SEQUENCES AND SERIES - 7 (Sequences and Series - Problem Solving)

Some important Logarithmic and Exponential formulae

1. $\quad$ If $\mathrm{a}^{\mathrm{x}}=\mathrm{y}$, then $\mathrm{x}=\log _{\mathrm{a}} \mathrm{y}$

2. $\quad \log _{\mathrm{a}} \mathrm{a}=1 \& \log _{\mathrm{a}} 1=0$

3. $\quad \mathrm{a}^{\log _{\mathrm{a}} \mathrm{n}}=\mathrm{n}$

4. $\quad \log _{\mathrm{a}} \mathrm{mn}=\log _{\mathrm{a}} \mathrm{m}+\log _{\mathrm{a}} \mathrm{n}$

5. $\quad \log _{a}\left(\frac{m}{n}\right)=\log _{a} m-\log _{a} n$

6 $\quad \log _{\mathrm{a}} \mathrm{m}^{\mathrm{n}}=\mathrm{n} \log _{\mathrm{a}} \mathrm{m}$

7. $\quad \log _{\mathrm{b}} \mathrm{a}=\frac{\log _{\mathrm{c}} \mathrm{a}}{\log _{\mathrm{c}} \mathrm{b}}$

8. $\quad \log _{a^{n}} a^{m}=\frac{m}{n}$

9. $\quad \log _{\mathrm{b}} \mathrm{a}=\frac{1}{\log _{\mathrm{a}} \mathrm{b}}$

10. $\quad \log _{e}(1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots \ldots \ldots \ldots$

11. $\quad \log _{e}(1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}$

12. $\quad \log _{e}(1+x)(1-x)=\log _{e}\left(1-x^{2}\right)=-2\left(\frac{x^{2}}{2}+\frac{x^{4}}{4}+\frac{x^{6}}{6}+\ldots \ldots \ldots \ldots . ..\right)$

13. $\quad \log _{e}\left(\frac{1+x}{1-x}\right)=2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots \ldots \ldots \ldots \ldots \ldots . . . .\right.$.

14. $\quad \log _{\mathrm{e}} 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}……..$

15. $\quad \mathrm{e}^{\mathrm{x}}=1+\frac{\mathrm{x}}{1 !}+\frac{\mathrm{x}^{2}}{2 !}+\frac{\mathrm{x}^{3}}{3 !}+………$

16. $\quad \mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}=2\left(1+\frac{\mathrm{x}^{2}}{2 !}+\frac{\mathrm{x}^{4}}{4 !}+\ldots \ldots \ldots \ldots\right)$

17. $\quad e^{x}-e^{-x}=2\left(\frac{x}{1 !}+\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !} \ldots \ldots \ldots \ldots . ..\right)$

18. $\quad \mathrm{e}=1+\frac{1}{1 !}+\frac{1}{2 !}+\frac{1}{3 !}+………$

$\quad\mathrm{e}$ is an irrational number $\&$ it lies between $2 \& 3 . \mathrm{e} \cong 2.7183$

19. $\quad a^{y}=e^{y \log _{e} a}=1+y\left(\log _{e} a\right)+\frac{y^{2}}{2 !}\left(\log _{e} a\right)^{2}+\frac{y^{3}}{3 !}\left(\log _{e} a\right)^{3}+………$

20. $\quad \log _{2} \log _{2} \sqrt{\sqrt{\sqrt{\sqrt{\ldots \ldots \ldots \ldots \ldots . . . \sqrt{2}}}}}=\mathrm{n}$ where $\mathrm{n}$ is the number of square roots

21. $\quad \mathrm{a}^{\sqrt{\log _{\mathrm{a}} \mathrm{b}}}=\mathrm{b}^{\sqrt{\log _{\mathrm{b}} \mathrm{a}}}$

Vn-Method

(i) To find the sum of series of the form

$\frac{1}{\mathrm{a} _{1} \mathrm{a} _{2} \ldots \ldots \ldots \ldots \mathrm{a} _{\mathrm{r}}}+\frac{1}{\mathrm{a} _{2} \mathrm{a} _{3} \ldots \ldots \ldots \ldots \mathrm{a} _{\mathrm{r}+1}}+\ldots \ldots \ldots \ldots \ldots \ldots+\frac{1}{\mathrm{a} _{\mathrm{n}} \mathrm{a} _{\mathrm{n}+1} \ldots \ldots \ldots \ldots \mathrm{a} _{\mathrm{n}+\mathrm{r}-1}}$ where $\mathrm{a} _{1}, \mathrm{a} _{2}$,

$\left( \text { Here }T_{n}=\frac{1}{a _{n} a _{n+1} \ldots \ldots \ldots \ldots a _{n+r-1}}\right)$

……..are in A.P. Let $V _{n}=\frac{1}{a _{n+1} a _{n+2} \ldots \ldots \ldots . a _{n+r-1}}$ (avoiding first term for $V _{n}$ ie $a _{n}$ in $T _{n}$ )

$\mathrm{T} _{\mathrm{n}}=\frac{-1}{\mathrm{~d}(\mathrm{r}-1)}\left(\mathrm{V} _{\mathrm{n}}-\mathrm{V} _{\mathrm{n}-1}\right)=\frac{1}{\mathrm{~d}(\mathrm{r}-1)}\left(\mathrm{V} _{\mathrm{n}-1}-\mathrm{V} _{\mathrm{n}}\right)$

put $\mathrm{n}=1,2,3 \ldots \ldots \ldots \ldots . . \mathrm{n}$ and add to get $\mathrm{S} _{\mathrm{n}}$.

$\mathrm{S} _{\mathrm{n}}=\mathrm{T} _{1}+\mathrm{T} _{2}+\ldots \ldots . \mathrm{T} _{\mathrm{n}}=\frac{1}{\mathrm{~d}(\mathrm{r}-1)}\left(\mathrm{V} _{0}-\mathrm{V} _{\mathrm{n}}\right)$

$ =\frac{1}{d(r-1)}\left(\frac{1}{a _{1} a _{2} \ldots \ldots . a _{r-1}}-\frac{1}{a _{n+1} a _{n+2} \ldots \ldots a _{n+r-1}}\right) $

Eg. (a) $\quad \frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\ldots \ldots \ldots \ldots \ldots+\frac{1}{n(n+1)(n+2)}=\frac{1}{1 .(3-1)}\left(\frac{1}{1.2}-\frac{1}{(n+1)(n+2)}\right)$

$=\frac{1}{4}-\frac{1}{2(\mathrm{n}+1)(\mathrm{n}+2)}$

(b) $\quad \frac{1}{1 \cdot 2 \cdot 3.4}+\frac{1}{2 \cdot 3 \cdot 4.5}+\ldots \ldots \ldots . \frac{1}{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)}$

$ =\frac{1}{1 .(4-1)}\left(\frac{1}{1.2 \cdot 3}-\frac{1}{(n+1)(n+2)(n+3)}\right) $

(ii) Summation of series of the form $\mathrm{a} _{1} \mathrm{a} _{2} \ldots \ldots \mathrm{a} _{\mathrm{r}}+\mathrm{a} _{2} \mathrm{a} _{3} \ldots \ldots . \mathrm{a} _{\mathrm{r}+1}+$. $\mathrm{a} _{1}, \mathrm{a} _{2} \ldots . .$. are in A.P

Here $T _{n}=a _{n} a _{n+1} \cdots \cdots \ldots . a _{n+r-1}$

Let $V _{n}{ } _{n}=a _{n} a _{n+1} \cdots \ldots \ldots \ldots \ldots a _{n-r+1} a _{n-r}\left(\right.$ Take one term extra in $T _{n}$ for $\left.V _{n}\right)$

$\mathrm{T} _{\mathrm{n}}=\frac{1}{(\mathrm{r}+1) \mathrm{d}}\left(\mathrm{V} _{\mathrm{n}}-\mathrm{V} _{\mathrm{n}-1}\right)$.

Put $\mathrm{n}=1,2,3 \ldots \ldots .$. and add to get $\mathrm{S} _{\mathrm{n}}$

$S _{n}=T _{1}+T _{2}+\ldots \ldots \ldots \ldots+T _{n}=\frac{1}{d(r+1)}\left(V _{n}-V _{0}\right)=\frac{1}{d(r+1)}\left(a _{n} a _{n+1} \ldots \ldots \ldots . a _{n+r}-a _{0} a _{1} a _{2} \ldots \ldots \ldots \ldots a _{r}\right)$ where $\mathrm{a} _{0}=\mathrm{a} _{1}-\mathrm{d}$

Eg (a) $\quad 1.2+2.3+\ldots \ldots \ldots \ldots \ldots \ldots . .+\mathrm{n}(\mathrm{n}+1)=\frac{1}{1 .(2+1)}((\mathrm{n}+1)(\mathrm{n}+2)-0.1 .2)=\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)}{3}$

(b) $\quad 1.2 .3 .4+2.3 .4 .5+$ $+\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)$

$ \begin{aligned} & =\frac{1}{1 .(4+1)}(\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)(\mathrm{n}+4)-0 \cdot 1 \cdot 2 \cdot 3 \cdot 4) \\ & =\frac{1}{5} \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)(\mathrm{n}+4) \end{aligned} $

Solved examples

1. If the sides of a triangle are in A.P and the greatest angle of the triangle is double the smallest, then the ratio of sides of the triangle is

(a) $3: 4: 5$

(b) $4: 5: 6$

(c) $5: 6: 7$

(d) None of these

Show Answer

Solution :

Applying sine rule, we have

$\frac{\mathrm{a}-\mathrm{d}}{\sin \theta}=\frac{\mathrm{a}}{\sin (\pi-3 \theta)}=\frac{\mathrm{a}+\mathrm{d}}{\sin 2 \theta}$

$\Rightarrow \frac{\mathrm{a}-\mathrm{d}}{\sin \theta}=\frac{\mathrm{a}}{3 \sin \theta-4 \sin ^{3} \theta}=\frac{\mathrm{a}+\mathrm{d}}{2 \sin \theta \cos \theta}$

$\Rightarrow \frac{\mathrm{a}-\mathrm{d}}{1}=\frac{\mathrm{a}}{3-4 \sin ^{2} \theta}=\frac{\mathrm{a}+\mathrm{d}}{2 \cos \theta}$ gives $\cos \theta=\frac{\mathrm{a}+\mathrm{d}}{2(\mathrm{a}-\mathrm{d})}$

Also, $3-4 \sin ^{2} \theta=\frac{a}{a-d}$

$\Rightarrow 3-4\left(1-\cos ^{2} \theta\right)=\frac{a}{a-d}$ gives $-1+\left(\frac{a+d}{a-d}\right)^{2}=\frac{a}{a-d}$

$\Rightarrow \frac{4 \mathrm{ad}}{\mathrm{a}-\mathrm{d}}=\mathrm{a} \Rightarrow 4 \mathrm{ad}=\mathrm{a}^{2}-\mathrm{ad}$ gives $\mathrm{a}=5 \mathrm{~d}$

$\therefore$ sides $\mathrm{a}-\mathrm{d}: \mathrm{a}: \mathrm{a}+\mathrm{d}$

$5 \mathrm{~d}-\mathrm{d}: 5 \mathrm{~d}: 5 \mathrm{~d}+\mathrm{d}=4: 5: 6$

Answer: (b)

2. The sum of

$\frac{3}{1.2} \cdot \frac{1}{2}+\frac{4}{2.3}\left(\frac{1}{2}\right)^{2}+\frac{5}{3.4} \cdot\left(\frac{1}{2}\right)^{3}+\ldots \ldots \ldots \ldots . . \mathrm{n}$ terms is

(a) $1-\frac{1}{(\mathrm{n}+1) 2^{\mathrm{n}}}$

(b) $1-\frac{1}{\mathrm{n} \cdot 2^{\mathrm{n}-1}}$

(c) $1+\frac{1}{(\mathrm{n}+1) 2^{\mathrm{n}}}$

(d) None of these

Show Answer

Solution :

$\mathrm{T} _{\mathrm{n}}=\frac{\mathrm{n}+2}{\mathrm{n} \cdot(\mathrm{n}+1)} \cdot \frac{1}{2^{\mathrm{n}}}=\left(\frac{2}{\mathrm{n}}-\frac{1}{\mathrm{n}+1}\right) \cdot \frac{1}{2^{\mathrm{n}}}$

$\Rightarrow \mathrm{T} _{\mathrm{n}}=\frac{1}{\mathrm{n} \cdot 2^{\mathrm{n}-1}}-\frac{1}{(\mathrm{n}+1) \cdot 2^{\mathrm{n}}}$

Putting $\mathrm{n}=1,2,3,…………,n$

$\therefore \mathrm{T} _{1}=\frac{1}{1.2^{0}}-\frac{1}{2.2^{1}}$

$\mathrm{T} _{2}=\frac{1}{2.2^{1}}-\frac{1}{3.2^{2}}$

$\mathrm{T} _{3}=\frac{1}{3.2^{2}}-\frac{1}{4.3^{2}}$

$\hspace{1cm}.$

$\hspace{1cm}.$

$\hspace{1cm}.$

$\mathrm{T} _{\mathrm{n}}=\frac{1}{\mathrm{n} \cdot 2^{\mathrm{n}-1}}-\frac{1}{(\mathrm{n}+1) 2^{\mathrm{n}}}$

Adding , $\mathrm{T} _{1}+\mathrm{T} _{2}+\mathrm{T} _{3}+\ldots \ldots \ldots+\mathrm{T} _{\mathrm{n}}=\mathrm{S} _{\mathrm{n}}$

$\mathrm{S} _{\mathrm{n}}=1-\frac{1}{(\mathrm{n}+1) 2^{\mathrm{n}}}$

Answer: (a)

3. Coefficient of $x^{49}$ in the expansion of $(x-1)(x-3)(x-5)……….(x-99)$ is

(a) $-99^{2}$

(b) $1$

(c) $-2500$

(d) None of these

Show Answer

Solution :

$(\mathrm{x}-1)(\mathrm{x}-3)(\mathrm{x}-5)…….. (x-99)$

$=\mathrm{x}^{50}-\mathrm{S} _{1} \mathrm{x}^{49}+\mathrm{S} _{2} \mathrm{x}^{48}……..$

$\therefore$ Coefficient of $\mathrm{x}^{49}$ is $-\mathrm{S}_{1}$

$=\quad-(1+3+5+\ldots \ldots+99)=-\frac{50}{2}(1+99)=-50^{2}=-2500$

Answer: (c)

4. The coefficients of $x^{15}$ in the product

$(1-\mathrm{x})(1-2 \mathrm{x})\left(1-2^{2} \mathrm{x}\right) ………\left(1-2^{15} x\right)$ is

(a) $2^{105}-2^{121}$

(b) $2^{121}-2^{105}$

(c) $2^{120}-2^{104}$

(d) None of these

Show Answer

Solution :

$(1-\mathrm{x})(1-2 \mathrm{x})\left(1-2^{2} \mathrm{x}\right)$.

$=(-1)^{16}(\mathrm{x}-1)(2 \mathrm{x}-1)\left(2^{2} \mathrm{x}-1\right)$ $\left(2^{15} \mathrm{x}-1\right)$

$=2^{1} .2^{2} .2^{3} \ldots \ldots \ldots \ldots \ldots \ldots . .2^{15}(x-1)\left(x-\frac{1}{2}\right)\left(x-\frac{1}{2^{2}}\right) \ldots \ldots \ldots . .\left(x-\frac{1}{2^{15}}\right)$

$=2^{120} \cdot(\mathrm{x}-1)\left(\mathrm{x}-\frac{1}{2}\right)\left(\mathrm{x}-\frac{1}{2^{2}}\right) \ldots \ldots \ldots . .\left(\mathrm{x}-\frac{1}{2^{15}}\right)$

$\therefore$ coeff of $\mathrm{x}^{15}$ is $-2^{120}\left\{1+\frac{1}{2}+\frac{1}{2^{2}}+\ldots .+\frac{1}{2^{15}}\right\}$

$=-2^{120} \cdot 1 \frac{\left\{1-\frac{1}{2^{16}}\right\}}{1-\frac{1}{2}}=-2^{121}\left(1-\frac{1}{2^{16}}\right)=2^{105}-2^{121}$

Answer: (a)

5. The sum to $2 \mathrm{n}$ terms of the series

$\frac{3}{4}+\frac{7}{4}+\frac{15}{16}+\frac{31}{16}+\frac{63}{64}+\frac{127}{64}+………..$ is

(a) $3 \mathrm{n}-\frac{2}{3}\left(1-\frac{1}{4^{\mathrm{n}}}\right)$

(b) $3 \mathrm{n}-\frac{10}{21}\left(1-\frac{1}{4^{\mathrm{n}}}\right)$

(c) $3 n-\frac{13}{21} \frac{1}{4^{n}}$

(d) None of these

Show Answer

Solution :

Given expression

$ \begin{aligned} & =\left(1-\frac{1}{4}\right)+\left(2-\frac{1}{4}\right)+\left(1-\frac{1}{16}\right)+\left(2-\frac{1}{16}\right)+\ldots \ldots \ldots \ldots \ldots \ldots \ldots . . . .2 \mathrm{n} \text { terms } \\ & =3 n-2\left(\frac{1}{4}+\frac{1}{16}+\ldots \ldots \ldots . . n \text { terms }\right) \\ & =3 n-2 \frac{1}{4} \frac{\left(1-\frac{1}{4^{\mathrm{n}}}\right)}{1-\frac{1}{4}} \\ & =3 n-\frac{2}{3}\left(1-\frac{1}{4^{\mathrm{n}}}\right) \end{aligned} $

Answer: (a)

6. The sum to $\mathrm{n}$ terms of the series

$\frac{1}{1-\frac{1}{4}}+\frac{1}{(1+3)-\frac{1}{4}}+\frac{1}{(1+3+5)-\frac{1}{4}}+\ldots \ldots \ldots \infty$

(a) $\frac{2 \mathrm{n}}{2 \mathrm{n}+1}$

(b) $\frac{4 n}{2 n+1}$

(c) $\frac{2}{2 \mathrm{n}+1}$

(d) None

Show Answer

Solution :

$\mathrm{T} _{\mathrm{n}}=\frac{1}{(1+3+5+\ldots \ldots \ldots \ldots+\mathrm{n} \text { terms })}=\frac{1}{\mathrm{n}^{2}-\frac{1}{4}}$

$=\frac{1}{\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right)}=\frac{\left(n+\frac{1}{2}\right)-\left(n-\frac{1}{2}\right)}{\left(n-\frac{1}{2}\right)\left(n+\frac{1}{2}\right)}$

$\mathrm{T} _{\mathrm{n}}=2\left\{\frac{1}{2 \mathrm{n}-1}-\frac{1}{2 \mathrm{n}+1}\right\}$

$\therefore \mathrm{T} _{1}=2\left(\frac{1}{1}-\frac{1}{3}\right)$

$\mathrm{T} _{2}=2\left(\frac{1}{3}-\frac{1}{5}\right)$

$\mathrm{T} _{\mathrm{n}}=2\left(\frac{1}{2 \mathrm{n}-1}-\frac{1}{2 \mathrm{n}+1}\right)$

Adding, $\mathrm{S} _{\mathrm{n}}=\mathrm{T} _{1}+\mathrm{T} _{2}+\ldots \ldots \ldots \ldots+\mathrm{T} _{\mathrm{n}}=2\left(1-\frac{1}{2 \mathrm{n}+1}\right)=\frac{4 \mathrm{n}}{2 \mathrm{n}+1}$

Answer: (b)

7. The sum of the series

$\frac{1}{1.3}+\frac{2}{1.3 .5}+\frac{3}{1.3 .5 .7}+………$ $\infty$ is

(a) $1$

(b) $\frac{1}{2}$

(c) $\frac{3}{2}$

(d) None

Show Answer

Solution :

$T _{n}=\frac{n}{1.3 .5 \ldots \ldots \ldots \ldots . .(2 n-1)(2 n+1)}$ $=\frac{1}{2}\left\{\frac{2 n+1-1}{1.3 .5 \ldots \ldots \ldots \ldots . .(2 n-1)(2 n+1)}\right\}$

$=\frac{1}{2}\left\{\frac{1}{1.3 .5 \ldots \ldots \ldots(2 n-1)}-\frac{1}{1.3 .5 \ldots \ldots \ldots .(2 n+1)}\right\}$

$\therefore \mathrm{T} _{1}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{1.3}\right)$

$\mathrm{T} _{2}=\frac{1}{2}\left(\frac{1}{1.3}-\frac{1}{1.3 .5}\right)$

$\hspace{1cm}.$

$\hspace{1cm}.$

$\hspace{1cm}.$

$\mathrm{T} _{\mathrm{n}}=\frac{1}{2}\left(\frac{1}{1.3 .5 \ldots . .(2 \mathrm{n}-1)}-\frac{1}{1.3 .5 \ldots .(2 \mathrm{n}+1)}\right)$

$\mathrm{S} _{\mathrm{n}}=\frac{1}{2}\left(1-\frac{1}{1.3 .5 \ldots .(2 \mathrm{n}-1)(2 \mathrm{n}+1)}\right)$

$\therefore \mathrm{S} _{\infty}=\frac{1}{2}(1-0)=\frac{1}{2}$

Answer: (b)

Practice questions

1. Let $S _{1}, S _{2}, \ldots \ldots \ldots \ldots . . .$ be squares such that for each $n \geq 1$ the length of a side of $S _{n}$ equals the length of a diagonal of $\mathrm{S} _{\mathrm{n}+1}$. If the length of a side of $\mathrm{S} _{1}$ is $10 \mathrm{~cm}$, then for which of the following values of $\mathrm{n}$ is the area of $\mathrm{S} _{\mathrm{n}}$ less than $1 \mathrm{sq} . \mathrm{cm}$.

(a) 7

(b) 8

(c) 9

(d) 10

Show Answer Answer: (b, c, d)

2. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are is A.P and $\mathrm{a}^{2}, \mathrm{~b}^{2}, \mathrm{c}^{2}$ are in H.P, then $\mathrm{b}^{2}=$

(a) $\frac{\mathrm{ca}}{2}$

(b) $2 \mathrm{ca}$

(c) $\frac{-\mathrm{ca}}{2}$

(d) $-2 \mathrm{ca}$.

Show Answer Answer: (c)

3. Let the $\mathrm{HM} \& \mathrm{GM}$ of two positive numbers $\mathrm{a} \& \mathrm{~b}$ be in the ratio $4: 5$ then $\mathrm{a}: \mathrm{b}$ is

(a) $1: 2$

(b) $2: 3$

(c) $3: 4$

(d) $1: 4$

Show Answer Answer: (d)

4. If $\cos (x-y), \cos x, \cos (x+y)$ are in H.P., then the value of $\cos x \sec \frac{y}{2}$ is

(a) $\pm 1$

(b) $\pm \frac{1}{\sqrt{2}}$

(c) $\pm \sqrt{2}$

(d) $\pm \sqrt{3}$

Show Answer Answer: (c)

5. If $x \& y$ are positive real numbers and $m, n$ are positive integers, then the minimum value of $\frac{x^{m} y^{n}}{\left(1+x^{2 m}\right)\left(1+y^{2 n}\right)}$ is

(a) $2$

(b) $\frac{1}{4}$

(c) $\frac{1}{2}$

(d) $1$

Show Answer Answer: (b)

6. There are two numbers $\mathrm{a} \& \mathrm{~b}$ whose product is 192 and the quotient of A.M. by H.M. of their greatest common divisor and least common multiple is $\frac{169}{48}$. The smaller of $\mathrm{a} \& \mathrm{~b}$ is

(a) 2

(b) 4

(c) 6

(d) 12

Show Answer Answer: (b, d)

7. Consider the sequence $1,2,2,3,3,3,………$ where n occurs $n$ times. The number that occurs as $2007^{\text {th }}$ term is

(a) 61

(b) 62

(c) 63

(d) 64

Show Answer Answer: (c)

8. Read the following paragraph and answer the questions.

Let $A _{1}, G _{1}, H _{1}$ denote the A.M., G.M., H.M of two distinct positive numbers.

For $n \geq 2$, let $A _{n-1}$ and $H _{n-1}$ have A.M., G.M., H.M as $A _{n}, G _{n}, H _{n}$ respectively.

(i) Which of the following statements is correct?

(a) $\mathrm{G} _{1}>\mathrm{G} _{2}>\mathrm{G} _{3}>………….$

(b) $\mathrm{G} _{1}<\mathrm{G} _{2}<\mathrm{G} _{3}<………….$

(c) $\mathrm{G} _{1}=\mathrm{G} _{2}=\mathrm{G} _{3}=………….$.

(d) $\mathrm{G} _{1}<\mathrm{G} _{3}<\mathrm{G} _{5}………….$. and $\mathrm{G} _{2}>\mathrm{G} _{4}>\mathrm{G} _{6}>………….$.

Show Answer Answer: (c)

(ii) Which are of the following statement is correct?.

(a) $\mathrm{A} _{1}>\mathrm{A} _{2}>\mathrm{A} _{3}>………….$.

(b) $\mathrm{A} _{1}<\mathrm{A} _{2}<\mathrm{A} _{3}<………….$

(c) $\mathrm{A} _{1}>\mathrm{A} _{3}>\mathrm{A} _{5}>………….$ and $\mathrm{A} _{2}<\mathrm{A} _{4}<\mathrm{A} _{6}<………..$

(d) $\mathrm{A} _{1}<\mathrm{A} _{3}<\mathrm{A} _{5}<………….$ and $\mathrm{A} _{2}>\mathrm{A} _{4}>\mathrm{A} _{6}>………..$

Show Answer Answer: (a)

(iii) Which are of the following statement is correct?

(a) $\mathrm{H} _{1}>\mathrm{H} _{2}>\mathrm{H} _{3}>………….$

(b) $\mathrm{H} _{1}<\mathrm{H} _{2}<\mathrm{H} _{3}<………….$

(c) $\mathrm{H} _{1}>\mathrm{H} _{3}>\mathrm{H} _{5}>………….$ and $\mathrm{H} _{2}<\mathrm{H} _{4}<\mathrm{H} _{6}<………..$

(d) $\mathrm{H} _{1}<\mathrm{H} _{3}<\mathrm{H} _{5}<………….$ and $\mathrm{H} _{2}>\mathrm{H} _{4}>\mathrm{H} _{6}>………..$

Show Answer Answer: (b)

9. If $x, y, z>0$ and $x+y+z=1$, the $\frac{x y z}{(1-x)(1-y)(1-z)}$ is necessarily

(a) $\geq 8$

(b) $\leq \frac{1}{8}$

(c) $<\frac{1}{8}$

(d) None of these

Show Answer Answer: (b)

10. Match the following:

Column I Column II
(a) 3 numbers a,b, c between $2 \& 18$ such that (p) $\mathrm{G}-\mathrm{L}=4$
(i) $a+b+c=25$ (q) $\left[\frac{\mathrm{G}}{\mathrm{L}}\right]=4$
(ii) 2, a, b are consecutive terms of an A.P. (r) $\mathrm{G}-\mathrm{L}=7$
(iii) b, c, 18 are consecutive terms of a G.P. (s) $\left\lceil\frac{\mathrm{G}}{\mathrm{L}}\right\rceil=3$
$\text { If } \mathrm{G}=\max \{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \& \mathrm{~L}=\min \{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \text { then } $ $(\mathrm{t}) \left[\frac{\mathrm{G}}{\mathrm{L}}\right]+\left\lceil\frac{\mathrm{G}}{\mathrm{L}}\right\rceil=3$
(b) 3 numbers $a, b, c$ are in G.P. Such that
(i) $a+b+c=70$
(ii) $4 \mathrm{a}, 5 \mathrm{~b}, 4 \mathrm{c}$ are is A.P.
If $\mathrm{G}=\operatorname{Max}\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{L}=\operatorname{Min}\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$, then
Show Answer Answer: a $\rarr$ r, s; b $\rarr$ q

11. The coefficient of $\mathrm{x}^{203}$ is the expansion of $(\mathrm{x}-1)\left(\mathrm{x}^{2}-2\right)\left(\mathrm{x}^{3}-3\right)$ … $\left(\mathrm{x}^{20}-20\right)$ is

(a) $-35$

(b) $21$

(c) $13$

(d) $25$

Show Answer Answer: (c)

12. Read the following passage and answer the questions :-

Let $A B C D$ be a unit square and $0<\alpha<1$. Each side of the square is divided in the ratio $\alpha: 1-\alpha$, as shown in the figure. These points are connected to obtain another square. The sides of new square are divided in the ratio $\alpha: 1-\alpha$ and points are joined to obtain another square. The process is continued indefinitely.

Let $a _{n}$ denote the length of side and $A _{n}$ the area of the nth square

(i) The value of $\alpha$ for which $\sum _{n=1}^{\infty} A _{n}=\frac{8}{3}$ is

(a) $1 / 3,2 / 3$

(b) $1 / 4,3 / 4$

(c) $1 / 5,4 / 5$

(d) $1 / 2$

Show Answer Answer: (b)

(ii) The value of $\alpha$ for which side of $n^{\text {th }}$ square equals the diagonals of $(n+1)$ th square is

(a) $1 / 3$

(b) $1 / 4$

(c) $1 / 2$

(d) $1 / \sqrt{2}$

Show Answer Answer: (c)

(iii) If $a=1 / 4$ and $P _{n}$ denotes the perimeter of the $n^{\text {th }}$ square then $\sum _{n=1}^{\infty} P _{n}$ equals

(a) $8 / 3$

(b) $32 / 3$

(c) $16 / 3$

(d) $\frac{8}{3}(4+\sqrt{10})$

Show Answer Answer: (d)


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ