SEQUENCES AND SERIES - 6 (Sequences and Series - Problem Solving)

Sequence

A sequence is a function of natural numbers with codomain as the set of real numbers. It is said to be finite or infinite according it has finite or infinite number of terms. Sequence $a _{1}, a _{2}, \ldots \ldots a _{n}$ is usually denoted by $\left\{a _{n}\right\}$ or $<a _{n}>$

Series

By adding or subtracting the terms of a sequence we get a series.

Arithmetic Progression (A.P.)

It is a sequence in which the difference between two consecutive terms is the same.

For a sequence $\left\{a _{n}\right\}$ which is in A.P, $n^{\text {th }}$ term $a _{n}=a+(n-1) d=\ell$ (last term) which is always a linear expression in $\mathrm{n}$ )

$\mathrm{d}=\mathrm{a} _{\mathrm{n}}-\mathrm{a} _{\mathrm{n}-1}$ (If $\mathrm{d}=0$, then sequence is a constant sequence. if $\mathrm{d}>0$ the sequence is increasing; if $\mathrm{d}<0$, the sequence is decreasing)

$\mathrm{n}^{\text {th }}$ term from the end $\mathrm{a} _{\mathrm{n}}{ }^{1}=\ell+(\mathrm{n}-1)(-\mathrm{d})$

$ =\ell-(\mathrm{n}-1) \mathrm{d} $

Sum to $\mathrm{n}$ terms $=\left\{\begin{array}{c}\frac{\mathrm{n}}{2}(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}) \\ \text { or } \\ =\frac{\mathrm{n}}{2}(\mathrm{a}+\ell)\end{array}\right.$

$\left(\mathrm{S} _{\mathrm{n}}\right.$ is a quadratic expression in $\mathrm{n}$; common difference $=\frac{1}{2}$ coefficient of $\left.\mathrm{n}^{2}\right)$

Also $\mathrm{a} _{\mathrm{n}}=\mathrm{S} _{\mathrm{n}}-\mathrm{S} _{\mathrm{n}-1}$

Arithmetic mean

If $a, b, c$ are in $A . P$, then $b=\frac{a+c}{2}$ is called the single arithmetic mean of $a \& c$. Let $a \& b$ be two given numbers and $A _{1}, A _{2}, \ldots \ldots \ldots . . . . A _{n}$ are $n$ A.M’s between them. Then $a, A _{1}, A _{2}, \ldots A _{n}, b$ are in A.P. Common difference of this sequence $\mathrm{d}=\frac{\mathrm{b}-\mathrm{a}}{\mathrm{n}+1}$.

$\mathrm{A} _{1}=\mathrm{a}+\mathrm{d}, \mathrm{A} _{2}=\mathrm{a}+2 \mathrm{~d}$ etc. we can find all the arithmetic means.

Properties of A.P.

  1. If $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \ldots \ldots .$. are in A.P; then $\mathrm{a}_1 \pm \mathrm{k}, \mathrm{a}_2 \pm \mathrm{k}, \mathrm{a}_3 \pm \mathrm{k}$, $…….$ are also in A.P.

  2. If $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3$ $………$ are in A.P, then $\mathrm{a}_1 \lambda, \mathrm{a}_2 \lambda, \mathrm{a}_3 \lambda$ $………..$ and $\frac{\mathrm{a}_1}{\lambda}, \frac{\mathrm{a}_2}{\lambda}, \frac{\mathrm{a}_3}{\lambda}$ are also in A.P $\left(\lambda^{\prime} \neq 0\right)$

  3. If $ a_1, {a}_2, \ldots \ldots . . a_n $ are in A.P, then $a_n,a_n-1, \ldots \ldots \ldots \ldots . . a_2, a_1$ is also an A.P with common difference ( $-$d)

  4. If $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3$, $……….$ and $\mathrm{b}_1, \mathrm{~b}_2, \mathrm{~b}_3$, $……..$ are two A.P.s then $\mathrm{a}_1 \pm \mathrm{b}_1, \mathrm{a}_2 \pm \mathrm{b}_2, \mathrm{a}_3 \pm \mathrm{b}_3, \ldots$. are also in A.P.

  5. If $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \ldots \ldots \ldots \ldots \ldots$ and $\mathrm{b}_1, \mathrm{~b}_2, \mathrm{~b}_3, \ldots \ldots \ldots \ldots \ldots \ldots$ are two A.P.s then $\mathrm{a}_1 \mathrm{~b}_1, \mathrm{a}_2 \mathrm{~b}_2, \mathrm{a}_3 \mathrm{~b}_3, \ldots \ldots \ldots \ldots$ and $\frac{\mathrm{a}_1}{\mathrm{~b}_1}, \frac{\mathrm{a}_2}{\mathrm{~b}_2}, \frac{\mathrm{a}_3}{\mathrm{~b}_3}, \ldots \ldots \ldots . . . . . . . \mathrm{are}$ NOT in A.P.

  6. If 3 numbers are in A.P we may take them as $a-d, a, a+d$. If 4 numbers are in A.P, we can take them as $a-3 \mathrm{~d}, \mathrm{a}-\mathrm{d}, \mathrm{a}+\mathrm{d}, \mathrm{a}+3 \mathrm{~d}$.

  7. In an arithmetic progression, sum of the terms equidistant form the beginning and end is a constant and equal to sum of first and last term.

$\quad$ ie for $\left\{a _{n}\right\}$,

$\quad$ $\mathrm{a} _{1}+\mathrm{a} _{\mathrm{n}}=\mathrm{a} _{2}+\mathrm{a} _{\mathrm{n}-1}=\mathrm{a} _{3}+\mathrm{a} _{\mathrm{n}-2}=\ldots \ldots$

$\quad$ Also $\mathrm{a} _{\mathrm{r}}=\frac{\mathrm{a} _{\mathrm{r}-\mathrm{k}}+\mathrm{a} _{\mathrm{r}+\mathrm{k}}}{2}, 0 \leq \mathrm{k} \leq \mathrm{n}-\mathrm{r}$.

  1. Sum of $n$ arithmetic means between two given numbers a & $b$ is $n$ times the single A.M between them.

$\quad$ ie. $A _{1}+A _{2}+\ldots \ldots \ldots \ldots . .+A _{n}=n\left(\frac{a+b}{2}\right)$

  1. Also $S _{n}=a _{1}+a _{2}+\ldots \ldots+a _{n}=\left\{\begin{array}{l}n(\text { middle term }) ; \text { if } n \text { is odd. } \\ \frac{n}{2} \text { (sum of two middle terms); if } n \text { is even }\end{array}\right.$

Geometric Progression (G.P.)

It is a sequence in which the ratio of any two consecutive terms is the same. For a sequence $\left\{a _{n}\right\}$ which is in G.P. $\mathrm{n}^{\text {th }}$ term $\mathrm{a} _{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$ (last term)

Common ratio $r=\frac{a _{n}}{a _{n-1}}\left(r _{\neq} \neq 0\right.$. If $r>1$, the sequence is an increasing sequence, if $0<r<1$ then the sequence is decreasing )

$n^{\text {th }}$ term from the end $a _{n}{ }^{1}=a _{n}\left(\frac{1}{r}\right)^{n-1} \quad\left(a _{n}{ }^{1}=n\right.$th term from end $)$

Note : No term of G.P. can be zero

Sum to $n$ terms $S _{n}=\left\{\begin{array}{l}\frac{a\left(r^{n}-1\right)}{r-1}, r \neq 1 \\ n a, r=1\end{array}\right.$

If $|r|<1$, the sum of the infinite G.P is given by $S _{\infty}=\frac{a}{1-r}$

Geometric mean

If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P, then $\mathrm{b}^{2}=\mathrm{ac}$ or $\mathrm{b}=\sqrt{\mathrm{ac}}$ is called the single geometric mean of $\mathrm{a} \& \mathrm{c}$. Let $\mathrm{a} \&$ $\mathrm{b}$ be two given numbers and $\mathrm{G} _{1}, \mathrm{G} _{2}, \ldots . . \mathrm{G} _{\mathrm{n}}$ are $\mathrm{n}$ G.M.s between them. Then $\mathrm{a}, \mathrm{G} _{1}, \mathrm{G} _{2}, \ldots \ldots . . \mathrm{G} _{\mathrm{n}}$,

$b$ are in G.P. Common ratio of this sequence $r=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}$

$\mathrm{G} _{1}=\mathrm{ar}, \mathrm{G} _{2}=\mathrm{ar}^{2}$ etc. we can find all the geometric means.

Properties of G.P.

1. If $a_1, a_2, a_3$ $……$ are in G.P., then $ a_1 k , a_2 k, a_3 k$, $……$ and $\frac{ a_1}{ k}, \frac{ a_2}{ k}, \frac{ a_3}{ k}$,$………$are also in G.P $\left( {k}_{\neq 0}\right)$.

2. If $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3$, $………$ are in G.P., then $\frac{1}{a_1}, \frac{1}{a_2}, \frac{1}{a_3}$, $………..$ and $\mathrm{a}_1{ }^{\mathrm{n}}, \mathrm{a}_2{ }^{\mathrm{n}}, \mathrm{a}_3{ }^{\mathrm{n}}$, $………..$ are also in G.P.

3. If $\mathrm{a} _{1}, \mathrm{a} _{2}, \mathrm{a} _{3}, \ldots \ldots . . \mathrm{a} _{\mathrm{n}}$ are in G.P with common ratio $\mathrm{r}$, then $\mathrm{a} _{\mathrm{n}}, \mathrm{a} _{\mathrm{n}-1} \ldots \ldots \ldots \ldots . \mathrm{a} _{2}, \mathrm{a} _{1}$ is also in G.P. With common ratio $\frac{1}{\mathrm{r}}$. G.P.

4. If $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3 \ldots \ldots .$. and $\mathrm{b}_1, \mathrm{~b}_2, \mathrm{~b}_3, \ldots \ldots . .$. are two G.P.s then $\mathrm{a}_1 \pm \mathrm{b}_1, \mathrm{a}_2 \pm \mathrm{b}_2, \mathrm{a}_3 \pm \mathrm{b}_3, \ldots \ldots .$. are NOT in G.P.

5. If $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3$, $……….$ and $b_1, b_2, b_3$ $……..$ are two G.P.s then $\mathrm{a}_1 \mathrm{~b}_1, \mathrm{a}_2 \mathrm{~b}_2, \mathrm{a}_3 \mathrm{~b}_3$ $………$ and $\frac{\mathrm{a}_1}{\mathrm{~b}_1}, \frac{\mathrm{a}_2}{\mathrm{~b}_2}, \frac{\mathrm{a}_3}{\mathrm{~b}_3}$ are also in G.P.

6. If 3 numbers are in G.P., we may take them as $\frac{\mathrm{a}}{\mathrm{r}}$, a, ar. If 4 numbers are in G.P., we can take them as $\frac{\mathrm{a}}{\mathrm{r}^{3}}, \frac{\mathrm{a}}{\mathrm{r}}$, ar, a $\mathrm{r}^{3}$.

7. In a geometric progression, product of the terms equidistant from the beginning and end is a constant and equal to product of first and last term.

ie $\quad$ For $\left\{\mathrm{a} _{\mathrm{n}}\right\}$

$\mathrm{a} _{1} \mathrm{a} _{\mathrm{n}}=\mathrm{a} _{2} \mathrm{a} _{\mathrm{n}-1}=\mathrm{a} _{3} \mathrm{a} _{\mathrm{n}-2}=$

Also $\mathrm{a} _{\mathrm{r}}=\sqrt{\mathrm{a} _{\mathrm{r}-\mathrm{k}} \mathrm{a} _{\mathrm{r}+\mathrm{k}}}, 0 \leq \mathrm{k} \leq \mathrm{n}-\mathrm{r}$.

8. Product of $n$ geometric means between two given numbers $a \& b$ is $n^{\text {th }}$ power of the single G.M. between them.

ie $\mathrm{G} _{1} \mathrm{G} _{2} \mathrm{G} _{3} \ldots \ldots \ldots \mathrm{G} _{\mathrm{n}}=(\sqrt{\mathrm{ab}})^{\mathrm{n}}$

9. If $\mathrm{a} _{1}, \mathrm{a} _{2}, \mathrm{a} _{3}, \ldots \ldots \ldots \ldots \ldots . . .$. are in G.P. $\left(\mathrm{a} _{\mathrm{i}}>0 \forall \mathrm{i}\right)$, then $\log \mathrm{a} _{1}, \log \mathrm{a} _{2}, \log \mathrm{a} _{3}, \ldots \ldots$ are in A.P. Its converse is also true.

Harmonic Progression (H.P.)

A sequence is said to be in H.P if the reciprocals of its terms are in A.P.

ie. if $a _{1}, a _{2}, a _{3}, \ldots \ldots . a _{n}$ are in H.P., then $\frac{1}{a _{1}}, \frac{1}{a _{2}}, \ldots . . \frac{1}{a _{n}}$ are in A.P.

For a sequence $\left\{\mathrm{a} _{\mathrm{n}}\right\}$ which is in H.P.,

$n^{\text {th }}$ term $a _{n}=\frac{1}{\frac{1}{a _{1}}+(n-1)\left(\frac{1}{a _{2}}-\frac{1}{a _{1}}\right)}=\frac{a _{1} a _{2}}{a _{2}+(n-1)\left(a _{1}-a _{2}\right)}$

$n^{\text {th }}$ term from end $\mathrm{a} _{\mathrm{n}}{ }^{1}=\frac{1}{\frac{1}{\mathrm{a} _{\mathrm{n}}}-(\mathrm{n}-1)\left(\frac{1}{\mathrm{a} _{2}}-\frac{1}{\mathrm{a} _{1}}\right)}=\frac{\mathrm{a} _{1} \mathrm{a} _{2} \mathrm{a} _{\mathrm{n}}}{\mathrm{a} _{1} \mathrm{a} _{2}-\mathrm{a} _{\mathrm{n}}(\mathrm{n}-1)\left(\mathrm{a} _{1}-\mathrm{a} _{2}\right)}$

Note: No term of H.P. can be zero. There is no general formula for finding out the sum of $n$ terms of H.P.

Harmonic mean

If $a, b, c$ are in H.P; then $b=\frac{2 a c}{a+c}$ is called the single H.M. between $a \& c$. Let $a \& b$ be two given numbers and $\mathrm{H} _{1}, \mathrm{H} _{2}, \ldots \ldots \ldots \ldots . ., \mathrm{H} _{\mathrm{n}}$ are $\mathrm{n}$ H.M.s between them. then $\mathrm{a}, \mathrm{H} _{1}, \mathrm{H} _{2}, \ldots \ldots . \mathrm{H} _{\mathrm{n}}$, b are in H.P. The common difference $d$ of the corresponding A.P is

$\mathrm{d}=\frac{\mathrm{a}-\mathrm{b}}{(\mathrm{n}+1) \mathrm{ab}}$

$\frac{1}{\mathrm{H} _{1}}=\frac{1}{\mathrm{a}}+\mathrm{d}, \frac{1}{\mathrm{H} _{2}}=\frac{1}{\mathrm{a}}+2 \mathrm{~d}$ etc. we can find all the harmonic means.

Note: The sum of reciprocals of $n$ Harmonic means between two given numbers is $n$ times the reciprocal of single H.M. between them.

ie $\quad \frac{1}{\mathrm{H} _{1}}+\frac{1}{\mathrm{H} _{2}}+\ldots \ldots \frac{1}{\mathrm{H} _{\mathrm{n}}}=\mathrm{n} \frac{\left(\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}\right)}{2}$

Note: If $a, b, c$ are three successive terms of a sequence. Then

$\frac{\mathrm{a}-\mathrm{b}}{\mathrm{b}-\mathrm{c}}=\left\{\begin{array}{l}\frac{\mathrm{a}}{\mathrm{a}} \Rightarrow \mathrm{a}, \mathrm{b}, \mathrm{c} \text { are in A.P. } \\ \frac{\mathrm{a}}{\mathrm{b}} \Rightarrow \mathrm{a}, \mathrm{b}, \mathrm{c} \text { are in G.P. } \\ \frac{\mathrm{a}}{\mathrm{c}} \Rightarrow \mathrm{a}, \mathrm{b}, \mathrm{c} \text { are in H.P. }\end{array}\right.$

Relation between A.M., G.M., and H.M.

For positive numbers $\mathrm{a} _{1}, \mathrm{a} _{2}, \mathrm{a} _{3}, \ldots \ldots \ldots \ldots \ldots . \mathrm{a} _{\mathrm{n}}$

A.M. $=A=\frac{\mathrm{a} _{1}+\mathrm{a} _{2}+\ldots \ldots .+\mathrm{a} _{\mathrm{n}}}{\mathrm{n}}$

G.M. $=\mathrm{G}=\left(\mathrm{a} _{1} \mathrm{a} _{2} \ldots \ldots . \mathrm{a} _{\mathrm{n}}\right)^{\frac{1}{\mathrm{n}}}$

$H . M=H=\frac{n}{\frac{1}{a _{1}}+\frac{1}{a _{2}}+\ldots . .+\frac{1}{a _{n}}}$,

$\mathrm{A} \geq \mathrm{G} \geq \mathrm{H}$ and $\mathrm{G}^{2}=\mathrm{AH}$.

(equality holds if $\mathrm{a} _{1}=\mathrm{a} _{2}=$. $ \qquad $ Note : Also $\sqrt{\frac{\mathrm{a} _{1}{ }^{2}+\mathrm{a} _{2}{ }^{2}+\ldots \ldots .+\mathrm{a} _{\mathrm{n}}{ }^{2}}{\mathrm{n}}} \geq \frac{\mathrm{a} _{1}+\mathrm{a} _{2}+\ldots \ldots . .+\mathrm{a} _{\mathrm{n}}}{\mathrm{n}}$

(Root mean square inequality)

Note: The quadratic equation having $a, b$ as its roots is $x^{2}-2 A x+G^{2}=0$ and $a: b=A+\sqrt{A^{2}-G^{2}}$ :A- $\sqrt{\mathrm{A}^{2}-\mathrm{G}^{2}}$ where $\mathrm{A}, \mathrm{G}$ are respectively the A.M. and G.M. of $\mathrm{a} \& \mathrm{~b}$

Note : Formation of progressions

Two consecutive terms determine the required progression. If two numbers $\mathrm{a} \& \mathrm{~b}$ are given, then

(i) $\quad \mathrm{a}, \mathrm{b}, 2 \mathrm{~b}-\mathrm{a}$ is A.P.

(ii) $\quad a, b, \frac{b^{2}}{\mathrm{a}}$ is G.P.

(ii) $\quad a, b,$ $\frac{\mathrm{ab}}{2 \mathrm{a}-\mathrm{b}}$ is H.P.

Solved examples

1. If the $\mathrm{p}^{\text {th }}, \mathrm{q}^{\text {th }}$ and $\mathrm{r}^{\text {th }}$ terms of an A.P are in GP, then the common ratio of the G.P is

(a) $\frac{\mathrm{p}+\mathrm{q}}{\mathrm{r}+\mathrm{q}}$

(b) $\frac{r-q}{q-p}$

(c) $\frac{p-r}{p-q}$

(d) None of these

Show Answer

Solution : $T _{p}, T _{q}, T _{r}$ are in G.P

$\Rightarrow \frac{\mathrm{T} _{\mathrm{q}}}{\mathrm{T} _{\mathrm{p}}}=\frac{\mathrm{T} _{\mathrm{r}}}{\mathrm{T} _{\mathrm{q}}} \Rightarrow \frac{\mathrm{T} _{\mathrm{q}}}{\mathrm{T} _{\mathrm{p}}}-1=\frac{\mathrm{T} _{\mathrm{r}}}{\mathrm{T} _{\mathrm{q}}}-1$

$\Rightarrow \frac{\mathrm{T} _{\mathrm{q}}-\mathrm{T} _{\mathrm{p}}}{\mathrm{T} _{\mathrm{p}}}=\frac{\mathrm{T} _{\mathrm{r}}-\mathrm{T} _{\mathrm{q}}}{\mathrm{T} _{\mathrm{q}}} \therefore \frac{\mathrm{T} _{\mathrm{q}}}{\mathrm{T} _{\mathrm{p}}}=\frac{\mathrm{T} _{\mathrm{r}}-\mathrm{T} _{\mathrm{q}}}{\mathrm{T} _{\mathrm{q}}-\mathrm{T} _{\mathrm{p}}}$

$\Rightarrow \frac{T _{q}}{T _{p}}=\frac{(A+(r-1) D)-(A+(q-1) D)}{(A+(q-1) D)-(A+(p-1) D)}=\frac{r-q}{q-p}$

Answer: (b)

2. If $4 a^{2}+9 b^{2}+16 c^{2}=2(3 a b+6 b c+4 c a)$, where $a, b, c$ are non-zero real numbers then $a, b, c$ are in

(a) A.P.

(b) G.P.

(c) H.P.

(d) None of these

Show Answer

Solution : Multiply by 2 on both sides

$4 a^{2}+4 a^{2}+9 b^{2}+9 b^{2}+16 c^{2}+16 c^{2}-12 a b-24 b c-16 c a=0$

$\Rightarrow(2 \mathrm{a}-3 \mathrm{~b})^{2}+(3 \mathrm{~b}-4 \mathrm{c})^{2}+(4 \mathrm{c}-2 \mathrm{a})^{2}=0$

$\Rightarrow 2 \mathrm{a}=3 \mathrm{~b}=4 \mathrm{c}=\lambda$

$\Rightarrow \mathrm{a}=\frac{\lambda}{2}, \mathrm{~b}=\frac{\lambda}{3}, \mathrm{c}=\frac{\lambda}{4}$

2,3,4 are in $\mathrm{AP} \Rightarrow \frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ are in H.P.

$\Rightarrow \frac{\lambda}{2}, \frac{\lambda}{3}, \frac{\lambda}{4}$ are in HP gives

a, $b, c$ are in $\mathrm{HP}$

Answer: (c)

3. If $\mathrm{a}, \mathrm{a} _{1}, \mathrm{a} _{2}, \mathrm{a_3}………..$ $\mathrm{a} _{2 \mathrm{n}}, \mathrm{b}$ are in $\mathrm{AP}$ and $\mathrm{a}, \mathrm{g} _{1}, \mathrm{~g} _{2}, \mathrm{~g} _{3}…….$, $\mathrm{g} _{2 \mathrm{n}}, \mathrm{b}$ are in G..P. and $\mathrm{h}$ is the single harmonic mean of $a \& b$, then $\frac{a _{1}+a _{2 n}}{g _{1} g _{2 n}}+\frac{a _{2}+a _{2 n-1}}{g _{2} g _{2 n-1}}+\ldots \ldots \ldots \ldots \ldots \ldots+\frac{a _{n}+a _{n+1}}{g _{n} g _{n+1}}$ is equal to

(a) $\frac{2 \mathrm{n}}{\mathrm{h}}$

(b) $2 \mathrm{nh}$

(c) $n h$

(d) $\frac{\mathrm{n}}{\mathrm{h}}$

Show Answer

Solution :

$\mathrm{a} _{1}+\mathrm{a} _{2 \mathrm{n}}=\mathrm{a} _{2}+\mathrm{a} _{2 \mathrm{n}-1}=$ $=\mathrm{a} _{\mathrm{n}}+\mathrm{a} _{\mathrm{n}+1}=\mathrm{a}+\mathrm{b}$ and

$\mathrm{g} _{1} \mathrm{~g} _{2 \mathrm{n}}=\mathrm{g} _{2} \cdot \mathrm{g} _{2 \mathrm{n}-1}=$ $=\mathrm{g} _{\mathrm{n}} \cdot \mathrm{g} _{\mathrm{n}+1}=\mathrm{ab}$

Also $h=\frac{2 a b}{a+b}$

$\therefore$ Given expression $=\frac{\mathrm{a}+\mathrm{b}}{\mathrm{ab}}+\frac{\mathrm{a}+\mathrm{b}}{\mathrm{ab}}+\ldots \ldots \ldots \ldots \frac{\mathrm{a}+\mathrm{b}}{\mathrm{ab}}$ (n times)

$=\mathrm{n} \frac{\mathrm{a}+\mathrm{b}}{\mathrm{ab}}=\frac{\mathrm{n} \cdot 2}{\mathrm{~h}}=\frac{2 \mathrm{n}}{\mathrm{h}}$

Answer: (a)

4. If $0<x<\frac{\pi}{2}$, then the minimum value of

$(\sin x+\cos x+\operatorname{cosec} 2 x)^{3}$ is

(a) $27$

(b) $\frac{27}{2}$

(c) $\frac{27}{4}$

(d) None

Show Answer

Solution : Apply $A.M \geq GM $

$\Rightarrow \frac{\sin x+\cos x+\operatorname{cosec} 2 x}{3} \geq(\sin x \cdot \cos x \cdot \operatorname{cosec} 2 x)^{\frac{1}{3}}$

$\frac{\sin x+\cos x+\operatorname{cosec} 2 x}{3} \geq\left(\frac{\sin x \cos x}{2 \sin x \cos x}\right)^{\frac{1}{3}}$

Cubing both sides

$ \frac{(\sin x+\cos x+\operatorname{cosec} 2 x)^{3}}{27} \geq \frac{1}{2} $

Minimum of $(\sin x+\cos x+\operatorname{cosec} 2 x)^{3}=\frac{27}{2}$

Answer: (b)

5. Sum of certain odd consecutive positive integers is $57^{2}-13^{2}$, then the integers are

(a) $25,27,29, ……….111$

(b) $27,29 , ……….113$

(c) $29,31,33,…….. 115$

(d) None of these

Show Answer

Solution :

$(2 \mathrm{~m}+1)+(2 \mathrm{~m}+3)+$ $……….$n terms $=57^{2}-13^{2}$

$ \begin{array}{ll} & \frac{n}{2}\{2 \cdot(2 m+1)+(n-1) 2\}=57^{2}-13^{2} \\ \Rightarrow \quad & n(2 m+n)=57^{2}-13^{2} \\ & n^{2}+2 m n+m^{2}-m^{2}=57^{2}-13^{2} \\ & (n+m)^{2}-m^{2}=57^{2}-13^{2} \\ \Rightarrow \quad & n+m=57 \text { and } m=13, \text { Solve to get } n=44 \end{array} $

Hence, the series is

$27, 29, 31 , ……..113$

Answer: (b)

6. If $x, y, z$ are three positive numbers in A.P, then the minimum value of $\frac{x+y}{2 y-x}+\frac{y+z}{2 y-z}$ is

(a) $2$

(b) $4$

(c) $\frac{1}{4}$

(d) None of these

Show Answer

Solution :

put $y=\frac{z+x}{2}$ in the given expression

$=\frac{x+\frac{z+x}{2}}{z+x-x}+\frac{z+x}{z+x-z}$

$=\frac{3 \mathrm{x}+\mathrm{z}}{2 \mathrm{z}}+\frac{3 \mathrm{z}+\mathrm{x}}{2 \mathrm{x}}$

$=\frac{3 \mathrm{x}}{2 \mathrm{z}}+\frac{1}{2}+\frac{3 \mathrm{z}}{2 \mathrm{x}}+\frac{1}{2}$

$=\frac{3}{2}\left(\frac{\mathrm{x}}{\mathrm{z}}+\frac{\mathrm{z}}{\mathrm{x}}\right)+\frac{2}{2}$

Now $\because \mathrm{AM} \geq \mathrm{GM} \Rightarrow \frac{\frac{\mathrm{x}}{\mathrm{z}}+\frac{\mathrm{z}}{\mathrm{x}}}{2} \geq \sqrt{\frac{\mathrm{z}}{\mathrm{x}} \cdot \frac{\mathrm{x}}{\mathrm{z}}} \Rightarrow \frac{\mathrm{x}}{\mathrm{z}}+\frac{\mathrm{z}}{\mathrm{x}} \geq 2$ $\geq \frac{3}{2} \times 2+1=4$

Answer: (b)

7. If $\mathrm{n}$ arithmetic means are inserted between 50 and 200 , and $\mathrm{n}$ harmonic means are inserted between the same two numbers, then $\mathrm{a} _{2} \cdot \mathrm{h} _{\mathrm{n}-1}$ is equal to

(a) 500

(b) 5000

(c) 10,000

(d) None of these

Show Answer

Solution :

$50, \mathrm{a} _{1}, \mathrm{a} _{2}, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \mathrm{a} _{\mathrm{n}}, 200$ are in AP$………..(1)$

Also, $50, \mathrm{~h} _{1}, \mathrm{~h} _{2}$ ,$………..$ $\mathrm{h} _{\mathrm{n}} 200$ are in H.P

$\Rightarrow \frac{1}{50}, \frac{1}{\mathrm{~h} _{1}}, \frac{1}{\mathrm{~h} _{2}}, \ldots \ldots \ldots \ldots \ldots \ldots \frac{1}{\mathrm{~h} _{\mathrm{n}}}, \frac{1}{200}$ are in AP

$\Rightarrow \frac{1}{200}, \frac{1}{\mathrm{~h} _{\mathrm{n}}}, \frac{1}{\mathrm{~h} _{\mathrm{n}-1}}, \ldots \ldots \ldots \ldots \ldots \ldots \frac{1}{\mathrm{~h} _{1}}, \frac{1}{50}$ are in AP$………….(2)$

Multiply by $200 \times 50=10,000$

$\Rightarrow 50, \frac{10,000}{\mathrm{~h} _{\mathrm{n}}}, \frac{10,000}{\mathrm{~h} _{\mathrm{n}-1}}, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \frac{10,000}{\mathrm{~h} _{2}}, \frac{10,000}{\mathrm{~h} _{1}}, 200$ are in AP.

Now (1) and (2) are identical.

$\Rightarrow \mathrm{a} _{2}=\frac{10,000}{\mathrm{~h} _{\mathrm{n}-1}}$ gives $\mathrm{a} _{2} \cdot \mathrm{h} _{\mathrm{n}-1}=10,000$

Answer: (c)

Practice questions

1. If $\mathrm{a} _{1}, \mathrm{a} _{2}, \ldots \ldots \ldots . \mathrm{a} _{\mathrm{n}}$ are positive real numbers whose product is a fixed number $\mathrm{c}$, then the minimum value of $a _{1}+a _{2}+\ldots \ldots . .+a _{n-1}+2 a _{n}$ is

(a) $ \mathrm{n}(2 \mathrm{c})^{1 / \mathrm{n}}$

(b) $(\mathrm{n}+1) \mathrm{c}^{1 / \mathrm{n}}$

(c) $ 2 \mathrm{nc}^{1 / \mathrm{n}}$

(d) $(\mathrm{n}+1)(2 \mathrm{c})^{1 / \mathrm{n}}$

Show Answer Answer: (a)

2. If $a, b, c$ are in A.P. and $a^{2}, b^{2}, c^{2}$ are in G.P. If $a<b<c$ and $a+b+c=\frac{3}{2}$, then the value of $a$ is

(a) $\frac{1}{2 \sqrt{2}}$

(b) $\frac{1}{2 \sqrt{3}}$

(c) $\frac{1}{2}-\frac{1}{\sqrt{3}}$

(d) $\frac{1}{2}-\frac{1}{\sqrt{2}}$

Show Answer Answer: (d)

3. Let $f(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}, \mathrm{a} \neq 0$ and $\Delta^{2} \mathrm{~b}^{2}-4 \mathrm{ac}$. If $\alpha+\beta, \alpha^{2}+\beta^{2} \& \alpha^{3}+\beta^{3}$ are in G.P, then

(a) $ \Delta \neq 0$

(b) $\mathrm{b} _{\Delta}=0$

(c) $\mathrm{c} _{\Delta}=0$

(d) $ \mathrm{bc} \neq 0$

Show Answer Answer: (c)

4. If $\frac{\mathrm{bc}}{\mathrm{ad}}=\frac{\mathrm{b}+\mathrm{c}}{\mathrm{a}+\mathrm{d}}=3 \frac{\mathrm{b}-\mathrm{c}}{\mathrm{a}-\mathrm{d}}$, then $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are in

(a) A.P

(b) G.P

(c) H.P

(d) A.G.P.

Show Answer Answer: (c)

5. The $4^{\text {th }}$ term of the A.G.P. $6,8,8,………$ is

(a) $0$

(b) $12$

(c) $\frac{32}{3}$

(d) $\frac{64}{9}$

Show Answer Answer: (c, d)

6. If $\mathrm{x}=111 \ldots . .1$ (20 digits), $\mathrm{y}=333 \ldots \ldots . .3$ (10 digits) and $\mathrm{z}=222 \ldots \ldots \ldots . .2\left(10\right.$ digits) then $\frac{\mathrm{x}-\mathrm{y}^{2}}{\mathrm{z}}=$

(a) $1$

(b) $72$

(c) $\frac{1}{2}$

(d) $3$

Show Answer Answer: (a)

7. Read the passage and answer the questions that follow.

  • An odd integer is the difference of two squares of integers.

  • The cube of an integer is difference of two squares.

  • The cube of an odd integer can be expressed as difference of two squares in two different ways.

  • The difference of the cubes of two consecutive integers is difference of two squares.

(i). If $10^{3}=\mathrm{a}^{2}-\mathrm{b}^{2}$, then $\mathrm{a}-\mathrm{b}=$

(a) 5

(b) 0

(c) 10

(d) 15

Show Answer Answer: (c)

(ii). If $9^{3}=a^{2}-b^{2}=c^{2}-d^{2}, a+b+c+d=$

(a) 720

(b) 750

(c) 800

(d) 810

Show Answer Answer: (d)

(iii). $15^{3}-14^{3}=\mathrm{a}^{2}-\mathrm{b}^{2}, \mathrm{ab}=$

(a) 90000

(b) 95940

(c) 99550

(d) 99540

Show Answer Answer: (d)

8. Match the following :-

For the given number a and b, $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ is

Column I Column II
(a) A.M. (p) for $n=1$
(b) G.M (q) for $n=1 / 2$
(c) H.M. (r) for $n=0$
(s) for $\mathrm{n}=-1 / 2$
(t) for $\mathrm{n}=-1$
Show Answer Answer: a $\rarr$ r; b $\rarr$ s; c $\rarr$ t

9. The sum of the products of the ten numbers $\pm 1, \pm 2, \pm 3, \pm 4, \pm 5$ taking two at a time is

(a) $165$

(b) $-55$

(c) $55$

(d) None of these

Show Answer Answer: (b)

10. Let $a _{1}=0$ and $a _{1}, a _{2}, a _{3}, \ldots \ldots \ldots \ldots . . . a _{n}$ be real numbers such that $\left|a _{i}\right|=\left|a _{i-1}+1\right|$ for all $i$, then the A.M. of the numbers $a _{1}, a _{2}, a _{3}……………a _{n}$ has the value $A$ where

(a) $\mathrm{A}<\frac{-1}{2}$

(b) $\mathrm{A}<-1$

(c) $ \mathrm{A} \geq \frac{-1}{2}$

(d) $ \mathrm{A}=\frac{-1}{2}$

Show Answer Answer: (c)


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ