SEQUENCES AND SERIES - 5 (Arithmetico Geometric Series and Special Sequences)

Arithmetico-geometric Series

A series is said to be an arithmetico geometric series if its each term is formed by multiplying the corresponding terms of an A.P and a G.P.

E.g. $1+2 \mathrm{x}+3 \mathrm{x}^{2}+4 \mathrm{x}^{3}+$.

Here $1,2,3,4 \ldots$. are in A.P and $1, x, x^{1}, x^{3} \ldots \ldots$ are in G.P

Sum to $n$ terms

Let $S _{n}=a+(a+d) r+(a+2 d) r^{2}+\ldots \ldots .(a+(n-1) d) r^{n-1}………(1)$

Multiply by $\mathrm{r}$ on both the sides

$\begin{aligned} & r S_n=a r+(a+d) r^2+\ldots \ldots . .(a+(n-1) d) r^n \ldots \ldots .(2) \\ & (1)-(2) \Rightarrow S_n(1-r)=a+\left(d r+d r^2+\ldots . . d r^{n-1}\right)-(a+(n-1) d) r^n \\ & (n-1) \text {terms}\end{aligned} $

$\begin{aligned} & a+d r \frac{\left(1-r^{n-1}\right)}{1-r}-(a+(n-1) d) r^n \\ & S_n==\frac{a}{1-r}+\frac{d r\left(1-r^{n-1}\right)}{(1-r)^2}-\frac{(a+(n-1) d) r^n}{1-r}\end{aligned}$

Sum to infinity

If $|\mathrm{r}|<1$ and $\mathrm{n} \rightarrow \infty$, then $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{r}^{\mathrm{n}}=0$

$\therefore \quad \mathrm{S}=\frac{\mathrm{a}}{1-\mathrm{r}}+\frac{\mathrm{dr}}{(1-\mathrm{r})^{2}}$

Note: If we take the first term of a G.P to be b, then

$\mathrm{S} _{\mathrm{n}}=\frac{\mathrm{ab}}{1-\mathrm{r}}+\frac{\mathrm{dbr}\left(1-\mathrm{r}^{\mathrm{n}-1}\right)}{(1-\mathrm{r})^{2}}-\frac{(\mathrm{a}+(\mathrm{n}-1) \mathrm{d}) \mathrm{br}^{\mathrm{n}}}{1-\mathrm{r}}$

If $|\mathrm{r}|<1$, then sum to infinity, $S=\frac{\mathrm{ab}}{1-\mathrm{r}}+\frac{\mathrm{dbr}}{(1-\mathrm{r})^{2}}$

Use of Natural numbers

$1 \quad $ Let $\mathrm{S} _{\mathrm{r}}=1^{\mathrm{r}}+2^{\mathrm{r}}+3^{\mathrm{r}}+$ $……….+\mathrm{n}^{\mathrm{r}}$, then

(i) $\mathrm{S} _{1}=1+2+3+\ldots \ldots \ldots \ldots \ldots+\mathrm{n}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$

(ii) $\mathrm{S} _{2}=1^{2}+2^{2}+3^{3}+\ldots \ldots \ldots \ldots \ldots \ldots+\ldots \ldots+\mathrm{n}^{2}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$

(iii) $\mathrm{S} _{3}=1^{3}+2^{3}+3^{3}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots+\mathrm{n}^{3}=\frac{\mathrm{n}^{2}(\mathrm{n}+1)^{2}}{4}=\mathrm{S} _{1}{ }^{2}$

(iv) $\mathrm{S} _{4}=1^{4}+2^{4}+3^{4}+\ldots \ldots \ldots \ldots \ldots \ldots+\mathrm{n}^{4}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)\left(3 \mathrm{n}^{2}+3 \mathrm{n}-1\right)}{30}=\frac{\mathrm{S} _{2}}{5}\left(6 \mathrm{~S} _{1}-1\right)$

(iv) $\mathrm{S} _{5}=1^{5}+2^{5}+3^{5}+\ldots \ldots \ldots \ldots \ldots \ldots+\mathrm{n}^{5}=\frac{\mathrm{n}^{2}(\mathrm{n}+1)^{2}\left(2 \mathrm{n}^{2}+2 \mathrm{n}-1\right)}{12}=\frac{1}{3} \mathrm{~S} _{1}{ }^{2}\left(4 \mathrm{~S} _{1}-1\right)$

$2 \quad 1+3+5+$ ……….to $\mathrm{n}$ terms $=\mathrm{n}^{2}$

$3 \quad 1^{2}+3^{2}+5^{2}+$……….to $\mathrm{n}$ terms $=\frac{\mathrm{n}\left(4 \mathrm{n}^{2}-1\right)}{3}$

$4 \quad 1^{3}+3^{3}+5^{3}+$………..to $\mathrm{n}$ terms $=\mathrm{n}^{2}\left(2 \mathrm{n}^{2}-1\right)$

$5 \quad 1-1+1-$ ………..to $\mathrm{n}$ terms $=\frac{1-(-1)^{\mathrm{n}}}{2}$

$6 \quad 1-2+3-$ ………..to $\mathrm{n}$ terms $=\frac{1-(-1)^{\mathrm{n}}(2 \mathrm{n}+1)}{4}$

$7 \quad 1^{2}-2^{2}+3^{2}-$ ………..to $\mathrm{n}$ terms $=\frac{(-1)^{\mathrm{n}-1} \mathrm{n}(\mathrm{n}+1)}{2}=(-1)^{\mathrm{n}-1} \mathrm{~S} _{1}$

$8 \quad 1^{3}-2^{3}+3^{3}-$ ………..to $n$ terms $=\frac{(-1)^{n-1}\left(4 n^{3}+6 n^{2}-1\right)-1}{8}$

Application

If $\mathrm{n}^{\text {th }}$ term of a sequence is given by $\mathrm{T} _{\mathrm{n}}=\mathrm{an}^{3}+\mathrm{bn}^{2}+\mathrm{cn}+\mathrm{d}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{R}$, then

$ \begin{aligned} & \mathrm{S} _{\mathrm{n}}=\sum \mathrm{T} _{\mathrm{n}}=\mathrm{T} _{1}+\mathrm{T} _{2}+\ldots \ldots \ldots \ldots \ldots+\mathrm{T} _{\mathrm{n}} \\ & =\mathrm{a} \sum \mathrm{n}^{3}+\mathrm{b} \sum \mathrm{n}^{2}+\mathrm{c} \sum \mathrm{n}+\mathrm{d} \sum 1 \end{aligned} $

Note: If $\mathrm{T} _{\mathrm{n}}$ is expressible as product of $\mathrm{m}$ consecutive numbers beginning with $\mathrm{n}$, i.e. $T _{n}=n(n+1)(n+2) \ldots(n+m-1)$ then

$ \mathrm{S} _{\mathrm{n}}=\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2) \ldots(\mathrm{n}+\mathrm{m}-1)\left(\frac{\mathrm{n}+\mathrm{m}}{\mathrm{m}+1}\right) $

Eg. If $\mathrm{T} _{\mathrm{n}}=\mathrm{n}$, then $\mathrm{S} _{\mathrm{n}}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$ $\quad ($ Here $\mathrm{m}=1)$

E.g. $T _{n}=n(n+1)$, then $S _{n}=\frac{n(n+1)(n+2)}{3}$ $\quad ($ Here $\mathrm{m}=2)$

Method of differences

If the differences of successive terms of a series are in A.P. or G.P., we can find $T _{n}$ as follows

(a) Denote $\mathrm{n}^{\text {th }}$ term and the sum up to $n$ terms by $T _{n} \& S _{n}$ respectively

(b) Rewrite the given series with each term shifted by one place to the right

(c) Subtracting the above two forms of the series, find $T_{n}$.

(d) Apply $S _{n}=\sum T _{n}$.

Note: Instead of determining the $\mathrm{n}^{\text {th }}$ item of a series by the method of difference, we can use the following steps to obtain the same

(i) If the differences $\mathrm{T} _{2}-\mathrm{T} _{1}, \mathrm{~T} _{3}-\mathrm{T} _{2}$ $\mathrm{T} _{\mathrm{n}}=\mathrm{an}^{2}+\mathrm{bn}+\mathrm{c}, \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$

Determine $a, b, c$ by putting $n=1,2,3$ and equating them with the values of corresponding terms of the given series.

(ii) If the differences $T _{2}-T _{1}, T _{3}-T _{2}, \ldots \ldots \ldots \ldots$…tc are in G.P, with common ratio $\mathrm{r}$, then take $T _{n}=$ $a^{n-1}+b n+c, a, b, c \in R$

Determine $\mathrm{a}, \mathrm{b}, \mathrm{c}$ by putting $\mathrm{n}=1,2,3$ and equating them with the values of corresponding terms of the given series.

(iii) If the differences of the differences computed in step (i) are in A.P, then take $T _{n}=a^{3}+$ $\mathrm{bn}^{2}+\mathrm{cn}+\mathrm{d}$

Determine $a, b$, by putting $n=1,2,3,4$ and equating them with the values of corresponding terms of the given series.

(iv) If the differences of differences computed in step (i) are in G.P with common ratio $\mathrm{r}$, then take $\mathrm{T} _{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}+\mathrm{bn}^{2}+\mathrm{cn}+\mathrm{d}$

Determine $a, b$, by putting $n=1,2,3,4$ and equating them with the values of corresponding terms of the given series.

Summation by " $\sum$ " (sigma) operator

i. $ \sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T} _{\mathrm{r}}=\mathrm{T} _{1}+\mathrm{T} _{2}+\ldots \ldots .+\mathrm{T} _{\mathrm{n}}$

ii. $ \sum _{\mathrm{r}=1}^{\mathrm{n}} 1=1+1+1+\ldots \ldots+\mathrm{n}$ times $=\mathrm{n}$

iii. $ \sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{k} \mathrm{T} _{\mathrm{r}}=\mathrm{k} \sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T} _{\mathrm{r}} ; \mathrm{k}$ is a constant

iv. $ \sum _{r=1}^{n}\left(T _{r} \pm T _{r}^{1}\right)=\sum _{r=1}^{n} T _{r} \pm \sum _{r=1}^{n} T _{r}^{1}$

v. $ \sum _{j=1}^{n} \sum _{i=1}^{n} T _{i} T _{j}=\left(\sum _{i=1}^{n} T _{i}\right)\left(\sum _{j=1}^{n} T _{j}\right)$

(Note that $\mathrm{i} \& \mathrm{j}$ are independent here)

vi. Now consider $\sum _{0 \leq i<j \leq n} f _{n}(\mathrm{i}) \times \mathrm{f}(\mathrm{j})$ Here three types of terms occur, for which $\mathrm{i}<\mathrm{j}, \mathrm{i}>\mathrm{j}$ and $i=j$. Also note that the sum of terms when $i<j$ equal to the sum of the terms when $i>j$ if $f(i)$ and $f(j)$ are symmetrical. In such case,

$ \begin{aligned} & \sum _{i=0}^{n} \sum _{j=0}^{n} f(i) f(j)=\sum _{0 \leq j<i \leq n} \sum _{i} f(i) f(j)+\sum _{0 \leq i<j \leq n} \sum _{i=j} f(i) f(j)+\sum _{i} \sum _{f}(i) f(j) \\ & =\quad 2 \sum _{0 \leq i<j \leq n} \sum _{f} f(i) f(j)+\sum _{i=j} \sum f(i) f(j) \\ & \Rightarrow \quad \sum _{0 \leq i<j \leq n} f(i) f(j)=\frac{\sum _{i=0}^{n} \sum _{j=0}^{n} f(i) f(j)-\sum _{i} \sum _{=j} f(i) f(j)}{2} \end{aligned} $

When $f(i)$ and $f(j)$ are not symmetrical, the sum can be obtained by listing all the terms.

Example: 1 $\sum _{\mathrm{i}=1}^{4} \sum _{\mathrm{j}=1}^{3} \mathrm{ij}=\sum \mathrm{i}(1+2+3)=\sum(\mathrm{i}+2 \mathrm{i}+3 \mathrm{i})$

$ (1+2+3)+(2+4+6)+(3+6+9)+(4+8+12)=6+12+18+24=60 $

Also, $\sum _{\mathrm{i}=1}^{4} \sum _{\mathrm{j}=1}^{3} \mathrm{i}=\sum _{\mathrm{i}=1}^{4} \mathrm{i} \sum _{\mathrm{j}=1}^{3} \mathrm{j}=\frac{4 \mathrm{x} 5}{2} \mathrm{x} \frac{3 \times 4}{2}=60 \quad$ (Since $\mathrm{i} \& \mathrm{j}$ are independent)

Note that $2 \sum _{\mathrm{i}<\mathrm{j}=1}^{\mathrm{n}} \mathrm{a} _{\mathrm{i}} \mathrm{a} _{\mathrm{j}}=\left(\mathrm{a} _{1}+\mathrm{a} _{2}+\ldots . .+\mathrm{a} _{\mathrm{n}}\right)^{2}-\left(\mathrm{a} _{1}^{2}+\mathrm{a} _{2}^{2}+\ldots . .+\mathrm{a} _{\mathrm{n}}^{2}\right)$

Example: 2 $ \sum \sum _{0 \leq i \mathrm{j} j \mathrm{n}} 1$

$ \begin{aligned} & =\frac{\sum _{i=1}^{n} \sum _{j=1}^{n} 1-\sum _{i=j} \sum 1}{2} \\ & =\frac{\left(\sum _{i=1}^{n} 1\right)\left(\sum _{j=1}^{n} 1\right)-\sum _{j=1}^{n} 1}{2} \\ & =\quad \frac{n \cdot n-n}{2}=\frac{n(n-1)}{2}={ }^{n} C _{2} \end{aligned} $

Example: 3 Consider $\sum _{\mathrm{i}=1}^{\mathrm{n}} \sum _{\mathrm{j}=1}^{\mathrm{n}} \mathrm{ij}$

There are 3 types of terms in this summation,

i. Those terms when $\mathrm{i}<\mathrm{j}$ (upper triangle)

ii. Those terms when $\mathrm{i}>\mathrm{j}$ (lower triangle)

iii. Those terms when $\mathrm{i}=\mathrm{j}$ (diagonal) It is shown in the diagram

ij 1 2 3 $\cdots .$. $n$
1 1.1 1.2 1.3 $\ldots \ldots$ $1 . n$
2 2.1 2.2 2.3 $\ldots \ldots$ $2 . n$
3 3.1 3.2 3.3 $\ldots \ldots$ $3 . n$
$\vdots$
$n$ n.1 n.2 n.3 $\ldots$ n.n

$\sum _{\mathrm{i}=1}^{\mathrm{n}} \sum _{\mathrm{j}=1}^{\mathrm{n}} \mathrm{ij}=$ sum of terms in upper triangle + sum of terms in lower triangle + sum of terms in diagonal.

$ \begin{aligned} & \sum _{\mathrm{i}=1}^{\mathrm{n}} \sum _{\mathrm{j}=1}^{\mathrm{n}} \mathrm{ij}=2 \sum _{0 \leq i \leq j \leq \mathrm{n}} \sum _{\mathrm{i} j} \mathrm{ij}+\sum _{\mathrm{i}=\mathrm{j}} \sum _{\mathrm{ij}}(\because \text { sum of terms in upper }+ \text { lower tringles are same }) \\ & \sum _{0 \leq i \leq j \leq n} \sum _{\mathrm{ij}}=\frac{\sum _{\mathrm{i}=1}^{\mathrm{n}} \sum _{\mathrm{j}=1}^{\mathrm{n}} \mathrm{ij}-\sum _{\mathrm{i}=\mathrm{j}} \sum \mathrm{ij}}{2}=\frac{\sum _{\mathrm{i}=1}^{\mathrm{n}} \sum _{\mathrm{j}=1}^{\mathrm{n}} \mathrm{i}-\sum _{\mathrm{i}=1}^{\mathrm{n}} \mathrm{i}^{2}}{2} \\ & =\frac{\frac{\mathrm{n}(\mathrm{n}+1)}{2} \cdot \frac{\mathrm{n}(\mathrm{n}+1)}{2}-\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}}{2} \\ & =\frac{\mathrm{n}\left(\mathrm{n}^{2}-1\right)(3 \mathrm{n}+2)}{24} \end{aligned} $

Solved examples

1. Find sum of the series to $n$ terms

Show Answer

Solution:

$ \begin{aligned} & 1+3 x+5 x^2+7 x^3+\ldots \ldots \ldots \\ & \text { Let } S_n=1+3 x+5 x^2+7 x^3+\ldots \ldots \ldots+(2 n-3) x^{n-2}+(2 n-1) x^{n-1} ………..(1)\\ & \quad x S_n=x+3 x^2+5 x^3+\ldots \ldots \ldots \ldots . .+(2 n-3) x^{n-1}+(2 n-1) x^n ……………(2)\end{aligned} $

(1) $-$ (2) given

$ \begin{aligned} & S_n(1-x)=1+\left(2 x+2 x^2+2 x^3+\ldots \ldots . .+2 x^{n-1}\right)-(2 n-1) x^n \\ & =\quad 1+2 x\left(\frac{1-x^{n-1}}{1-x}\right)-(2 n-1) x^n \\ & \therefore \quad S_n=\frac{1}{1-x}+2 x \frac{\left(1-x^{n-1}\right)}{(1-x)^2}-\left(\frac{2 n-1}{1-x}\right) x^n \end{aligned} $

2. $3^{\frac{1}{4}} \times 9^{\frac{1}{8}} \times 27^{\frac{1}{16}} \times \ldots \ldots .$. to $\infty=$

(a). $3$

(b). $9$

(c). $\frac{1}{3}$

(d). none of these

Show Answer

Solution:

$ \begin{aligned} & 3^{\frac{1}{4}} \times 9^{\frac{1}{8}} \times 27^{\frac{1}{16}} \times \ldots . . . . \text { to } \infty=3^{\frac{1}{4}} \times 3^{\frac{2}{8}} \times 3^{\frac{3}{16}} \times \ldots . . . . \text { to } \infty \\ & =3^{\frac{1}{4}+\frac{2}{8}+\frac{3}{16}+\ldots \ldots \ldots \text { to } \infty} \\ & =3^{\mathrm{s}}………(1) \end{aligned} $

Where $\mathrm{S}=\frac{1}{4}+\frac{2}{8}+\frac{3}{16}+………..$ to $\infty…………(2)$

$\frac{1}{2} \mathrm{~S}=\frac{1}{8}+\frac{2}{16}+………..$to $\infty……………(3)$

to $\infty$

(2) $-(3) \Rightarrow S\left(1-\frac{1}{2}\right)=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}$.

$=\frac{\frac{1}{4}}{1-\frac{1}{2}}=\frac{1}{2}$

$\therefore \quad \mathrm{S}=1$

Substituting in (1)

$3^{\frac{1}{4}} \times 9^{\frac{1}{8}} \times 27^{\frac{1}{16}}$ to $\infty=3^{1}=3$

Answer: a

3. $\sum _{\mathrm{m}=1}^{\infty} \sum _{\mathrm{n}=1}^{\infty} \frac{\mathrm{m}^{2} \mathrm{n}}{3^{\mathrm{m}}\left(\mathrm{n} \cdot 3^{\mathrm{m}}+\mathrm{m} \cdot 3^{\mathrm{n}}\right)}=$

(a). $\frac{16}{9}$

(b). $\frac{9}{16}$

(c). $1$

(d). none of these

Show Answer

Solution: Let $\mathrm{S}=\sum _{\mathrm{m}=1}^{\infty} \sum _{\mathrm{n}=1}^{\infty} \frac{\mathrm{m}^{2} \mathrm{n}}{3^{\mathrm{m}}\left(\mathrm{n} \cdot 3^{\mathrm{m}}+\mathrm{m} \cdot 3^{\mathrm{n}}\right)}$

$=\quad \sum _{m=1}^{\infty} \sum _{n=1}^{\infty} \frac{1}{\left(\frac{3^{m}}{m}\right)\left(\frac{3^{m}}{m}+\frac{3^{n}}{n}\right)}$

$S=\sum _{m=1}^{\infty} \sum _{n=1}^{\infty} \frac{1}{a _{m}\left(a _{m}+a _{n}\right)}$………..(i) $\quad\left(\right.$ where $\left.\mathrm{a} _{\mathrm{m}}=\frac{3^{\mathrm{m}}}{\mathrm{m}} \& \mathrm{a} _{\mathrm{n}}=\frac{3^{\mathrm{n}}}{\mathrm{n}}\right)$

Intercharging $\mathrm{m} \& \mathrm{n}$

$S=\sum _{m=1}^{\infty} \sum _{n=1}^{\infty} \frac{1}{a _{n}\left(a _{m}+a _{n}\right)}……….(ii)$

Adding (i) & (ii)

$2 \mathrm{~S}=\sum _{\mathrm{m}=1}^{\infty} \sum _{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{a} _{\mathrm{m}} \mathrm{a} _{\mathrm{n}}}$

$=\quad \sum _{\mathrm{m}=1}^{\infty} \sum _{\mathrm{n}=1}^{\infty} \frac{\mathrm{mn}}{3^{\mathrm{m}+\mathrm{n}}}$

$ \begin{aligned} & \left.=\left(\sum _{\mathrm{m}=1}^{\infty} \frac{\mathrm{m}}{3^{\mathrm{m}}}\right)\left(\sum _{\mathrm{n}=1}^{\infty} \frac{\mathrm{n}}{3^{\mathrm{n}}}\right)=\mathrm{s}^{1} \mathrm{~s}^{1}=\sum _{\mathrm{m}=1}^{\infty} \frac{\mathrm{m}}{3^{\mathrm{m}}} \quad \sum _{\mathrm{m}=1}^{\infty} \frac{\mathrm{n}}{3^{\mathrm{n}}}=\frac{1}{3}+\frac{2}{3^{2}}+\frac{3}{3^{3}}+\ldots \ldots \ldots \infty\right)=\mathrm{S} \\ & =\left(\frac{3}{4}\right) \cdot\left(\frac{3}{4}\right) \\ & S^{1}=\frac{1}{3}+\frac{2}{3^{2}}+\frac{3}{3^{3}}+\ldots \ldots \ldots \infty ………..(i)\\ & \frac{1}{3} S^{1}=\frac{1}{3^{2}}+\frac{2}{3^{3}}+\frac{3}{3^{4}}+\ldots \ldots \ldots \infty …….(ii)\\ & 2 S=\frac{9}{16} \\ & \text { Subtratiy equation (ii) From (i) } \\ & S=\frac{9}{32} \\ & \frac{2}{3} S^{1}=\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\cdots \cdots \\ & \frac{2}{3} S^{1}=\frac{1 / 3}{3-1 / 3} \\ & S^{1}=\frac{3}{4} \end{aligned} $

Answer: d

4. Sum to $n$ terms of the series $1^{2}-2^{2}+3^{2}-4^{2}+$ is

Show Answer

Solution: Clearly nth term is negative or positive according $n$ is even or od(d).

Case I when $\mathrm{n}$ is even.

In this case the series is

$ \begin{array}{ll} & \left(1^{2}-2^{2}\right)+\left(3^{2}-4^{2}\right)+\ldots \ldots \ldots \ldots \ldots \ldots+\left((\mathrm{n}-1)^{2}-\mathrm{n}^{2}\right) \\ =\quad & -\{1+2+3+\ldots \ldots+(\mathrm{n}-1)+\mathrm{n}\}=\frac{-\mathrm{n}(\mathrm{n}+1)}{2} \end{array} $

Case II when $\mathrm{n}$ is od(d).

In this case the series is

$ \begin{aligned} & \left(1^{2}-2^{2}\right)+\left(3^{2}-4^{2}\right)+\ldots \ldots \ldots \ldots \ldots+\left\{(n-2)^{2}-(n-1)^{2}\right\}+n^{2} \\ & =\quad \frac{-n(n-1)}{2}+n^{2} \\ & =\quad \frac{-n+n+2 n^{2}}{2}=\frac{n^{2}+n}{2}=\frac{n(n+1)}{2} \end{aligned} $

5. Find the sum of all possible products of first $n$ natural numbers taken two by two

Solution: $\sum _{1 \leq i \leq j \leq n} \mathrm{x} _{\mathrm{i}} \mathrm{x} _{\mathrm{j}}=\frac{1}{2}\left\{\sum _{\mathrm{i}=1}^{\mathrm{n}} \sum _{\mathrm{j}=1}^{\mathrm{n}} \mathrm{ij}-\sum _{\mathrm{i}=\mathrm{j}} \sum \mathrm{ij}\right\}$

$ \begin{aligned} & =\quad \frac{1}{2}\left\{\left(\frac{n(n+1)}{2}\right)^{2}-\frac{n(n+1)(2 n+1)}{6}\right\} \\ & =\quad \frac{1}{24} n(n+1)(n-1)(3 n+2) \end{aligned} $

6. Find sum to $\mathrm{n}$ terms of $\frac{1}{1+1^{2}+1^{4}}+\frac{2}{1+2^{2}+2^{4}}+\frac{3}{1+3^{2}+3^{4}}+\ldots \ldots \ldots$

Show Answer

Solution:

$ T _{n}=\frac{n}{1+n^{2}+n^{4}}=\frac{n}{\left(n^{2}+n+1\right)\left(n^{2}-n+1\right)}=\frac{1}{2} \frac{\left(n^{2}+n+1\right)-\left(n^{2}-n+1\right)}{\left(n^{2}+n+1\right)\left(n^{2}-n+1\right)} $

$T _{n}=\frac{1}{2}\left(\frac{1}{n^{2}-n+1}-\frac{1}{n^{2}+n+1}\right) S _{n}=\frac{1}{2}\left[\left(\frac{1}{1}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{7}\right)+\cdots\cdot\left(\frac{1}{n^{2}-n+1}-\frac{1}{n^{2}+n+1}\right)\right]$

Putting $\mathrm{n}=1,2,3 \ldots . . \mathrm{n}$ and adding

$ \mathrm{S} _{\mathrm{n}}=\sum \mathrm{T} _{\mathrm{n}}=\frac{1}{2}\left\{1-\frac{1}{\mathrm{n}^{2}+\mathrm{n}+1}\right\}=\frac{\mathrm{n}^{2}+\mathrm{n}}{2\left(\mathrm{n}^{2}+\mathrm{n}+1\right)} $

7. $\frac{3}{4}+\frac{5}{36}+\frac{7}{144}+\frac{9}{400}+$ …….to $\infty$ is

(a). 2

(b). 1

(c). 3

(d). none of these

Show Answer

Solution: $\frac{3}{4}+\frac{5}{36}+\frac{7}{144}+\frac{9}{400}+\ldots \ldots \ldots$. to $\infty$

$=\frac{3}{(1 \times 2)^{2}}+\frac{5}{(2 \times 3)^{2}}+\frac{7}{(3 \times 4)^{2}}+\frac{9}{(4 \times 5)^{2}}+\ldots \ldots \ldots$ to $\infty$

$=\frac{2^{2}-1^{2}}{1^{2} \times 2^{2}}+\frac{3^{2}-2^{2}}{2^{2} \times 3^{2}}+\frac{4^{2}-3^{2}}{3^{2} \times 4^{2}}+\ldots \ldots \ldots$. . 0

$=\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)+\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)+\left(\frac{1}{3^{2}}-\frac{1}{4^{2}}\right)+$ ..to $\infty$

$=\frac{1}{1^{2}}=1$

Answer: b

8. Find the $n^{\text {th }}$ term of the following series

i. $3+7+13+21+……$

Show Answer

Solution:

$1^{\text {st }}$ consecutive differences $4,6,8$, are in A.P.

$\therefore \quad \mathrm{T} _{\mathrm{n}}=\mathrm{an}^{2}+\mathrm{bn}+\mathrm{c}$

Putting $\mathrm{n}=1,2,3$,

$\mathrm{a}+\mathrm{b}+\mathrm{c}=3,4 \mathrm{a}+2 \mathrm{~b}+\mathrm{c}=7,9 \mathrm{a}+3 \mathrm{~b}+\mathrm{c}=13$

$\Rightarrow \mathrm{a}=1, \mathrm{~b}=1, \mathrm{c}=1$

$\therefore \quad \mathrm{T} _{\mathrm{n}}=\mathrm{n}^{2}+\mathrm{n}+1$

ii. $5+7+13+31+85+…….$

Show Answer

Solution:

$1^{\text {st }}$ consecutive differences $2,6,18,54$, are in G.P. with common ratio 3

$\therefore \quad \mathrm{T} _{\mathrm{n}}=\mathrm{a} .3^{\mathrm{n}-1}+\mathrm{bn}+\mathrm{c}$

Putting $\mathrm{n}=1,2,3$ we get

$\mathrm{a}+\mathrm{b}+\mathrm{c}=5,3 \mathrm{a}+2 \mathrm{~b}+\mathrm{c}=7,9 \mathrm{a}+3 \mathrm{~b}+\mathrm{c}=13$

$\Rightarrow \mathrm{a}=1, \mathrm{~b}=0, \mathrm{c}=4$

$\mathrm{T} _{\mathrm{n}}=3^{\mathrm{n}-1}+4$

$V _{n}$ method

1. If $S _{n}=\frac{1}{a _{1} a _{2} \ldots \ldots . a _{r}}+\frac{1}{a _{2} a _{3} \ldots \ldots . a _{r+1}}+\ldots \ldots . .+\frac{1}{a _{n} a _{n+1} a _{n} \ldots \ldots a _{n+r-1}}$

$T _{n}=\frac{1}{a _{n} a _{n+1} \ldots \ldots a _{n+r-1}}, V _{n}=\frac{1}{a _{n+1} \ldots \ldots a _{n+r-1}} \quad$ (leave 1st term in denominator of $T _{n}$ )

$V _{n}-V _{n-1}=\frac{1}{a _{n+1} a _{n+2} \ldots \ldots a _{n+r-1}}-\frac{1}{a _{n} a _{n+1} \ldots \ldots a _{n+r-2}}$

$=\frac{1}{a _{n} a _{n+1} \ldots \ldots a _{n+r-1}}\left(a _{n}-a _{n+r-1}\right)$

$\mathrm{V} _{\mathrm{n}}-\mathrm{V} _{\mathrm{n}-1}=\mathrm{T} _{\mathrm{n}}(1-\mathrm{r}) \mathrm{d}$

$\mathrm{T} _{\mathrm{n}}=\frac{-1}{\mathrm{~d}(\mathrm{r}-1)}\left(\mathrm{V} _{\mathrm{n}}-\mathrm{V} _{\mathrm{n}-1}\right) \Rightarrow \mathrm{S} _{\mathrm{n}}=\frac{-1}{\mathrm{~d}(\mathrm{r}-1)}\left(\mathrm{V} _{\mathrm{n}}-\mathrm{V} _{0}\right)$

E.g $\frac{1}{1.2}+\frac{1}{1.3}+\ldots \ldots \ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}$

$ \begin{aligned} & \frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\ldots \ldots \ldots \ldots \ldots+\frac{1}{n(n+1)(n+2)}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{(n+1)(n+2)}\right) \\ & \frac{1}{1.2 .3 .4}+\frac{1}{2.3 .4 .5}+\ldots \ldots \ldots \ldots \ldots+\frac{1}{n(n+1)(n+2)(n+3)}=\frac{1}{3}\left(\frac{1}{1.2 .3}-\frac{1}{(n+1)(n+2)(n+3)}\right) \end{aligned} $

2. If $S _{n}=a _{1} a _{2} \ldots \ldots a _{r}+a _{2} a _{3} \ldots \ldots a _{r+1}+\ldots \ldots+a _{n} a _{n+1} \ldots \ldots a _{n+r-1}$

$ \begin{aligned} & T _{n}=a _{n} a _{n+1} \ldots \ldots . a _{n+r-1} \quad V _{n}=a _{n} a _{n+1} \ldots \ldots . a _{n+r-1} a _{n-r} \\ & V _{n}-V _{n-1}=a _{n} a _{n+1} \ldots . a _{n+r}-a _{n-1} a _{n} \ldots \ldots . a _{n+r-1} \\ & =\quad a _{n} a _{n+1} \ldots . a _{n+r-1}\left(a _{n+r}-a _{n-1}\right) \\ & =\quad T _{n}(r+1) d \\ & T _{n}=\frac{1}{d(r+1)}\left(V _{n}-V _{n-1}\right) \Rightarrow S _{n}=\frac{1}{d(r+1)}\left(V _{n}-V _{0}\right) \\ & 1.2+2.3+\ldots . .+n(n+1)=n(n+1) \frac{(n+2)}{3} \end{aligned} $

$1 \cdot 2 \cdot 3 \cdot 4+2 \cdot 3 \cdot 4 \cdot 5+\ldots \ldots \ldots+n(n+1)(n+2)(n+3)=n(n+1)(n+2)(n+3) \frac{(n+4)}{5}$

Alternative method

1. $\mathrm{S}=\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\ldots \ldots \ldots \ldots+\frac{1}{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)}$

$ \begin{aligned} & =\quad \frac{1}{2}\left\{\frac{3-1}{1.2 .3}+\frac{4-2}{2.3 .4}+\ldots \ldots \ldots \ldots+\frac{(n+2)-n}{n(n+1)(n+2)}\right\} \\ & =\quad \frac{1}{2}\left\{\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+\ldots \ldots+\left(\frac{1}{\mathrm{n}(\mathrm{n}+1)}-\frac{1}{(\mathrm{n}+1)(\mathrm{n}+2)}\right)\right\} \\ & =\frac{1}{2}\left\{\frac{1}{1.2}-\frac{1}{(\mathrm{n}+1)(\mathrm{n}+2)}\right\} \end{aligned} $

2. $1.2 .3+2.3 .4+\ldots \ldots+n(\mathrm{n}+1)(\mathrm{n}+2)=\frac{(\mathrm{n})(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)}{(3+1)}$

$=\frac{\mathrm{t} _{\mathrm{n}}(\mathrm{n}+3)}{3+1}$

i.e. Sum of the product of $m$ consecutive natural $S _{n}=\frac{T _{n}(n+m)}{m+1}$

Practice questions

1. If $R \subset(0, \pi)$ denote the set of values which satisfies the equation

$2^{1+|\cos x|+\left|\cos ^2 x\right|+\left|\cos ^3 x\right|+\ldots \ldots}=4$, then $R=$

(a). $\left\{\frac{-\pi}{3}\right\}$

(b). $\left\{\frac{\pi}{3}, \frac{2 \pi}{3}\right\}$

(c). $\left\{\frac{-\pi}{3}, \frac{2 \pi}{3}\right\}$

(d). $\left\{\frac{\pi}{3}, \frac{-2 \pi}{3}\right\}$

Show Answer Answer: (b)

2. Find the value of the expression $\sum _{\mathrm{i}=1}^{\mathrm{n}} \sum _{\mathrm{j}=1}^{\mathrm{i}} \sum _{\mathrm{k}=1}^{\mathrm{j}} 1$

Show Answer Answer: $\frac{n(n+1)(n+2)}{6}$

3. If in a series $\mathrm{t} _{\mathrm{n}}=\frac{\mathrm{n}}{(\mathrm{n}+1) !}$, Then $\sum _{\mathrm{n}=1}^{20} \mathrm{t} _{\mathrm{n}}$ is equal to

(a). $\frac{20 !-1}{20 !}$

(b). $\frac{21 !-1}{21 !}$

(c). $\frac{1}{2(n-1) !}$

(d). none of these

Show Answer Answer: (b)

4. The value of $(0.2)^{\log _{\sqrt{5}}\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots \ldots \infty\right)}$ is

(a). $1$

(b). $2$

(c). $\frac{1}{2}$

(d). $4$

Show Answer Answer: (d)

5. $\lim _{n \rightarrow \infty}\left(1+3^{-1}\right)\left(1+3^{-2}\right)\left(1+3^{-4}\right)\left(1+3^{-8}\right) \ldots \ldots . .\left(1+3^{-2^{n}}\right)$ is equal to

(a). $1$

(b). $\frac{1}{2}$

(c). $\frac{3}{2}$

(d). none of these

Show Answer Answer: (c)

6. $\lim _{\mathrm{n} \rightarrow \infty} \frac{1.2 .3+2.3 .4+3.4 .5+\ldots \ldots \ldots . . . \mathrm{upto} \mathrm{n} \text { terms }}{\mathrm{n}(1.2+2.3+3.4+\ldots \ldots \ldots \text {. }}$ is equal to $\mathrm{n}$ terms $)$

(a). $\frac{3}{4}$

(b). $\frac{1}{4}$

(c). $\frac{1}{2}$

(d). $\frac{5}{4}$

Show Answer Answer: (a)

7. Sum to infinite terms of the series $\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{2}{9}+\tan ^{-1} \frac{1}{8}+\tan ^{-1} \frac{2}{25}+\tan ^{-1} \frac{1}{18}+\ldots \ldots$.

(a). $\tan ^{-1} 3$

(b). $ \cot ^{-1} \frac{1}{3}$

(c). $\tan ^{-1} \frac{1}{3}$

(d). $\cot ^{-1} 3$

Show Answer Answer: (a, b)

8. If $f(x)=a _{0}+a _{1} x+a _{2} x^{2}+\ldots \ldots+a _{n} x^{n}+\ldots \ldots$. and $\frac{f(x)}{1-x}=b _{0}+b _{1} x+b _{2} x^{2}+\ldots \ldots .+b _{n} x^{n}+\ldots \ldots$. If $a _{0}=1$ and $\mathrm{b} _{1}=3$ and $\mathrm{b} _{10}=\mathrm{k}^{11}-1$, and $\mathrm{a} _{0}, \mathrm{a} _{1}, \mathrm{a} _{2}, \ldots .$. are in G.P then $\mathrm{k}$ is

(a). $2$

(b). $3$

(c). $\frac{1}{2}$

(d). none of these

Show Answer Answer: (a)

9. The value of $n$ for which $704+\frac{1}{2}(704)+\frac{1}{4}(704)+\ldots . .$. up to $n$ terms = $1984-\frac{1}{2}(1984)+\frac{1}{4}(1984) \ldots \ldots .$. upto $n$ terms is

(a). 5

(b). 3

(c). 4

(d). 10

Show Answer Answer: (a)

10. If $1^{2}+2^{2}+3^{2}+\ldots \ldots+2003^{2}=(2003)(4007)(334)$ and (1) (2003) $+2(2002)+(3)(2001) \ldots \ldots .$. $(2003)(1)=(2003)(334)(x)$, then $x$ equals

(a). 2005

(b). 2004

(c). 2003

(d). 2001

Show Answer Answer: (a)

11. Read the passage and answer the following questions

Let $\mathrm{T} _{1}, \mathrm{~T} _{2} \ldots . . \mathrm{T} _{\mathrm{n}}$ be the terms of a sequence and let $\left(\mathrm{T} _{2}-\mathrm{T} _{1}\right)=\mathrm{T} _{2}{ }^{1},\left(\mathrm{~T} _{3}-\mathrm{T} _{2}\right)=\mathrm{T} _{2}{ }^{1}, \ldots \ldots$. $\left(\mathrm{T} _{\mathrm{n}}-\mathrm{T} _{\mathrm{n}-1}\right)=\mathrm{T}^{1 \mathrm{n}-1}$

Case I: If $\mathrm{T} _{1}{ }^{1}, \mathrm{~T} _{2}{ }^{1} \ldots \ldots . \mathrm{T} _{\mathrm{n}-1}{ }^{1}$ are in A.P., then $\mathrm{T} _{\mathrm{n}}$ is quardratic in ’ $\mathrm{n}$ ‘. If $\mathrm{T} _{1}{ }^{1}-\mathrm{T} _{2}{ }^{1}$, $\mathrm{T} _{2}{ }^{1}-\mathrm{T} _{3}{ }^{1}$,…. are in A.P., then $\mathrm{T} _{\mathrm{n}}$ is cubic is $\mathrm{n}$.

Case II: If $T _{1}{ }^{1}, T _{2}{ }^{1} \ldots \ldots T _{n-1}^{1}$ are not in A.P., but in G.P. , then $T _{n}=a r^{n}+b$ where $r$ is the common ratio of the G.P. $\mathrm{T} _{1}{ }^{1}, \mathrm{~T} _{2}{ } _{2}{ }^{1} \mathrm{~T} _{3}{ }^{1} \ldots$. and $\mathrm{a}, \mathrm{b} \in \mathrm{R}$. Again if $\mathrm{T} _{1}{ }^{1}, \mathrm{~T} _{2}{ }^{1} \ldots \ldots \mathrm{T} _{\mathrm{n}-1}^{1}$ are not in G.P., but $\mathrm{T} _{2}{ }^{1}-\mathrm{T} _{1}{ } _{1}{ }^{1} \mathrm{~T} _{3}{ }^{1}-\mathrm{T} _{2}{ }^{1}, \ldots \ldots$ are in G.P., then $\mathrm{T} _{\mathrm{n}}$ is of the form $\mathrm{ar}^{\mathrm{n}-1}+\mathrm{bn}+\mathrm{c}$ and $\mathrm{r}$ is the C.R. of the G.P. $T _{2}{ }^{2}-T _{1}{ }^{1}, T _{3}{ }^{1}-T _{2}{ }^{1}, \ldots \ldots$ and a,b,c $\in$ R.

i. The sum of 20 terms of the series $3+7+14+24+37+\ldots \ldots$ is

(a). 4010

(b). 3860

(c). 4240

(d). none of these

Show Answer Answer: (c)

ii. The $100^{\text {th }}$ term of the series $3+8+22+72+226+1036+\ldots$. . is divisible by $2^{\text {n }}$, then maxi mum value of $n$ is

(a). 4

(b). 2

(c). 3

(d). 5

Show Answer Answer: (c)

iii. For the series $2+12+36+80+150+252+\ldots .$. , the value of $\lim _{n \rightarrow \infty} \frac{T _{n}}{n^{3}}$ is (where $T _{n}$ is the $n^{\text {th }}$ term)

(a). $2$

(b). $\frac{1}{2}$

(c). $1$

(d). none of these

Show Answer Answer: (c)

12. Match the following

Column I Column II
(a). If the sum of the series $\frac{5}{7}+\frac{2}{3}+\frac{13}{21}+\ldots \ldots$ up to $\mathrm{n}$ terms is 5 , then $\mathrm{n}=$ p. 28
(b). A term of the sequence $1,3,6, \ldots .$. is q. 10
(c). Sum of the series $1+2+3+\ldots \ldots$. upto 7 terms is r. 36
(d). If $\sum \mathrm{n}^{3}=1296$, then $\sum \mathrm{n}$ is equal to s. 21
Show Answer Answer: a $\rarr$ q, s; b $\rarr$ p, q, r, s; c $\rarr$ p; d $\rarr$ p


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ