TRIGONOMETRY EQUATIONS - 2 (Trigonometric Equations)

1. Trigonometric equation

An equation involving one or more trigonometrical ratios of unknown angles is called a trigonometrical equation.

2. Solution of trigonometric equation

A value of the unknown angle which satisfies the given equation is called a solution of the equation.

(a). Principal solution. The smallest numerical value, positive or negative for the angle of a trigonometrical equation is called its principal solution. If a positive angle as well as a negative angle of smallest value (and equal) are available, then we take the positive value as the principal values.

(i). The principal solution of $\sin \theta=\mathrm{k},|\mathrm{k}| \leq 1$ is the value of $\theta$ in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ which satisfy the equation.

(ii). The principal solution of $\cos \theta=\mathrm{k},|\mathrm{k}| \leq 1$ is the value of $\theta$ in the interval $[0, \pi]$ which satisfy the equation.

(iii). The principal solution of $\tan \theta=\mathrm{k},|\mathrm{k}|<\infty$, the value of $\theta$ in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, which satisfy the equation.

(b) General solution. Since all the trigonometric functions are many one onto, therefore, there are infinite values of $\theta$ for which trigonometric functions have the same value. Therefore, all such possible values of $\theta$ for which trigonometric ratios are same is known as general solutions of the variable angle $\theta$.

3. General solutions of trigonometric ratios

$\quad$ (i). If $\sin \theta=0$, then $\theta=n \pi, n \in Z$ (set of integers)

$\quad$ (ii). If $\cos \theta=0$, then $\theta=(2 n+1) \pi / 2, n \in Z$

$\quad$ (iii). If $\tan \theta=0$, then $\theta=n \pi, n \in Z$

$\quad$ (iv). If $\sin \theta=\sin \alpha$ then $\theta=\mathrm{n} \pi+(-1)^{\mathrm{n}} \alpha, \mathrm{n} \in \mathrm{Z}, \alpha \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$\quad$ (v). If $\cos \theta=\cos \alpha$, then $\theta=2 \mathrm{n} \pi \pm \alpha, n \in Z, \alpha \in[0, \pi]$

$\quad$ (vi). If $\tan \theta=\tan \alpha$, then $\theta=\mathrm{n} \pi+\alpha, \mathrm{n} \in \mathrm{Z} \alpha \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$\quad$ (vii). If $\sin \theta=1$, then $\theta=2 \mathrm{n} \pi+\frac{\pi}{2}, \mathrm{n} \in \mathrm{Z}$

$\quad$ (viii). If $\cos \theta=1$, then $\theta=2 \mathrm{n} \pi, \mathrm{n} \in \mathrm{Z}$

$\quad$ (ix). If $\sin ^{2} \theta=\sin ^{2} \alpha$ or $\cos ^{2} \theta=\cos ^{2} \alpha$ or $\tan ^{2} \theta=\tan ^{2} \alpha$ then $\theta=n \pi \pm \alpha, n \in Z$

$\quad$ (x). If $\sin (a \theta+b)=\sin \alpha$, then $\theta \neq n \pi+(-1)^{n}\left(\frac{a-b}{a}\right)$. First of all we have to write the general solution as such for $\mathrm{a} \theta+\mathrm{b}$ and then, find $\theta$ as $\mathrm{a} \theta+b=n \pi+(-1)^{\mathrm{n}} . \alpha$

$\quad$ $\Rightarrow \theta=\frac{1}{\mathrm{a}}\left[\mathrm{n} \pi+(-1)^{\mathrm{n}} \boldsymbol{\alpha}-\mathrm{b}\right]$

$\quad$ (xi). For $\mathrm{n} \in \mathrm{Z}, \sin \mathrm{n} \pi=0$ and $\cos \mathrm{n} \pi=(-1)^{\mathrm{n}}$

$\quad$ $\sin (\mathrm{n} \pi+\theta)=(-1)^{\mathrm{n}} \sin \theta$

$\quad$ $\cos (\mathrm{n} \pi+\theta)=(-1)^{\mathrm{n}} \cos \theta$

$\quad$ (xii). If $\mathrm{n}$ is an odd integer, then

$\quad$ $\sin \frac{\mathrm{n} \pi}{2}=(-1)^{\frac{\mathrm{n}-1}{2}} \cos \frac{\mathrm{n} \pi}{2}=0$

$\quad$ $\sin \left(\frac{\mathrm{n} \pi}{2}+\theta\right)=(-1)^{\frac{\mathrm{n}-1}{2}} \cos \theta$

$\quad$ $\cos \left(\frac{\mathrm{n} \pi}{2}+\theta\right)=(-1)^{\frac{\mathrm{n}+1}{2}} \sin \theta$

4. Important points to remember

$\quad$ (i). For equations of the type $\sin \theta=\mathrm{k}$ or $\cos \theta=\mathrm{k}$, one must check that $|\mathrm{k}| \leq 1$.

$\quad$ (ii). Avoid squaring the equation, if possible, because it may lead to extraneous solutions.

$\quad$ (iii). Do not cancel the common variable factor from the two sides of the equations which are in a product because we may loose some solutions.

$\quad$ (iv). The answer should not contain such values of $\theta$ which make any of the terms undefined or infinite.

$\quad$ (v). Check that denominator is not zero at any stage while solving equations.

$\quad$ (vi). (a). If $\tan \theta$ or $\sec \theta$ is involved in the equation, $\theta$ should not be odd multiple of $\frac{\pi}{2}$.

$\quad$(b). If $\cot \theta$ or $\operatorname{cosec} \theta$ is involved in the equation, $\theta$ should not be a multiple of $\pi$ or 0 .

$\quad$(vii). If two different trigonometric ratios, such as, $\tan \theta$ and $\sec \theta$ are involved then after solving we cannot apply the usual formulae for general solution, because periodicity of the functions are not same.

$\quad$(viii). If L.H.S. of the given trigonometric equation is always less than or equal to $\mathrm{k}$ and RHS is always greater than $\mathrm{k}$, then no solution exists. If both the sides are equal to $\mathrm{k}$ for same value of $\theta$, then solution exists and if they are equal for different value of $\theta$, then solution does not exist.

Examples

1. The general solution of the equation $\sum \cos \left(\mathrm{r}^{2} \mathrm{x}\right) \sin (\mathrm{rx})=\frac{1}{2}$ is

(a). $2 \mathrm{~m} \pi+\frac{\pi}{6}, \mathrm{~m} \in \mathrm{I}$

(b). $\frac{(4 \mathrm{~m}+1)}{\mathrm{n}(\mathrm{n}+1)} \frac{\pi}{2} \mathrm{~m} \in \mathrm{I}$

(c). $\frac{(4 \mathrm{~m}-1)}{\mathrm{n}(\mathrm{n}+1)} \frac{\pi}{2}, \mathrm{~m} \in \mathrm{I}$

(d). None of these

Show Answer

Solution:

$ \begin{aligned} & \sum _{\mathrm{r}=1}^{\mathrm{n}} \cos \left(\mathrm{r}^{2} \mathrm{x}\right) \sin (\mathrm{rx})=\frac{1}{2} \\ & =\sum _{\mathrm{r}=1}^{\mathrm{n}} 2 \cos \left(\mathrm{r}^{2} \mathrm{x}\right) \sin (\mathrm{rx})=1 \\ & =\sum _{\mathrm{r}=1}^{\mathrm{n}}\left[\sin \left(\mathrm{r}^{2}+\mathrm{r}\right) \mathrm{x}-\sin \left(\mathrm{r}^{2}-\mathrm{r}\right) \mathrm{x}\right]=1 \\ & =\sum _{\mathrm{r}=1}^{\mathrm{n}}[\sin \mathrm{r}(\mathrm{r}+1) \mathrm{x}-\sin \mathrm{r}(\mathrm{r}-1) \mathrm{x}]=1 \\ & =\sin 2 \mathrm{x}-\sin 0+\sin 6 \mathrm{x}-\sin 2 \mathrm{x}+\sin 12 \mathrm{x}-\sin 6 \mathrm{x}+\ldots \ldots \ldots \ldots .+\sin (\mathrm{n}(\mathrm{n}+1 \\ & =\sin [\mathrm{n}(\mathrm{n}+1) \mathrm{x}]-\sin 0=1 \\ & =\sin (\mathrm{n}(\mathrm{n}+1) \mathrm{x})=1 \\ & =\sin n(\mathrm{n}+1) \mathrm{x}=\sin \frac{\pi}{2} \\ & \mathrm{n}(\mathrm{n}+1) \mathrm{x}=\left(2 \mathrm{~m} \pi+\frac{\pi}{2}\right), \mathrm{m} \in \mathrm{I} \\ & \mathrm{x}=\frac{4 \mathrm{~m} \pi+\pi}{2 \mathrm{n}(\mathrm{n}+1)}, \mathrm{m} \in \mathrm{I} \\ & =\frac{(4 \mathrm{~m}+1)}{\mathrm{n}(\mathrm{n}+1)} \frac{\pi}{2}, \mathrm{~m} _{\in} \mathrm{I} \end{aligned} $

Option ‘b’ is correct

2. If $[\sin x]+[\sqrt{2} \cos x]=-3, x \in[0,2 \pi][[.]$ denotes the greatest integer function $]$, then $x$ belongs to

(a). $\left(\pi, \frac{5 \pi}{4}\right)$

(b). $\left[\pi, \frac{5 \pi}{4}\right]$

(c). $\left(\frac{5 \pi}{4}, 2 \pi\right)$

(d). $\left[\frac{5 \pi}{4}, 2 \pi\right]$

Show Answer

Solution:

$ \because[\sin x]+[\sqrt{2} \cos x]=-3 $

$[\sin x]=-1 \quad[\sqrt{2} \cos x]=-2$

$\therefore-1 \leq \sin x<0 \quad$ and $\quad-2 \leq \sqrt{2} \cos x<-1$

$ -\sqrt{2} \leq \cos x<\frac{-1}{\sqrt{2}} $

$-1 \leq \sin x<0$ and $-1 \leq \cos x<-\frac{1}{\sqrt{2}}(\because-1 \leq \cos x \leq 1)$

since both sinx and cosx are negative

i.e. $\mathrm{x} \in(\pi, 2 \pi)$ and $\mathrm{x} \in\left(\frac{3 \pi}{4}, \frac{5 \pi}{4}\right)$

$\therefore \mathrm{x} \in\left(\pi, \frac{5 \pi}{4}\right)$

Option ‘a’ is correct

3. The number of solutions of the equation $\sin x+2 \sin 2 x=3+\sin 3 x$ in the interval $[0, \pi]$ is

(a). 0

(b). 1

(c). 2

(d). 3

Show Answer

Solution:

We have

$\sin x+2 \sin 2 x=3+\sin 3 x$

$\sin 3 x-\sin x-2 \sin 2 x+3=0$

$2 \cos 2 x \sin x-4 \sin x \cos x+3=0$

$2 \sin x(\cos 2 x-2 \cos x)+3=0$

$2 \sin x\left(2 \cos ^{2} x-1-2 \cos x\right)+3=0$

$\sin x\left(4 \cos ^{2} x-4 \cos x-2\right)+3=0$

$\sin x\left\{(2 \cos x-1)^{2}-3\right\}+3=0$

$\sin x(2 \cos x+1)^{2}+3(1-\sin x)=0$

$\because 0 \leq \mathrm{x} \leq \pi$

$\because 0 \leq \sin x \leq 1$

$1-\sin x \geq 0$

$\sin x(2 \cos x-1)^{2} \geq 0$

$\therefore$ each term is equal to zero

$1-\sin x=0 \Rightarrow \sin x=1$

$\therefore \cos \mathrm{X}=0$

$\sin x(2 \cos x-1)^{2} \neq 0$

$\therefore$ No solution

4. The number of values of $\theta$ in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ suggesting the equation $(\sqrt{3})^{\sec ^{2} \theta}=\tan ^{4} \theta+2 \tan ^{2} \theta$ is

(a). 1

(b). 2

(c). 3

(d). None of these

Show Answer

Solution:

We have

$ \begin{aligned} (\sqrt{3})^{\sec ^{2} \theta} & =\tan ^{4} \theta+2 \tan ^{2} \theta \\ & =\left(1+\tan ^{2} \theta\right)^{2}-1 \\ & =\left(\sec ^{2} \theta\right)^{2}-1 \end{aligned} $

let $\sec ^{2} \theta=\mathrm{x} \therefore \mathrm{x} \geq 1$

$(\sqrt{3})^{x}=x^{2}-1$

graph of $y=(\sqrt{3})^{x} \& y=x^{2}-1$

intersect at one point

When $\mathrm{x}=2 ; \mathrm{y}=3$

$ \therefore \sec ^{2} \theta=2 $

$ \sec \theta= \pm \sqrt{2} $

$\therefore \theta$ takes two values in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Option ‘b’ is correct

5. If $0 \leq x \leq \pi$ and $81^{\sin ^{2} x}+81^{\cos ^{2} x}=30$ then $x$ is equal to

(a). $\frac{\pi}{6}$

(b). $\frac{\pi}{2}$

(c). $\pi$

(d). $\frac{\pi}{4}$

Show Answer

Solution:

we have

$ \begin{aligned} & 81^{\sin ^{2} x}+81^{\cos ^{2} x}=30 \\ & 81^{\sin ^{2} x}+81^{1-\sin ^{2} x}=30 \\ & 81^{\sin ^{2} x}+\frac{81}{81^{\sin ^{2} x}}=30 \end{aligned} $

let $81^{\sin ^{2} x}=\mathrm{y}$

$ \begin{aligned} & y^{2}-30 y+81=0 \\ & y^{2}-27 y-3 y+81=0 \\ & (y-27)(y-3)=0 \\ & 81^{\sin ^{2} x}=27 \text { or } 3 \\ & 3^{4 \sin ^{2} x}=3^{3} \text { or } 3^{1} \\ & \therefore 4 \sin ^{2} x=3 \text { or } 1 \\ & \sin ^{2} x=\frac{3}{4} \text { or } \frac{1}{4} \\ & \sin x= \pm \frac{\sqrt{3}}{2} \text { or } \pm \frac{1}{2} \end{aligned} $

$\because 0 \leq \mathrm{x} \leq \pi \therefore \sin \mathrm{x}=\frac{\sqrt{3}}{2}$ or $\frac{1}{2}$

$\therefore \frac{\pi}{3}, \frac{2 \pi}{3}, \frac{\pi}{6}, \frac{5 \pi}{6}$

6. The equation a $\sin x+b \cos x=c$

where $|c|>\sqrt{a^{2}+b^{2}}$ has

(a). one solution

(b). two

(c). no solution

(d). infinite number of solution

Show Answer

Solution:

We have

$\operatorname{asin} x+b \cos x=c$

$ \frac{a}{\sqrt{a^{2}+b^{2}}} \sin x+\frac{b}{\sqrt{a^{2}+b^{2}}} \cos x=\frac{c}{\sqrt{a^{2}+b^{2}}} $

$ \begin{aligned} & \sin x \cos \alpha+\cos x \sin \alpha=\frac{c}{\sqrt{a^{2}+b^{2}}} \\ & \sin (x+\alpha)=\sin \beta>1 \because|c|>\sqrt{a^{2}+b^{2}} \text { i.e. } \frac{|c|}{\sqrt{a^{2}+b^{2}}}>1 \end{aligned} $

not possible

Oorrect option is c

Practice questions

1. If $\cos 2 \theta=(\sqrt{2+1})\left(\cos \theta \frac{1}{\sqrt{2}}\right)$, then $\theta=$

(a). $2 \mathrm{n} \pi$

(b). $2 \mathrm{n} \pi \pm \frac{\pi}{4}$

(c). $2 \mathrm{n} \pi \pm \frac{\pi}{3}$

(d). none

Show Answer Answer: (b, c)

2. It $3 \cos ^{2} \theta-2 \sqrt{3} \sin \theta \cos \theta-3 \sin ^{2} \theta=0$ then $\theta$ equals

(a). $\frac{n \pi}{2}+\frac{\pi}{6}$

(b). $\frac{n \pi}{2}-\frac{\pi}{6}$

(c). $\frac{n \pi}{2}+\frac{\pi}{3}$

(d). $\frac{n \pi}{2}-\frac{\pi}{3}$

Show Answer Answer: (a)

3. The general solution of $\sin x-3 \sin 2 x+\sin 3 x=\cos x-3 \cos 2 x+\cos 3 x$ is

(a). $\mathrm{n} \pi+\frac{\pi}{8}$

(b). $\frac{n \pi}{2}+\frac{\pi}{8}$

(c). $(-1)^{\mathrm{n}}\left(\frac{\mathrm{n} \pi}{2}\right)+\frac{\pi}{8}$

(d). $2 \mathrm{n} \pi+\cot ^{-1}\left(\frac{3}{2}\right)$

Show Answer Answer: (b)

4. The number of points of intersection of $2 y=1$ and $y=\cos x$ in $\frac{-\pi}{2} \leq x \leq \frac{\pi}{2}$ is

(a). 1

(b). 2

(c). 3

(d). 4

Show Answer Answer: (b)

5. The number of values of $x$ in the internal $[0,5 \pi]$ satisfying the equation $3 \sin ^{2} x-7 \sin x+2$ $=0$ is

(a). 0

(b). 5

(c). 6

(d). 10

Show Answer Answer: (c)

6. The sum of all the solutions of the equation $\cos \theta \cos \left(\frac{\pi}{3}+\theta\right) \cos \left(\frac{\pi}{3}-\theta\right)=\frac{1}{4}, \theta \in[0,6 \pi]$ is

(a). $15 \pi$

(b). $30 \pi$

(c). $\frac{100 \pi}{3}$

(d). none

Show Answer Answer: (b)

7. The number of values of $\theta \in[0,4 \pi]$ satisfying the equation $|\sqrt{3} \cos x-\sin x| \geq 2$ is

(a). 0

(b). 2

(c). 4

(d). 8

Show Answer Answer: (c)

8. If $\frac{1}{6} \sin \theta, \cos \theta, \tan \theta$ are in G.P., then $\theta$ equals

(a). $2 \mathrm{n} \pi \pm \frac{\pi}{3}$

(b). $2 \mathrm{n} \pi \pm \frac{\pi}{6}$

(c). $ n \pi+(-1)^{n} \frac{\pi}{3}$

(d). $n \pi+\frac{\pi}{3}$

Show Answer Answer: (a)

9. The number of solutions of the equation $\tan x+\sec x=2 \cos x$ lying in the internal $[0,2 \pi]$ is

(a). 0

(b). 1

(c). 2

(d). 3

Show Answer Answer: (c)

10. The general solution of equation $\sin ^{2} \theta \sec \theta+\sqrt{3} \tan \theta=0$ is

(a). $ \theta=\mathrm{n} \pi+(-1)^{\mathrm{n}+1} \frac{\pi}{3}$

(b). $ \theta=\mathrm{n} \pi$

(c). $ \theta=\mathrm{n} \pi+(-1)^{\mathrm{n}+1} \frac{\pi}{6}$

(d). $\theta=\frac{\mathrm{n} \pi}{2}$

Show Answer Answer: (b)

11. Passage

Solution of equations asin $x \pm b \cos x=c$.

General value satisfying two equations. $a \cos \theta \pm \mathrm{b} \sin \theta=\mathrm{c}, \theta$ satisfying two equations.

(a). The equation acos $\theta \pm \mathrm{b} \sin \theta=\mathrm{c}$ be first converted to $\mathrm{r} \cos (\theta \pm \alpha)=\mathrm{c}$ where $\mathrm{a}=\mathrm{r\cos} \alpha, \mathrm{b}=\mathrm{r\sin} \alpha$

(b). $\theta$ satisfying two equations

Find the common value of $\theta$ lying between 0 and $2 \pi$ and then add $2 n \pi$

Answer the following questions based upon above passage

(i). The number of intergral values of $k$ for which the equation $7 \cos x+5 \sin x=2 k+1$ has a solution is

(a). 4

(b). 8

(c). 10

(d). 12

Show Answer Answer: (b)

(ii). If $\cos 3 x+\sin \left(2 x-\frac{7 \pi}{6}\right)=-2$ then $x$ equals

(a). $\frac{\pi}{3}(6 m-1)$

(b). $\frac{\pi}{3}(6 m+1)$

(c). $ \frac{\pi}{3}(2 \mathrm{~m}+1)$

(d). none

Show Answer Answer: (b)

(iii). The values of $\mathrm{x}$ such that $-\pi<\mathrm{x}<\pi$ and satisfying the equation are given by $8^{\left[1+\left|\cos x^{x}+\cos ^{2} x+\cos ^{3} x\right|+\ldots+\operatorname{tos}\right]}=4^{3} x$ equals

(a). $\frac{\pi}{3}$

(b). $\frac{2 \pi}{3}$

(c). $\frac{-\pi}{3}$

(d). $\frac{-2 \pi}{3}$

Show Answer Answer: (a, b, c, d)

(iv). The number of solution of the equaiton $\mathrm{e}^{\sin x}-\mathrm{e}^{-\sin x}-4=0$ is

(a). 1

(b). 2

(c). 4

(d). 0

Show Answer Answer: (b)


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ