TRIGONOMETRY EQUATIONS - 3 (Trigonometric Equations)

1. The number of values of $x$ in the internal $[0,3 \pi]$ satisfying the equation $2 \sin ^{2} x+5 \sin x-3=0$ is

(a). $6$

(b). $1$

(c). $2$

(d). $4$

Show Answer

Solution :

We have $2 \sin ^{2} x+5 \sin x-3=0$

$2 \sin ^{2} x+6 \sin x-\sin x-3=0$

$(2 \sin x-1)(\sin x+3)=0$

$\sin \mathrm{x}=\frac{1}{2} \quad(\because \sin \mathrm{x} \neq 3) \quad(\because-1 \leq \sin \mathrm{x} \leq 1)$

$y=\sin x$ and $y=\frac{1}{2}$ intersect in 4 points

$\therefore$ number of values of $\mathrm{x}$ in the internal $[0,3 \pi]$ is $4.$

2. The number of values of $\theta$ in the internal $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that $\theta \neq \frac{\mathrm{n} \pi}{5}$ for $\mathrm{n}=0, \pm 1, \pm 2$ and $\tan \theta$ $=\cot 5 \theta$ as well as $\sin 2 \theta=\cos 4 \theta$ is

Show Answer

Solution :

Given, $\tan \theta=\cot 5 \theta$

$\tan \theta=\tan \left(\frac{\pi}{2}-5 \theta\right)$

$\frac{\pi}{2}-5 \theta=\mathrm{n} \pi+\theta$

$6 \theta=\frac{\pi}{2}-\mathrm{n} \pi$

$\theta=\frac{\pi}{12}-\frac{\mathrm{n} \pi}{6}$

Also $\cos 4 \theta=\sin 2 \theta$

$\cos 4 \theta=\cos \left(\frac{\pi}{2}-2 \theta\right)$

$4 \theta=2 \mathrm{n} \pi \pm\left(\frac{\pi}{2}-2 \theta\right)$

$\theta=\frac{\mathrm{n} \pi}{2} \pm\left(\frac{\pi}{8}-\frac{\theta}{2}\right)$

Taking positive Taking negative
$\frac{3 \theta}{2}=\frac{\mathrm{n} \pi}{2}+\frac{\pi}{8} $ $ \frac{\theta}{2}=\frac{\mathrm{n} \pi}{2}-\frac{\pi}{8}$
$3 \theta=\mathrm{n} \pi+\frac{\pi}{4}$ $\theta=\mathrm{n} \pi-\frac{\pi}{4}$
$\theta=\frac{4 n \pi+\pi}{12}$ $\theta=(4 n-1) \frac{\pi}{4}$
$\theta=(4 n+1) \frac{\pi}{12}$

These values of $\theta$ gives only 3 common solution lies in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

3. The number of all possible values of $\theta$, where $0<\theta<\pi$, for which the system of equaitons $(\mathrm{y}+\mathrm{z}) \cos 3 \theta=(\mathrm{xyz}) \sin 3 \theta$

$x \sin 3 \theta=\frac{2 \cos 3 \theta}{y}+\frac{2 \sin 3 \theta}{z}$

and $(x y z) \sin 3 \theta=(y+2 z) \cos 3 \theta+y \sin 3 \theta$

have a solution $\left(\mathrm{x} _{0}, \mathrm{y} _{0}, \mathrm{z} _{0}\right)$ with $\mathrm{y} _{0} \mathrm{z} _{0} \neq 0$ is

Show Answer

Solution :

Given equations are $x \sin 3 \theta=\frac{y+z}{y z} \cos 3 \theta$

$x \sin 3 \theta-\frac{\cos 3 \theta}{y}-\frac{\cos 3 \theta}{z}=0…….(1)$

$x \sin 3 \theta-\frac{2 \cos 3 \theta}{y}-\frac{2 \sin 3 \theta}{z}=0…….(2)$

$\mathrm{x} \sin 3 \theta-\frac{1}{\mathrm{z}} \cos 3 \theta-\frac{2}{\mathrm{y}} \cos 3 \theta-\frac{1}{\mathrm{z}} \sin 3 \theta=0…….(3)$

from (2) and (3) we get

$2 \sin 3 \theta=\cos 3 \theta+\sin 3 \theta$

$\sin 3 \theta=\cos 3 \theta$

$\tan 3 \theta=1=\tan \frac{\pi}{4}$

$3 \theta=\frac{\pi}{4}, \frac{5 \pi}{4}, \frac{9 \pi}{4}$ or $\theta=\frac{\pi}{12}, \frac{5 \pi}{12}, \frac{9 \pi}{12}$

4. The solution of the equation $4 \sin ^{4} x+\cos ^{4} x=1$ is

(a). $x=2 n \pi$

(b). $\mathrm{x}=\mathrm{n} \pi+1$

(c). $x=(n+2) \pi$

(d). none of these

Show Answer

Solution :

Given that $4 \sin ^{4} x+\cos ^{4} x=1$

$4 \sin ^{4} x+\left(\cos ^{2} x-1\right)\left(\cos ^{2} x+1\right)=0$

$4 \sin ^{4} x-\sin ^{2} x\left(\cos ^{2} x+1\right)=0$

$\sin ^{2} x\left[4 \sin ^{2} x-\cos ^{2} x-1\right]=0$

$\sin ^{2} x\left[5 \sin ^{2} x-2\right]=0$

$\sin ^{2} x=0$ or $\sin ^{2} x=\frac{2}{5}$

$\sin \mathrm{x}=0$ or $\sin \mathrm{x}= \pm \sqrt{\frac{2}{5}}$

$\mathrm{x}=\mathrm{n} \pi \quad$ or $\quad \mathrm{x}=\mathrm{n} \pi+\alpha \quad$ where $\sin \alpha= \pm \sqrt{\frac{2}{5}}$

$\therefore$ Option d is correct.

5. The solution of the equation $[\sin x+\cos x]^{1+\sin 2 x}=2,-\pi \leq x \leq \pi$ is

(a). $\frac{\pi}{2}$

(b). $\pi$

(c). $\frac{\pi}{4}$

(d). $\frac{3 \pi}{4}$

Show Answer

Solution : $[\sin x+\cos x]^{1+\sin 2 x}$

$ \begin{aligned} & \left(\sqrt{2} \sin \left(\frac{\pi}{4}+x\right)\right)^{1+\sin 2 x} \\ & \text { at } x=\frac{\pi}{4},\left(\sqrt{2} \sin \left(\frac{\pi}{4}+\frac{\pi}{4}\right)\right)^{1+\sin 2 \frac{\pi}{4}}=(\sqrt{2})^{2}=2 \end{aligned} $

$\therefore$ Option c is correct.

6. The most general solutions $2^{\sin x}+2^{\cos x}=2^{1-\frac{1}{\sqrt{2}}}$ are

(a). $\mathrm{n} \pi-\frac{\pi}{4}$

(b). $\mathrm{n} \pi+\frac{\pi}{4}$

(c). $ \mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}$

(d). $2 \mathrm{n} \pi \pm \frac{\pi}{4}$

Show Answer

Solution : We have $2^{\sin x}+2^{\cos x}=2^{1-\frac{1}{\sqrt{2}}}$

$\mathrm{AM} \geq \mathrm{GM}$

$ \frac{2^{\sin x}+2^{\cos x}}{2} \geq \sqrt{2^{\sin x} 2^{\cos x}} $

$\geq 2 \sqrt{2^{\sin x}+2^{\cos x}}$ (Equality holds when $\sin x=\cos x$ )

$\geq 2 \sqrt{2^{\sin x}+2^{\cos x}}$

But the minimum value of $\sin x+\cos x$ is $-\sqrt{2}$

$\therefore \sin x+\cos x=\sqrt{2} \sin \left(\frac{\pi}{4}+x\right)$

and $-1 \leq \sqrt{2} \sin \left(\frac{\pi}{4}+\mathrm{x}\right) \leq 1$

$-\sqrt{2} \leq \sqrt{2} \sin \left(\frac{\pi}{4}+x\right) \leq \sqrt{2}$

$\therefore \sin x=\cos x$

$\tan x=1=\tan \frac{\pi}{4}$

$\mathrm{x}=\mathrm{n} \pi+\frac{\pi}{4}$

$\therefore$ Option b is correct.

7. The set of values of $\theta$ satisfying the inequation $2 \sin ^{2} \theta-5 \sin \theta+2>0$, where $0<\theta<2 \pi$ is

(a). $\left(0, \frac{\pi}{6}\right) \cup\left(\frac{5 \pi}{6}, 2 \pi\right)$

(b). $\left[0, \frac{\pi}{6}\right] \cap\left[\frac{5 \pi}{6}, 2 \pi\right]$

(c). $\left[0, \frac{\pi}{3}\right] \cup\left[\frac{2 \pi}{3}, 2 \pi\right]$

(d). none of these

Show Answer

Solution : Given inequation $2 \sin ^{2} \theta-5 \sin \theta+2>0$

$2 \sin ^{2} \theta-4 \sin \theta-\sin \theta+2>0$

$2 \sin \theta(\sin \theta-2)-1(\sin \theta-2)>0$

$(2 \sin \theta-1)(\sin \theta-2)>0$

$\Rightarrow \sin \theta<\frac{1}{2}$ or $\sin \theta>2$

but $\sin \theta>2$ not possible

$\therefore \sin \theta<\frac{1}{2}$

If $\mathrm{x} \varepsilon\left(0, \frac{\pi}{6}\right) \cup\left(\frac{5 \pi}{6}, \pi\right)$ for $\mathrm{x} \in(0,2 \pi)$

$\therefore \sin \theta<\frac{1}{2} \Rightarrow \theta \in\left(0 \frac{\pi}{6}\right) \cup\left(\frac{5 \pi}{6}, \pi\right)$ for $\theta \in(0,2 \pi)$.

Correct option is ’d’

8. Passage

Suppose equation is $f(x)-g(x)=0$ or $f(x)=g(x)=y$ say. Then draw the graphs of $y=f(x)$ and $y=g(x)$. If graphs of $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and $\mathrm{y}=\mathrm{g}(\mathrm{x})$ cuts at one, two, three …., no points, then number of solutions are one, two, three, … zero respectively.

On the basis of above information, answer the following questions.

1. The number of solution of $\sin x=\frac{|x|}{10}$ is

(a). 4

(b). 6

(c). 8

(d). none of these

2. Total number of solutions of the equation $3 x+2 \tan x=\frac{5 \pi}{2}$ in $x \varepsilon[0,2 \pi]$ is equal to

(a). 1

(b). 2

(c). 3

(d). 4

3. Total number of solutions of $\sin \{x\}=\cos \{x\}$, where $\{$.$\}$ denotes the fractional part, in $[0, 2 \pi]$ is

(a). 3

(b). 5

(c). 7

(d). none of these

4. If $1-\sin \mathrm{x}=\frac{\sqrt{3}}{2}\left|\mathrm{x}-\frac{\pi}{2}\right|+\mathrm{a}$ has no solution when $\mathrm{a} \varepsilon \mathrm{R}^{+}$then

(a). $ \mathrm{a} \in \mathrm{R}^{+}$

(b). $ \mathrm{a}>\frac{3}{2}+\frac{\pi}{\sqrt{3}}$

(c). $\mathrm{a} \in\left(0, \frac{3}{2}+\frac{\pi}{\sqrt{3}}\right)$

(d). $ \mathrm{a} \in\left(\frac{3}{2}, \frac{3}{2}+\frac{\pi}{\sqrt{3}}\right)$

Show Answer

Solution :

1. Graphs of $y=\sin x$ and $y=\frac{|x|}{10}$ meet exactly six times. Hence no of solutions $=6$

2. We have $3 x+2 \tan x=\frac{5 \pi}{2}$ in $x \varepsilon[0,2 \pi]$

$\tan \mathrm{x}=\frac{5 \pi}{4}-\frac{3 \mathrm{x}}{2}$

Graphs of $y=\frac{5 \pi}{4}-\frac{3 \pi}{2}$ and $y=\tan x$ meet exactly three times in $[0,2 \pi]$

Thus number of solution $=3$

3. $\sin \{x\}=\cos \{x\}$

Graphs of $y=\sin \{x\}$ and $y=\cos \{x\}$ meet excatly 7 times in $[0,2 \pi]$

4. slope of $y=1-\sin x$ is $-\cos x$

slope of $\mathrm{y}=\frac{\sqrt{3}}{2}\left|\mathrm{x}-\frac{\pi}{2}\right|+$ a for $\mathrm{x}>\frac{\pi}{2}$ is $\frac{\sqrt{3}}{2}$

$\cos x=-\frac{\sqrt{3}}{2} \Rightarrow x=\frac{7 \pi}{6} \Rightarrow P=\left(\frac{7 \pi}{6}, \frac{3}{2}\right)$

If $\mathrm{y}=\frac{\sqrt{3}}{2}\left|\mathrm{x}-\frac{\pi}{2}\right|+\mathrm{a}$ passes throgh ’ $\mathrm{P}$ ’ then

$\mathrm{a}=\frac{3}{2}-\frac{\pi}{\sqrt{3}}$

$\Rightarrow \mathrm{a}>\frac{3}{2}-\frac{\pi}{\sqrt{3}}$

Practice questions

1. $\sin \theta+\sqrt{3} \cos \theta=6 x-x^{2}-11,0 \leq \theta \leq 4 \pi, x \in R$, holds for

(a). no values of $x$ and $\theta$

(b). one value of $x$ and two values of $\theta$

(c). two values of $x$ and two values of $\theta$

(d). two points of values of $(x, \theta)$

Show Answer Answer: (b, d)

2. For $0 \leq x \leq 2 \pi$, then $2^{\operatorname{cosec}^{2} x} \sqrt{\frac{1}{2} y^{2}-y}+1 \leq \sqrt{2}$

(a). is satisfied by exactly one value of $y$

(b). is satisfied by exactly two value of $x$

(c). is satisfied by $\mathrm{x}$ for which $\cos \mathrm{x}=0$

(d). is satisfied by $x$ for which $\sin x=0$

Show Answer Answer: (a, b, c)

3. Let $\tan x-\tan ^{2} x>0$ and $|2 \sin x|<1$. Then the intersection of which of the following two sets satisfies both the inequalities?

(a). $ \mathrm{x}>\mathrm{n} \pi, \mathrm{n} \in \mathrm{Z}$

(b). $ \mathrm{x}>\mathrm{n} \pi-\frac{\pi}{6}, \mathrm{n} \in \mathrm{Z}$

(c). $ \mathrm{x}<\mathrm{n} \pi-\frac{\pi}{4}, \mathrm{n} \in \mathrm{Z}$

(d). $ \mathrm{x}<\mathrm{n} \pi+\frac{\pi}{6}, \mathrm{n} \in \mathrm{Z}$

Show Answer Answer: (a, d)

4. The equation $(\operatorname{cosp}-1) \mathrm{x}^{2}+(\cos p) \mathrm{x}+\sin \mathrm{p}=0$ in the varibale $\mathrm{x}$ has real roots. Then $\mathrm{p}$ can take any value in the interval

(a). $(0,2 \pi)$

(b). $(-\pi, 0)$

(c). $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

(d). $(0, \pi)$

Show Answer Answer: (d)

5. Let $2 \sin ^{2} \mathrm{x}+3 \sin \mathrm{x}-2>0$ and $\mathrm{x}^{2}-\mathrm{x}-2<0$ ( $\mathrm{x}$ is measured in radians). Then $\mathrm{x}$ lies in the interval

(a). $\left(\frac{\pi}{6}, \frac{5 \pi}{6}\right)$

(b). $\left(-1, \frac{5 \pi}{6}\right)$

(c). $(-1,2)$

(d). $\left(\frac{\pi}{6}, 2\right)$

Show Answer Answer: (d)

6. If $\left(\operatorname{cosec}^{2} \theta-4\right) x^{2}+(\cot \theta+\sqrt{3}) x+\cos ^{2} \frac{3 \pi}{2}=0$ holds true for all real $x$, then the most general values of $\theta$ can be given by ( $\varepsilon$ Z )

(a). $2 \mathrm{n} \pi+\frac{11 \pi}{6}$

(b). $2 n \pi+\frac{5 \pi}{6}$

(c). $ 2 n \pi \pm \frac{7 \pi}{6}$

(d). $\mathrm{n} \pi \pm \frac{11 \pi}{6}$

Show Answer Answer: (a, b)

7. If $\sin ^{4} x+\cos ^{4} y+2=4 \sin x \cos y$ and $0 \leq x, y \leq \frac{\pi}{2}$, then $\sin x+\cos y$ is equal to

(a). $-2$

(b). $0$

(c). $2$

(d). $\frac{3}{2}$

Show Answer Answer: (c)

8. The solution of the equation $\sin ^{10} \mathrm{x}+\cos ^{10} \mathrm{x}=\frac{29}{16} \cos ^{4} 2 \mathrm{x}$ is

(a). $\mathrm{x}=\frac{\mathrm{n} \pi}{4}+\frac{\pi}{8}, \mathrm{n} \varepsilon \mathrm{I}$

(b). $\mathrm{x}=\mathrm{n} \pi+\frac{\pi}{4}, \mathrm{n} \varepsilon \mathrm{I}$

(c). $ \mathrm{x}=2 \mathrm{n} \pi+\frac{\pi}{2}, \mathrm{n} \varepsilon \mathrm{I}$

(d). none of these

Show Answer Answer: (a)

9. The most general values of $x$ for which $\sin x+\cos x=\min \left\{1, a^{2}-4 a+6\right\}$, a $R$ are given by

(a). $2 \mathrm{n} \pi, \mathrm{n} \varepsilon \mathrm{N}$

(b). $ 2 \mathrm{n} \pi+\frac{\pi}{2}, \mathrm{n} \varepsilon \mathrm{N}$

(c). $ \mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}-\frac{\pi}{4}, \mathrm{n} \varepsilon \mathrm{N}$

(d). none of these

Show Answer Answer: (c)

10. Number of solutions of the equations $y=\frac{1}{3}[\sin x+[\sin x]]$ and $[y+[y]]=2 \cos x$ where $[$.$]$ denotes the greatest integer function is

(a). 0

(b). 1

(c). 2

(d). infinite

Show Answer Answer: (a)

11. If $|\cos x|^{\sin ^{2} x-\frac{3}{2} \sin x+\frac{1}{2}}=1$, then possible values of $x$ are

(a). $\mathrm{n} \pi$ or $\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{6}, \mathrm{n} \varepsilon \mathrm{I}$

(b). $n \pi$ or $2 n \pi+\frac{\pi}{2}$ or $n \pi+(-1)^{n} \frac{\pi}{6}$, $n \varepsilon Z$

(c). $\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{6}, \mathrm{n} \varepsilon$ I

(d). $\mathrm{n} \pi, \mathrm{n} \varepsilon \mathrm{I}$

Show Answer Answer: (b)

12. If $\left(\cos ^{2} x+\frac{1}{\cos ^{2} x}\right)\left(1+\tan ^{2} 2 y\right)(3+\sin 3 z)=4$, then

(a). $x$ may be multiple of $\pi$

(b). $x$ cannot be an even multiple of $\pi$

(c). $ \mathrm{z}$ can be a multiple of $\pi$

(d). $y$ can be a multiple of $\frac{\pi}{2}$

Show Answer Answer: (a, d)

13. Matrix match type

Column I Column II
(a). If $3 \cos ^{2} \theta-2 \sqrt{3} \sin \theta \cos \theta-3 \sin ^{2} \theta=0$ than $\theta=$ (p). $ \frac{\pi}{6}, \frac{5 \pi}{6}$
(b). If $r \sin \theta=3, r=4(1+\sin \theta)$where $0 \leq \theta \leq 2 \pi$, then $\theta=$ (q). $2 n \pi+\frac{7 \pi}{6}$
(c). If $\sin \theta=-\frac{1}{2}$ and $\tan \theta=\frac{1}{\sqrt{3}}$, then the general value of $\theta$ which satisfies both the equations is (r). $\frac{\pi}{6}, \frac{\pi}{3}, \frac{5 \pi}{6}, \frac{2 \pi}{3}$
(d). If $0 \leq x \leq \pi$ and $81^{\sin ^{2} x}+81^{\cos ^{2} x}=30$ then $x$ is (s). $\frac{n \pi}{2}+\frac{\pi}{6}$
Show Answer Answer: (a $\rarr$ s; b $\rarr$ p; c $\rarr$ q; d $\rarr$ r)

14. If $3^{\sin 2 x+2 \cos ^{2} x}+3^{1-\sin 2 x+2 \cos ^{2} x}=28$, then the value of $x$ are given by

(a). $\tan x=1$

(b). $\tan x=-1$

(c). $\cos x=0$

(d). none of these

Show Answer Answer: (b, c)

15. If $e^{\left\{\left(\sin ^{2} x+\sin ^{4} x+\sin ^{6} x+\ldots \infty\right) \log _{c}{ }^{2}\right\}}$ satisfies the equation $x^{2}-9 x+8=0$, then value of $\frac{\cos x}{\cos x+\sin x}$, $0<\mathrm{x}<\frac{\pi}{2}$ is

(a). $\frac{1}{2}(\sqrt{3}+1)$

(b). $\frac{1}{2}(\sqrt{3}-1)$

(c). $\frac{1}{2}$

(d). $0$

Show Answer Answer: (b)

Integer type questions

16. If $\alpha, \beta$ satisfy the equaiton $12 \sin \alpha+5 \cos \alpha=2 \beta^{2}-8 \beta+21$, then $\beta^{2}-2 \beta$, is_______

Show Answer Answer: 0

17. The value of $x$ and $y$ satisfy the equaiton $\tan ^{2}(x+y)+\cot ^{2}(x+y)=1-2 x-x^{2}$, then the value of $x^{2}-$ $3 x+2$ is __________

Show Answer Answer: 6

18. The integral value of $p$ for which $\sqrt{\mathrm{p}} \cos x-2 \sin x=\sqrt{2}+\sqrt{2-p}$ has a solution, is __________

Show Answer Answer: 2


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ