}|<1)$ is given by $\mathrm{S}=\frac{\mathrm{a}}{1-\mathrm{r}}$

If $r \geq 1$, then the sum of an infinite G.P tends to infinity.

Selection of terms in a G.P

In case of an odd number of terms the middle term is a and common ratio is $r$ while in case of even number of terms, middle terms are $\frac{\mathrm{a}}{\mathrm{r}}$, ar and common ratio is $\mathrm{r}^{2}$.

No. of terms Terms Common ratio
3 $\frac{\mathrm{a}}{\mathrm{r}}, \mathrm{a}, \mathrm{ar}$ $\mathrm{r}$
4 $\frac{\mathrm{a}}{\mathrm{r}^{3}}, \frac{\mathrm{a}}{\mathrm{r}}, \mathrm{ar}, \mathrm{ar}^{3}$ $\mathrm{r}^{2}$
5 $\frac{\mathrm{a}}{\mathrm{r}^{2}}, \frac{\mathrm{a}}{\mathrm{r}}, \mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}$ $\mathrm{r}$

Note that it is convenient to take the terms as a, ar, $\mathrm{ar}^{2}$ ………… if the product of numbers is not given.

Insertion of geometric means

Note : If $\mathrm{a} \& \mathrm{~b}$ are two numbers of opposite signs then geometric mean between them does not exist.

Solved examples

1. Suppose $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in $\mathrm{A} . P$ and $\mathrm{a}^{2}, \mathrm{~b}^{2}, \mathrm{c}^{2}$ are in G.P. If $\mathrm{a}<\mathrm{b}<\mathrm{c}$ and $\mathrm{a}+\mathrm{b}+\mathrm{c}=\frac{3}{2}$, then the value of a is

(a). $\frac{1}{2 \sqrt{2}}$

(b). $\frac{1}{2 \sqrt{3}}$

(c). $1 \frac{1}{2}-\frac{1}{\sqrt{3}}$

(d). $\frac{1}{2}-\frac{1}{\sqrt{2}}$

Show Answer

Solution: Let the numbers be $\mathrm{A}-\mathrm{d}, \mathrm{A}, \mathrm{A}+\mathrm{d}$

Then $\mathrm{A}=\frac{1}{2}$

$\therefore \quad$ Numbers are $\frac{1}{2}-\mathrm{d}, \frac{1}{2}, \frac{1}{2}+\mathrm{d}$

$\mathrm{a}^{2}, \mathrm{~b}^{2}, \mathrm{c}^{2}$ are in G.P.

$\left(\left(\frac{1}{2}\right)^{2}\right)^{2}=\left(\frac{1}{2}-\mathrm{d}\right)^{2}\left(\frac{1}{2}+\mathrm{d}\right)^{2}$

$\Rightarrow \quad \frac{1}{16}=\left(\frac{1}{4}-\mathrm{d}^{2}\right)^{2} \Rightarrow \frac{1}{4}-\mathrm{d}^{2}= \pm \frac{1}{4}$

$\Rightarrow \quad \mathrm{d}^{2}=\frac{1}{2} \quad \Rightarrow \mathrm{d}= \pm \frac{1}{\sqrt{2}}$

Since $\mathrm{a}<\mathrm{b}<\mathrm{c}, \mathrm{a}=\frac{1}{2}-\frac{1}{\sqrt{2}}$

Answer: d

2. If $\mathrm{a} _{\mathrm{n}}=\frac{3}{4}-\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{3}+\ldots \ldots \ldots+(-1)^{\mathrm{n}-1}\left(\frac{3}{4}\right)^{\mathrm{n}}$ and $\mathrm{b} _{\mathrm{n}}=1-\mathrm{a} _{\mathrm{n}}$, then the minimum natural number $n _{0}$ such that $b _{n}>a _{n} \& n>n _{0}$ is

(a). 4

(b). 5

(c). 6

(d). 12

Show Answer

Solution: $\ \mathrm{a} _{\mathrm{n}}=\frac{\frac{3}{4}\left(1-\left(\frac{-3}{4}\right)^{\mathrm{n}}\right)}{1+\frac{3}{4}}$

i.e. $a _{n}=\frac{3}{7}\left(1-\left(\frac{-3}{4}\right)^{n}\right)$

$b _{n}>a _{n} \Rightarrow 1-a _{n}>a _{n} \Rightarrow 2 a _{n}<1$

$\Rightarrow \quad \frac{6}{7}\left(1-\left(\frac{-3}{4}\right)^{\mathrm{n}}\right)<1 \quad \Rightarrow \quad 1-\left(\frac{-3}{4}\right)^{\mathrm{n}}<\frac{7}{6} \quad-\left(\frac{-3}{4}\right)^{\mathrm{n}}<\frac{1}{6}$

$\Rightarrow \quad(-3)^{n+1}<2^{2 n-1}$

For $\mathrm{n}$ to be even, the inequality always holds. For $\mathrm{n}$ to be odd, it holds for $\mathrm{n} \geq 7$.

$\therefore \quad$ Least natural number for which it holds is 6 .

Answer: c

3. If $a$ be the arithmetic mean of $b$ and $c$ and $\mathrm{G} _{1}, \mathrm{G} _{2}$ be the two geometric means between them, then $\mathrm{G} _{1}{ }^{3}+\mathrm{G} _{2}{ }^{3}=$

(a). $\mathrm{G} _{1} \mathrm{G} _{2} \mathrm{a}$

(b). $2 \mathrm{G} _{1} \mathrm{G} _{2} \mathrm{a}$

(c). $3 \mathrm{G} _{1} \mathrm{G} _{2} \mathrm{a}$

(d). none of these

Show Answer

Solution: $b, a, c$ are in A.P

$2 \mathrm{a}=\mathrm{b}+\mathrm{c}$

Also $\mathrm{b}, \mathrm{G} _{1}, \mathrm{G} _{2}, \mathrm{c}$ are in G.P

$\mathrm{G} _{1}{ }^{2}=\mathrm{bG} _{2} \quad \Rightarrow \quad \mathrm{G} _{1}{ }^{3}=\mathrm{bG} _{1} \mathrm{G} _{2}$

$\mathrm{G} _{2}{ }^{2}=\mathrm{G} _{1} \mathrm{c} \quad \Rightarrow \quad \mathrm{G} _{2}{ }^{3}=\mathrm{cG} _{1} \mathrm{G} _{2}$

$\mathrm{G} _{1}{ }^{3}+\mathrm{G} _{2}{ }^{3}=\mathrm{G} _{1} \mathrm{G} _{2}(\mathrm{~b}+\mathrm{c})=2 \mathrm{G} _{1} \mathrm{G} _{2} \mathrm{a}$

Answer: b

4. It is known that $\sum _{\mathrm{r}=1}^{\infty} \frac{1}{(2 \mathrm{r}-1)^{2}}=\frac{\pi^{2}}{8}$, then $\sum _{\mathrm{r}=1}^{\infty} \frac{1}{\mathrm{r}^{2}}$ is

(a). $\frac{\pi^{2}}{24}$

(b). $\frac{\pi^{2}}{3}$

(c). $\frac{\pi^{2}}{6}$

(d). none of these

Show Answer

Solution:

Let $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \ldots \ldots \infty=\mathrm{x}$

$\sum _{\mathrm{r}=1}^{\infty} \frac{1}{\mathrm{r}^{2}}=\left(\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots \ldots ..\right)+\left(\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}}+\ldots \ldots \ldots . . . \infty\right)$

$\mathrm{x}=\frac{\pi^{2}}{8}+\frac{1}{4}\left(\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \ldots \ldots \infty\right)$

$x=\frac{\pi^{2}}{8}+\frac{1}{4} x \quad \Rightarrow \quad \frac{3 x}{4}=\frac{\pi^{2}}{8} \quad \Rightarrow \quad x=\frac{\pi^{2}}{6}$

Answer: c

5. If $\mathrm{a} _{\mathrm{i}} \varepsilon \mathrm{R}, \mathrm{i}=1,2,3, \ldots \ldots . \mathrm{n}$ and all $\mathrm{a} _{\mathrm{i}}{ }^{\prime} \mathrm{s}$ are distinct such that $\left(\sum _{i=1}^{n-1} a _{i}{ }^{2}\right) x^{2}+2\left(\sum _{i=1}^{n-1} a _{i} a _{i+1}\right) x+\sum _{i=2}^{n} a _{i}^{2} \leq 0$, then $a _{1}, a _{2}, \ldots \ldots . .$. are in

(a). G.P

(b). A.P

(c). H.P

(d). none of these

Show Answer

Solution: $\quad \sum _{i=1}^{n-1}\left(a _{i} x+a _{i+1}\right)^{2} \leq 0 \quad \Rightarrow \quad \sum _{i=1}^{n-1}\left(a _{i} x+a _{i+1}\right)^{2}=0$

$ \begin{aligned} & \Rightarrow \quad a _{i} x+a _{i+1}=0 \quad \forall \mathrm{i}=1,2, \ldots \ldots \ldots n-1 \\ & \Rightarrow \quad \frac{a _{i+1}}{a _{i}}=-x \forall i=1,2, \ldots \ldots . n-1 \\ & \therefore \quad a _{1}, a _{2}, \ldots \ldots \ldots a _{n} \text { are in G.P. } \end{aligned} $

Answer: a

6. The $1025^{\text {th }}$ term is the sequence

$1, 22, 4444, 88888888, \ldots \ldots \ldots .$. is

(a). $2^{9}$

(b). $2^{10}$

(c). $2^{11}$

(d). none of these

Show Answer

Solution: Number of digits in each term are in G.P.

Let 1025 th term $=2^{\mathrm{n}}$

then

$ \begin{aligned} & 1+2+4+8+\ldots \ldots .+2^{n-1}<1025 \leq 1+2+4+8+\ldots . .+2^{n} \\ & \Rightarrow \quad 1 \frac{\left(2^{n}-1\right)}{2-1}<1025 \leq 1 \cdot \frac{\left(2^{n+1}-1\right)}{2-1} \\ & \Rightarrow \quad 2^{n}-1<1025 \leq 2^{n+1}-1 \\ & \Rightarrow \quad 2^{n+1} \geq 1026>1024=2^{10} \\ & \Rightarrow \quad \mathrm{n}+1>10 \Rightarrow \mathrm{n}>9 \\ & \therefore \quad \mathrm{n}=10 \end{aligned} $

Answer: b

7. If $\mathrm{a}^{1 / \mathrm{x}}=\mathrm{b}^{1 / \mathrm{y}}=\mathrm{c}^{1 / \mathrm{z}}$ and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in geometrical progression, then $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in

(a). A.P.

(b). G.P.

(c). H.P.

(d). None of these

Show Answer

Solution: $\mathrm{a}^{1 / \mathrm{x}}=\mathrm{b}^{1 / \mathrm{y}}=\mathrm{c}^{1 / \mathrm{z}}=\mathrm{k}$

$\Rightarrow \quad \mathrm{a}=\mathrm{k}^{\mathrm{x}}, \mathrm{b}=\mathrm{k}^{\mathrm{y}}, \mathrm{c}=\mathrm{k}^{\mathrm{z}}$

$\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P. $\Rightarrow \mathrm{b}^{2}=\mathrm{ac}$

$\Rightarrow \mathrm{k}^{2 \mathrm{y}}=\mathrm{k}^{\mathrm{x}+\mathrm{z}}$

$\Rightarrow 2 \mathrm{y}=\mathrm{x}+\mathrm{z}$

Answer: a

8. If the arithmetic mean of two numbers be A and geometric mean be G, then the numbers will be

(a). $\mathrm{A} \pm \sqrt{\left(\mathrm{A}^{2}-\mathrm{G}^{2}\right)}$

(b). $\sqrt{\mathrm{A}} \pm \sqrt{\mathrm{A}^{2}-\mathrm{G}^{2}}$

(c). $\pm \sqrt{(\mathrm{A}+\mathrm{G})(\mathrm{A}-\mathrm{G})}$

(d).$\frac{A \pm \sqrt{(A+G)(A-G)}}{2}$

Show Answer

Solution: Let the number be $a$ and $b$

$A=\frac{a+b}{2} \quad G^{2}=a b$

$a$ and $b$ are the roots of $x^{2}-2 A x+G^{2}=0$

$ \begin{array}{r} \mathrm{x}=\frac{2 \mathrm{~A} \pm \sqrt{4 \mathrm{~A}^{2}-4 \mathrm{G}^{2}}}{2} \\ \mathrm{x}=\mathrm{A} \pm \sqrt{\left(\mathrm{A}^{2}-\mathrm{G}^{2}\right)} \end{array} $

Answer: a

Practice questions

1. The sum of an infinite geometric series is 2 and the sum of the geometric series made from the cubes of this infinite series is 24 . Then the series is

(a). $3+\frac{3}{2}-\frac{3}{4}+\frac{3}{8} \ldots \ldots$

(b). $3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8} \ldots$.

(c). $3-\frac{3}{2}+\frac{3}{4}-\frac{3}{8} \ldots .$.

(d). none of these

Show Answer Answer: (c)

2. Read the passage and answer the following questions.

Let $A _{1}, A _{2}, \ldots . . A _{m}$ be arithmetic means between -2 and 1027 and $G _{1}, G _{2}, \ldots . \mathrm{G} _{\mathrm{n}}$ be Geometric means between 1 and 1024. Product of geometric means is $2^{45}$ and sum of arithmetic means is $1025 \times 171$.

i. The value of $n$ is

(a). 7

(b). 9

(c). 11

(d). none of these

Show Answer Answer: (b)

ii. The value of $m$ is

(a). 340

(b). $ 342$

(c). 344

(d). 346

Show Answer Answer: (b)

iii. The value of $\mathrm{G} _{1}+\mathrm{G} _{2}+\mathrm{G} _{3}+\ldots .+\mathrm{G} _{\mathrm{n}}$ is

(a). 1022

(b). 2044

(c). 512

(d). none of these

Show Answer Answer: (a)

iv. The common difference of the progression $\mathrm{A} _{1}, \mathrm{~A} _{3}, \mathrm{~A} _{5} \ldots . . \mathrm{An}$ is

(a). 6

(b). 3

(c). 2

(d). 1

Show Answer Answer: (a)

v. The numbers $2 \mathrm{~A} _{171}, \mathrm{G} _{5}^{2}+1,2 \mathrm{~A} _{172}$ are in

(a). $\mathrm{AP}$

(b). GP

(c). $\mathrm{HP}$

(d). AGP

Show Answer Answer: (a)

3. The difference between two numbers is 48 and the difference between their arithmetic mean and their geometric mean is 18 . Then, the greater of two numbers is

(a). 96

(b). 60

(c). 54

(d). 49

Show Answer Answer: (d)

4. If $\mathrm{a}^{\mathrm{x}}=\mathrm{b}^{\mathrm{y}}=\mathrm{c}^{\mathrm{z}}=\mathrm{d}^{\mathrm{w}}$, the value of $\mathrm{x}\left(\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{z}}+\frac{1}{\mathrm{w}}\right)$ is

(a). $\log _{a}(a b c)$

(b). $ \log _{2}(\mathrm{bcd})$

(c). $\log _{\mathrm{b}}(\mathrm{cda})$

(d). $\log _{c}(\mathrm{dab})$

Show Answer Answer: (b)

5. If three positive numbers $x, y, z$ are in A.P. and also $\tan ^{-1} x, \tan ^{-1} y, \tan ^{-1} z$ are in A.P., then

(a). $\mathrm{x}=\mathrm{y}=\mathrm{z}$

(b). $ x \neq y=z$

(c). $ x=y \neq z$

(d). none of these

Show Answer Answer: (a)

6. If $a _{1}, a _{2}, a _{3}$ are three consecutive terms of a G.P. with common ratio $k$. Then the values of $k$ for which the inequality $a _{3}>4 a _{2}-3 a _{1}$, is satisfied is (if $a _{1}>0$ )

(a). $(1,3)$

(b). $(-\infty, 1) \cup(3, \infty)$

(c). $\mathrm{R}$

(d). none of these

Show Answer Answer: (b)

7. The three successive terms of a G.P. will form the side of a triangle if the common ratio $r$ lies in

(a). $\left(\frac{\sqrt{5}-1}{2}, \frac{\sqrt{5}+1}{2}\right)$

(b). $\left(\frac{-1 \sqrt{5}}{2}, \infty\right)$

(c). $\left(-\infty, \frac{\sqrt{5}-1}{2}\right)$

(d). none of these

Show Answer Answer: (a)

8. If for $\left.0<x<\frac{\pi}{2}, \exp \left(\sin ^{2} x+\sin ^{4} x+\sin ^{6} x+\ldots \ldots \infty\right) \log _{e} 2\right)$ satisfies the quadratic equation $\mathrm{x}^{2}-9 \mathrm{x}+8=0, \frac{\sin \mathrm{x}-\cos \mathrm{x}}{\sin \mathrm{x}+\cos \mathrm{x}}$ is

(a). $2-\sqrt{3}$

(b). $2+\sqrt{3}$

(c). $\sqrt{3}-2$

(d). none of these

Show Answer Answer: (a)

9. Match the following

Column I Column II
(a). If $a, b, c$ are non zero real numbers such that
$3\left(a^{2}+b^{2}+c^{2}+1\right)=2(a+b+c+a b+b c+c a)$ then $a, b, c$ are in
(p) AP
(b). If the square of difference of three numbers be in AP, then their differences are in (q) GP
(c). If $a-b, a x-b y, a x^{2}-b y^{2}(a, b \neq 0)$ are in G.P. then $\mathrm{x}, \mathrm{y}, \frac{\mathrm{ax}-\mathrm{by}}{\mathrm{a}-\mathrm{b}}$ are in (r) HP
(s) equal
Show Answer Answer: a $\rarr$ p, q, s; b $\rarr$ r; c $\rarr$ p, q, s

10. If $1+p+p^{2}+\ldots \ldots+p^{n}=(1+p)\left(1+p^{2}\right)\left(1+p^{4}\right)\left(1+p^{8}\right)\left(1+p^{16}\right)$ then the value of $n(n \varepsilon N)$ is

(a). 32

(b). 16

(c). 31

(d). 15

Show Answer Answer: (c)

11. If $\sin \theta, \sqrt{2}(\sin \theta+1), 6 \sin \theta+6$ are in G.P., then the fifth term is

(a). $81$

(b). $82 \sqrt{2}$

(c). $162$

(d). none of these

Show Answer Answer: (c)

12. If $\mathrm{x} \varepsilon\{1,2,3, \ldots .9\}$ and $\mathrm{f} _{\mathrm{n}}(\mathrm{x})=\mathrm{xxx} \ldots \ldots \mathrm{x}\left(\mathrm{n}\right.$ digits) then $\mathrm{f} _{\mathrm{n}}^{2}(3)+\mathrm{f} _{\mathrm{n}}(2)$ is equal to

(a). $2 \mathrm{f} _{2 \mathrm{n}}(1)$

(b). $\mathrm{f} _{\mathrm{n}}^{2}(1)$

(c). $f _{2 n}(1)$

(d). $2 \mathrm{f} _{2 \mathrm{n}}(4)$

Show Answer Answer: (c)

13. The number of divisors of 1029,1547 and 122 are in

(a). $\mathrm{AP}$

(b). GP

(c). $\mathrm{HP}$

(d). none of these

Show Answer Answer: (a)

14. Let $\mathrm{x} _{1}, \mathrm{x} _{2}, \ldots ., \mathrm{x} _{n}$ be a sequence of integers such that

(i) $-1 \leq \mathrm{x} _{\mathrm{i}} \leq 2$ for $\mathrm{i}=1,2, \ldots \mathrm{n}$

(ii) $\mathrm{x} _{\mathrm{i}}+\mathrm{x} _{2}+\ldots+\mathrm{x} _{\mathrm{n}}=19$

(iii) $\mathrm{x} _{1}{ }^{2}+\mathrm{x} _{2}{ }^{2}+\ldots+\mathrm{x} _{\mathrm{n}}{ }^{2}=99$

Let $\mathrm{m}$ and $\mathrm{M}$ be the minimum and Maximum possible values of $\mathrm{x} _{1}{ }^{3}+\mathrm{x} _{2}{ }^{3}+\ldots . \mathrm{x} _{\mathrm{n}}{ }^{3}$ respectively, then the value of $\frac{M}{m}$ is……..

Show Answer Answer: 7

15. Let $16,4,1, \ldots$ be a geometric sequence. Define $P _{n}$ as the product of the first $n$ terms. Then the value of $\frac{\sum _{n=1}^{\infty} \sqrt[n]{P _{n}}}{4}$ is……..

(a). $64$

(b). $\frac{1}{64}$

(c). $32$

(d). none of these

Show Answer Answer: (c)


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ