TRIGONOMETRY EQUATIONS - 1 (Trigonometric Functions - Problem Solving)

1. Values of trigonometrical ratios of some particular angles

$\quad$ (i). $\sin 7 \frac{1}{2}^{\circ}=\frac{\sqrt{4-\sqrt{2}-\sqrt{6}}}{2 \sqrt{2}}$

$\quad$$\quad$ $\cos 7 \frac{1}{2}^{\circ}=\frac{\sqrt{4+\sqrt{2}+\sqrt{6}}}{2 \sqrt{2}}$

$\quad$$\quad$ $\tan 7 \frac{1}{2}^{\circ}=(\sqrt{3}-\sqrt{2})(\sqrt{2}-1)$

$\quad$$\quad$ $\cot 7 \frac{1}{2}^{\circ}=(\sqrt{3}+\sqrt{2})(\sqrt{2}+1)$

$\quad$ (ii). $\sin 15^{\circ}=\cos 75^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}}$

$\quad$$\quad$ $\cos 15^{\circ}=\sin 75^{\circ}=\frac{\sqrt{3}+1}{2 \sqrt{2}}$

$\quad$$\quad$ $\tan 15^{\circ}=\cot 75^{\circ}=2-\sqrt{3}$

$\quad$$\quad$ $\cot 15^{\circ}=\tan 75^{\circ}=2+\sqrt{3}$

$\quad$ (iii). $\sin 22 \frac{1}{2}^{\circ}=\frac{1}{2} \sqrt{2-\sqrt{2}}$

$\quad$$\quad$ $\cos 22 \frac{1}{2}^{\circ}=\frac{1}{2} \sqrt{2+\sqrt{2}}$

$\quad$$\quad$ $\tan 22 \frac{1}{2}^{\circ}=\sqrt{2}-1$

$\quad$$\quad$ $\cot 22 \frac{1}{2}^{\circ}=\sqrt{2}+1$

$\quad$ (iv). $\sin 18^{\circ}=\cos 72^{\circ}=\frac{\sqrt{5}-1}{4}$

$\quad$$\quad$ $\cos 18^{\circ}=\sin 72^{\circ}=\frac{\sqrt{10+2 \sqrt{5}}}{4}$

$\quad$$\quad$ $\sin 36^{\circ}=\cos 54^{\circ}=\frac{\sqrt{10-2 \sqrt{5}}}{4}$

$\quad$ $\cos 36^{\circ}=\sin 54^{\circ}=\frac{\sqrt{5}+1}{4}$

$\quad$ (v). $\quad \cos 9^{\circ}=\frac{1}{2}\left(\sqrt{1+\sin 18^{\circ}}+\sqrt{1-\sin 18^{\circ}}\right)$

$\quad$ (vi). $\quad \cos 27^{\circ}=\frac{1}{2}\left(\sqrt{1+\cos 36^{\circ}}+\sqrt{1-\cos 36^{\circ}}\right)$

2. Conditional identities

If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are angles of a triangle (i.e. $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$ ) then

  • $\quad \tan \mathrm{A}+\tan \mathrm{B}+\tan \mathrm{C}=\tan \mathrm{A} \tan B \tan \mathrm{C}$

  • $\quad \cot \mathrm{A} \cot \mathrm{B}+\cot \mathrm{B} \cot \mathrm{C}+\cot C \cot \mathrm{A}=1$

  • $\quad \tan \frac{A}{2} \tan \frac{B}{2}+\tan \frac{B}{2} \tan \frac{C}{2}+\tan \frac{C}{2} \tan \frac{A}{2}=1$

  • $\quad \cot \frac{\mathrm{A}}{2}+\cot \frac{\mathrm{B}}{2}+\cot \frac{\mathrm{C}}{2}=\cot \frac{\mathrm{A}}{2} \cot \frac{\mathrm{B}}{2} \cot \frac{\mathrm{C}}{2}$

  • $\quad \sin 2 \mathrm{~A}+\sin 2 \mathrm{~B}+\sin 2 \mathrm{C}=4 \sin \mathrm{A} \sin B \sin \mathrm{C}$

  • $\quad \cos 2 \mathrm{~A}+\cos 2 \mathrm{~B}+\cos 2 \mathrm{C}=-1-4 \cos \mathrm{A} \cos \mathrm{B} \cos \mathrm{C}$

  • $\quad \sin \mathrm{A}+\sin \mathrm{B}+\sin \mathrm{C}=4 \cos \frac{\mathrm{A}}{2} \cos \frac{\mathrm{B}}{2} \cos \frac{\mathrm{C}}{2}$

  • $\quad \cos \mathrm{A}+\cos \mathrm{B}+\cos \mathrm{C}=1+4 \sin \frac{\mathrm{A}}{2} \sin \frac{\mathrm{B}}{2} \sin \frac{\mathrm{C}}{2}$

3. Trigonometric ratios of sum of more than three angles.

  • $\quad \sin \left(\mathrm{A} _1+\mathrm{A} _2 \ldots \ldots \ldots \ldots \ldots . .+\mathrm{A} _{\mathrm{n}}\right) \quad=\cos \mathrm{A} _1 \cos \mathrm{A} _2 \ldots \ldots \ldots \ldots . \cos \mathrm{A} _{\mathrm{n}}\left(\mathrm{S} _1-\mathrm{S} _3+\mathrm{S}_5-\ldots \ldots \ldots \ldots \ldots.\right)$

  • $\quad \cos \left(\mathrm{A} _{1}+\mathrm{A} _{2}\right.$ $\left.+\mathrm{A} _{\mathrm{n}}\right) \quad=\cos \mathrm{A} _{1} \cos \mathrm{A}$ . $\cos \mathrm{A} _{\mathrm{n}}\left(1-\mathrm{S} _{2}+\mathrm{S} _{4}-\mathrm{S} _{6}+…………\right)$

  • $\quad \tan \left(\mathrm{A} _1+\mathrm{A} _2 \ldots \ldots \ldots \ldots \ldots \ldots+\mathrm{A} _{\mathrm{n}}\right) \quad=\frac{\mathrm{S} _1-\mathrm{S}_3+\mathrm{S}_5-\ldots \ldots . .}{1-\mathrm{S}_2+\mathrm{S}_4-\mathrm{S}_6+\ldots \ldots}$

where $S _{1}=\sum \tan A _{1} \quad=$ sum of tangents of angles

$\mathrm{S} _{2}=\sum \tan \mathrm{A} _{1} \tan \mathrm{A} _{2}=$ sum of tangents taken two at a time etc.

In particular, if $\mathrm{A} _{1}=\mathrm{A} _{2}=$ $A _{n}=A$, then

$\mathrm{S} _{1}=\mathrm{n} \tan \mathrm{A} ; \mathrm{S} _{2}={ }^{n} \mathrm{C} _{2} \tan ^{2} \mathrm{~A} ; \mathrm{S} _{3}={ }^{n} \mathrm{C} _{3} \tan ^{3} \mathrm{~A}$ etc.

$\sin \mathrm{nA}=\cos ^{\mathrm{n}} \mathrm{A}\left({ }^{\mathrm{n}} \mathrm{C} _{1} \tan \mathrm{A}-{ }^{\mathrm{n}} \mathrm{C} _{3} \tan ^{3} \mathrm{~A}+{ }^{\mathrm{n}} \mathrm{C} _{5} \tan ^{5} \mathrm{~A}-………..\right)$

$\cos \mathrm{nA}=\cos ^{\mathrm{n}} \mathrm{A}\left(1-{ }^{\mathrm{n}} \mathrm{C} _{2} \tan ^{2} \mathrm{~A}+{ }^{\mathrm{n}} \mathrm{C} _{4} \tan ^{4} \mathrm{~A}-……..\right)$

$\tan \mathrm{nA}=\frac{{ }^{\mathrm{n}} \mathrm{C} _{1} \tan \mathrm{A}-{ }^{\mathrm{n}} \mathrm{C} _{3} \tan ^{3} \mathrm{~A}+{ }^{\mathrm{n}} \mathrm{C} _{5} \tan ^{5} \mathrm{~A}-\ldots \ldots \ldots . . . .}{1-{ }^{\mathrm{n}} \mathrm{C} _{2} \tan ^{2} \mathrm{~A}+{ }^{\mathrm{n}} \mathrm{C} _{4} \tan ^{4} \mathrm{~A}-\ldots \ldots \ldots \ldots \ldots \ldots . . . . . . .}$

Solved examples

1. If $f(\mathrm{x})=\frac{\cot \mathrm{x}}{1+\cot \mathrm{x}}$ and $\alpha+\beta=\frac{5 \pi}{4}$, then the value of $f(\alpha) \cdot f(\beta)$ is

(a). $2$

(b). $-\frac{1}{2}$

(c). $\frac{1}{2}$

(d). None of these

Show Answer

Solution :

$f(\alpha) \cdot f(\beta)=\frac{\cot \alpha}{1+\cot \alpha} \cdot \frac{\cot \beta}{1+\cot \beta}=\frac{1}{1+\tan \alpha} \cdot \frac{1}{1+\tan \beta}$

$=\frac{1}{1+\tan \alpha} \cdot \frac{1}{1+\tan \left(\pi+\frac{\pi}{4}-\alpha\right)}=\frac{1}{1+\tan \alpha} \times \frac{1}{1+\frac{1-\tan \alpha}{1+\tan \alpha}}$

$=\frac{1}{1+\tan \alpha} \frac{1+\tan \alpha}{2}=\frac{1}{2}$

Answer: (c).

2. The value of $\tan 81^{\circ}-\tan 63^{\circ}-\tan 27^{\circ}+\tan 9^{\circ}$ equals

(a). 1

(b). 2

(c). 3

(d). 4

Show Answer

Solution :

$\left(\tan 81^{\circ}+\tan 9^{\circ}\right)-\left(\tan 63^{\circ}+\tan 27^{\circ}\right)$

$=\left(\cot 9^{\circ}+\tan 9^{\circ}\right)-\left(\cot 27^{\circ}+\tan 27^{\circ}\right)$

$=\frac{1}{\sin 9^{\circ} \cos 9^{\circ}}-\frac{1}{\sin 27^{\circ} \cos 27^{\circ}}$

$=\frac{2}{\sin 18^{\circ}}-\frac{2}{\sin 54^{\circ}}=\frac{2 \times 4}{\sqrt{5}-1}-\frac{2 \times 4}{\sqrt{5}+1}$

$=\frac{8\{\sqrt{5}+1-\sqrt{5}+1\}}{5-1}=\frac{8 \times 2}{4}=4$

Answer: (d).

3. The number of integral values of $k$ for which the equation $7 \cos x+5 \sin x=2 k+1$ has a unique solution is

(a). 4

(b). 8

(c). 10

(d). 12

Show Answer

Solution :

$ \begin{array}{ll} & \frac{7}{\sqrt{74}} \cdot \cos x+\frac{5}{\sqrt{74}} \sin x=\frac{2 k+1}{\sqrt{74}} \\ \Rightarrow & \sin (\mathrm{x}+\alpha)=\frac{2 \mathrm{k}+1}{\sqrt{74}} \\ \text { Now } \quad & -1 \leq \frac{2 \mathrm{k}+1}{\sqrt{74}} \leq 1 \end{array} $

$ \begin{array}{ll} \Rightarrow & \frac{-\sqrt{74}-1}{2} \leq \mathrm{k} \leq \frac{\sqrt{74}-1}{2} \\ \Rightarrow & -4.8 \leq \mathrm{k} \leq 3.8 \\ \Rightarrow \quad & \mathrm{k}=-4,-3,-2,-1,-0,1,2,3 \\ & \text { i.e. } 8 \text { values. } \end{array} $

Answer: (b).

4. If $\frac{\sin x}{\sin y}=\frac{1}{2}$ and $\frac{\cos x}{\cos y}=\frac{3}{2}$ where $x, y \in\left(0, \frac{\pi}{2}\right)$ then $\tan (x+y)=$

(a). $\sqrt{13}$

(b). $\sqrt{14}$

(c). $\sqrt{17}$

(d). $\sqrt{15}$

Show Answer

Solution :

$ \sin ^{2} x+\cos ^{2} x=1 $

$\Rightarrow \quad \frac{1}{4} \sin ^{2} \mathrm{y}+\frac{9}{4} \cos ^{2} \mathrm{y}=1$

$\Rightarrow \quad \cos y=\frac{\sqrt{3}}{2 \sqrt{2}}$ and tany $=\sqrt{\frac{5}{3}}$

Also $\sin x=\frac{\sqrt{5}}{4 \sqrt{2}}$ and $\tan x=\frac{\sqrt{5}}{3 \sqrt{3}}$

$\therefore \tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \cdot \tan y}=\frac{\frac{\sqrt{5}}{3 \sqrt{3}}+\frac{\sqrt{5}}{\sqrt{3}}}{1-\frac{\sqrt{5}}{3 \sqrt{3}} \cdot \frac{\sqrt{5}}{\sqrt{3}}}$

$=\frac{\sqrt{5}+3 \sqrt{5}}{\frac{9-5}{\sqrt{3}}}$

$=\frac{4 \sqrt{5}}{4} \times \sqrt{3}=\sqrt{15}$

Answer: (d).

5. If $\alpha+\beta=\frac{\pi}{2}$ and $\beta+\gamma=\alpha$, then $\tan \alpha$ is equal to

(a). $2(\tan \beta+\tan \gamma)$

(b). $\tan \beta+\tan \gamma$

(c). $\tan \beta+2 \tan \gamma$

(d). $2 \tan \beta+\tan \gamma$

Show Answer

Solution :

$ \gamma=\alpha-\beta $

$\Rightarrow \quad \tan \gamma=\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \cdot \tan \beta}$

$ \begin{array}{ll} \Rightarrow & \tan \gamma=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \cdot \tan \left(\frac{\pi}{2}-\alpha\right)} \\ \Rightarrow \quad & \tan \gamma=\frac{\tan \alpha-\tan \beta}{1+1} \\ \Rightarrow \quad & 2 \tan \gamma=\tan \alpha-\tan \beta \\ \Rightarrow \quad \tan \alpha=\tan \beta+2 \tan \gamma \end{array} $

Answer: (c).

6. $\sum _{\mathrm{r}=1}^{7} \tan ^{2} \frac{\mathrm{r} \pi}{16}=$

(a). 34

(b). 35

(c). 37

(d). None of these

Show Answer

Solution : Given series can be simplified to

$\left(\tan ^{2} \frac{\pi}{16}+\cot ^{2} \frac{\pi}{16}\right)+\left(\tan ^{2} \frac{2 \pi}{16}+\cot ^{2} \frac{2 \pi}{16}\right)+\left(\tan ^{2} \frac{3 \pi}{16}+\cot ^{2} \frac{3 \pi}{16}\right)+1$

$\Rightarrow$ General pattern is $\tan ^{2} \theta+\cot ^{2} \theta$

$=\frac{\sin ^{4} \theta+\cos ^{4} \theta}{\sin ^{2} \theta \cos ^{2} \theta}=\frac{1-2 \sin ^{2} \theta \cos ^{2} \theta}{\sin ^{2} \theta \cos ^{2} \theta}=\frac{4}{\sin ^{2} 2 \theta}-2$

$=\frac{4 \times 2}{1-\cos 4 \theta}-2=\frac{8}{1-\cos 4 \theta}-2$

$\therefore\left(\frac{8}{1-\cos \frac{\pi}{4}}-2\right)+\left(\frac{8}{1-\cos \frac{\pi}{2}}-2\right)+\left(\frac{8}{1-\cos \frac{3 \pi}{4}}-2\right)+1$

$=\frac{8 \sqrt{2}}{\sqrt{2}-1}-2+8-2+\frac{8 \sqrt{2}}{\sqrt{2}+1}-2+1$

$=\frac{8 \sqrt{2}}{\sqrt{2}-1}+\frac{8 \sqrt{2}}{\sqrt{2}+1}-6+8+1$

$=\frac{16+8 \sqrt{2}+16-8 \sqrt{2}}{2-1}+3=32+3=35$

Answer: (b).

Exercise

1. If $\mathrm{p} _{\mathrm{n}+1}=\sqrt{\frac{1}{2}\left(1+\mathrm{p} _{\mathrm{n}}\right)}$, then $\cos \left(\frac{\sqrt{1-\mathrm{p} _{0}{ }^{2}}}{\mathrm{p} _{1} \mathrm{p} _{2} \mathrm{p} _{3} \ldots \ldots \infty}\right)$ is equal to

(a). $1$

(b). $-1$

(c). $\mathrm{p} _{0}$

(d). $\frac{1}{\mathrm{p} _{0}}$

Show Answer Answer: (c).

2. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are acute positive angles such that $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$ and $\cot \mathrm{A} \cot \mathrm{B} \cot \mathrm{C}=\mathrm{k}$, then

(a). $\mathrm{k} \leq \frac{1}{3 \sqrt{3}}$

(b). $\mathrm{k} \geq \frac{1}{3 \sqrt{3}}$

(c). $\mathrm{k}<\frac{1}{9}$

(d). $\mathrm{k}>\frac{1}{3}$

Show Answer Answer: (a).

3. If $\sum x y=1$, then $\sum \frac{x+y}{1-x y}=$

(a). $\frac{1}{x y z}$

(b). $\frac{4}{x y z}$

(c). $x y z$

(d). None of these

Show Answer Answer: (a).

4. The value of $\cot 16^{\circ} \cot 44^{\circ}+\cot 44^{\circ} \cot 76^{\circ}-\cot 76^{\circ} \cot 16^{\circ}$ is

(a). $3$

(b). $\frac{1}{3}$

(c). $\frac{-1}{3}$

(d). $-3$

Show Answer Answer: (a).

5. The number of solutions of $\tan (5 \pi \cos \theta)=\cot (5 \pi \sin \theta)$ for $\theta$ in $(0,2 \pi)$ is

(a). 28

(b). 14

(c). 4

(d). 2

Show Answer Answer: (a).

6. If $\cos x=\tan y, \cos y=\tan z$ and $\cos z=\tan x$, then a value of $\sin x$ is equal to

(a). $2 \cos 18^{\circ}$

(c). $\sin 18^{\circ}$

(b). $\cos 18^{\circ}$

(d). $2 \sin 18^{\circ}$

Show Answer Answer: (d).

7. Let $n$ be an odd integer. If $\operatorname{sinn} \theta=\sum _{\mathrm{r}=0}^{\mathrm{n}} \mathrm{b} _{\mathrm{r}} \sin ^{\mathrm{r}} \theta, \forall \theta$, then

(a). $\mathrm{b} _{0}=1, \mathrm{~b} _{1}=3$

(c). $\mathrm{b} _{0}=-1 \mathrm{~b} _{1}=\mathrm{n}$

(b). $\mathrm{b} _{0}=0, \mathrm{~b} _{1}=\mathrm{n}$

(d). $\mathrm{b} _{0}=0, \mathrm{~b} _{1}=\mathrm{n}^{2}-3 \mathrm{n}+3$

Show Answer Answer: (b).

8. If $\mathrm{e}^{-\pi / 2}<\theta<\frac{\pi}{2}$, which is larger, $\cos \left(\log _{\mathrm{e}} \theta\right)$ or $\log _{\mathrm{e}}(\cos \theta)$

(a). $\cos \left(\log _{\mathrm{e}} \theta\right)$

(b). $\log _{e}(\cos \theta)$

(c). both are equal

(d). None of these

Show Answer Answer: (a).

9. $\sum _{r=1}^{n-1}(n-r) \cos \frac{2 r \pi}{n}$ for $n \geq 3$ is$…….$

(a). $\frac{n}{2}$

(b). $\mathrm{n}$

(c). $(\mathrm{n}-3)$

(d). None of these

Show Answer Answer: (a).

10. Match the following :-

Column I Column II
(a). In an acute angled $\triangle \mathrm{ABC}$, the least values of $\sum \sec \mathrm{A} \& \sum \tan ^{2} \mathrm{~A}$ are $\lambda$ and $\mu$ respectively, then (p). $\lambda-\mu=2$
(b). In $\triangle \mathrm{ABC}$, the least values of $\sum \operatorname{\cosec}(\mathrm{A} / 2)$ $\& \sum \sec ^{2}(\mathrm{~A} / 2)$ and $\lambda \& \mu$ respectively then (q). $\mu-\lambda=3$
(c). In $\Delta \mathrm{ABC}$, the least values of $\operatorname{\cosec}\left(\frac{\mathrm{A}}{2}\right) \operatorname{\cosec}\left(\frac{\mathrm{B}}{2}\right) \operatorname{\cosec}\left(\frac{\mathrm{C}}{2}\right)\& \sum \operatorname{\cosec}^{2} \mathrm{~A}$ are $\lambda \& \mu$ respectively, then (r). $ \lambda-\mu=4$
(s). $ 3 \lambda-2 \mu=0$
(t). $ 2 \lambda-3 \mu=0$
Show Answer Answer: a $\rarr$ q, s; b $\rarr$ p, t; c $\rarr$ r

11. In any $\triangle A B C$, the minimum value of $\sum \frac{\sqrt{\sin A}}{\sqrt{\sin B}+\sqrt{\sin C}-\sqrt{\sin A}}$ is

(a). 3

(b). 0

(c). 4

(d). None of these

Show Answer Answer: (a).

12. If $\cos \frac{\pi}{7}, \cos \frac{3 \pi}{7}, \cos \frac{5 \pi}{7}$, are the roots of the equation $8 x^{3}-4 x^{2}-4 x+1=0$.

On the basis of above information, answer the following questions :-

(i). The value of $\sec \frac{\pi}{7}+\sec \frac{3 \pi}{7}+\sec \frac{5 \pi}{7}$ is

(a). 2

(b). 4

(c). 8

(d). None of these

Show Answer Answer: (b).

(ii). The value of $\sin \frac{\pi}{14} \sin \frac{3 \pi}{14} \sin \frac{5 \pi}{14}$ is

(a). $\frac{1}{4}$

(b). $\frac{1}{8}$

(c). $\frac{\sqrt{7}}{4}$

(d). $\frac{\sqrt{7}}{8}$

Show Answer Answer: (b).

(iii). The value of $\cos \frac{\pi}{14} \cos \frac{3 \pi}{14} \cos \frac{5 \pi}{14}$ is

(a). $\frac{1}{4}$

(b). $\frac{1}{8}$

(c). $\frac{\sqrt{7}}{4}$

(d). $\frac{\sqrt{7}}{8}$

Show Answer Answer: (d).

(iv). The equation whose roots $\operatorname{arc}^{2} \tan ^{2} \frac{\pi}{7}, \tan ^{2} \frac{3 \pi}{7}, \& \tan ^{2} \frac{5 \pi}{7}$, is

(a). $x^{3}-35 x^{2}+7 x-21=0$

(b). $x^{3}-35 x^{2}+21 x-7=0$

(c). $x^{3}-21 x^{2}+35 x-7=0$

(d). $x^{3}-21 x^{2}+7 x-35=0$

Show Answer Answer: (c).

(v). the value of $\sum _{\mathrm{r}=1}^{3} \tan ^{2}\left(\frac{2 \mathrm{r}-1}{7}\right) \sum _{\mathrm{r}=1}^{3} \cot ^{2}\left(\frac{2 \mathrm{r}-1}{7}\right)$ is

(a). 15

(b). 105

(c). 21

(d). 147

Show Answer Answer: (b).

13. If $a=\sin \frac{\pi}{18} \sin \frac{5 \pi}{18} \sin \frac{7 \pi}{18}$, and $x$ is the solution of the equation $y=2[x]+2$ and $y=3[x-2]$, then $\mathrm{a}=$

(a). $[\mathrm{x}]$

(b). $\frac{1}{[\mathrm{x}]}$

(c). $2[x]$

(d). $[\mathrm{x}]^{2}$

Show Answer Answer: (b).

14. If $\tan \alpha, \tan \beta, \tan \gamma$ are the roots of $\mathrm{x}^{3}-\mathrm{px}^{2}-\mathrm{r}=0$, then the value of $\left(1+\tan ^{2} \alpha\right)\left(1+\tan ^{2} \beta\right)\left(1+\tan ^{2} \gamma\right)$ is equal to

(a). $(\mathrm{p}-\mathrm{r})^{2}$

(b). $1+(\mathrm{p}-\mathrm{r})^{2}$

(c). $1-(\mathrm{p}-\mathrm{r})^{2}$

(d). None of these

Show Answer Answer: (b).

15. If $\tan \alpha$ is an integral solution of $4 x^{2}-16 x+15<0$ and $\cos \beta$ is the slope of the bisector of the angle in the first quadrant between the $x \& y$ axes, then the value of $\sin (\alpha+\beta): \sin (\alpha-\beta)$ is equal to

(a). $-1$

(b). $0$

(c). $1$

(d). $2$

Show Answer Answer: (c).


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ