TRIGONOMETRY FUNCTIONS - 2 (Inverse Trigonometric Functions)

Hyperbolic functions

(i). $\sin h (-x)$ $=-\sin h x$ odd function
$\cos h (-\mathrm{x})$ $=\cos h \mathrm{x}$ even function
$\tan h (-\mathrm{x})$ $=-\tan h \mathrm{x}$ odd function
(ii). Function Domain Range
$\sin h ^{-1} \mathrm{x}$ $\mathrm{R}$ $ \mathrm{R}$
$\cos h ^{-1} \mathrm{X} $ $(0, \infty)$ $(1-, \infty)$
$\tan h ^{-1} \mathrm{x} $ $\mathrm{R}$ $ (-1, 1)$
$\operatorname{\cot h}^{-1} \mathrm{x}$ $ \mathrm{R}-\{0\}$ $ R-[1, 1]$
$\operatorname{\sec h}^{-1} \mathrm{X}$ $(0, \infty)$ $(0, 1)$
$\operatorname{\cosec h}^{-1} \mathrm{x}$ $\mathrm{R}-\{0\} $ $ R-\{0\}$
(iii). $\sin h \left(\sin h ^{-1} \mathrm{x}\right)=\mathrm{x}$ $\sin h ^{-1}(\sin h x)=x$
$\cos h \left(\cos h ^{-1} \mathrm{x}\right)=\mathrm{x}$ $\cos h ^{-1}(\cos h x)=x$
$\tan h \left(\tan h ^{-1} x\right)=x$ $\tan h ^{-1}(\tan h x)=x$
$\sin h \left(\sin ^{-1} x\right)=x^{n}$ $\sin h \left(\sin h ^{-1} x^{n}\right)=x^{n}$

(iv). $\sin h ^{-1} x=\log _{e}\left(x+\sqrt{x^{2}+1}\right)$

$\cos h ^{-1} x=\log _{e}\left(x+\sqrt{x^{2}-1}\right)$

$\tan h ^{-1} x=\frac{1}{2} \log _{e}\left(\frac{x+1}{x-1}\right) x>1, x<-1$

$\operatorname{\cot h}^{-1} x=\frac{1}{2} \log _{e}\left(\frac{x-1}{x+1}\right) x>1, x<-1$

$\operatorname{\sec h}^{-1} x=\log _{e}\left(\frac{1+\sqrt{1-x^{2}}}{x}\right) 0<x \leq 1$

$\operatorname{\cosec h}^{-1} x=\left\{\begin{array}{lll}\log _e\left(\frac{1+\sqrt{1+x^2}}{x}\right) & \text { if } & x>0 \\ \log _e\left(\frac{1-\sqrt{1+x^2}}{x}\right) & \text { if } & x<0\end{array}\right.$

(v). $\sin h ^{-1} \mathrm{x}=\operatorname{\cosec h}^{-1}\left(\frac{1}{\mathrm{x}}\right)$

$\sin h ^{-1} x=\cos h ^{-1} \sqrt{x^{2}+1}$

$\cos h ^{-1} x=\sin h ^{-1} \sqrt{x^{2}-1}$

$\sin h \left(\cos h ^{-1} x\right)=\sqrt{x^{2}-1}$

Examples

1. Total number of positive integral values of $n$ sothat the equation $\cos ^{-1} x+\left(\sin ^{-1} y\right)^{2}=\frac{n \pi^{2}}{4}$ and $\left(\sin ^{-1} \mathrm{y}\right)^{2}-\cos ^{-1} \mathrm{x}=\frac{\pi^{2}}{16}$ are consistent, is equal to

(a). 1

(b). 4

(c). 3

(d). 2

Show Answer

Solution:

$ \text { we have } 2\left(\sin ^{-1} \mathrm{y}\right)^{2}=\frac{(4 \mathrm{n}+1) \pi^{2}}{16} \quad \text { On adding the two given equations } $

$0\leq \frac{(4 \mathrm{n}+1) \pi^{2}}{16} \leq \frac{2 \pi^{2}}{4} \Rightarrow-\frac{1}{4} \leq \mathrm{n} \leq \frac{7}{4}$

Also $2 \cos ^{-1} \mathrm{x}=\frac{(4 \mathrm{n}-1) \pi^{2}}{16}$ On subtracting the two given equations

$0\leq \frac{(4 n-1) \pi^{2}}{16} \leq 2 \pi \Rightarrow \frac{1}{4} \leq \mathrm{n} \leq \frac{8}{\pi}+\frac{1}{4}$

$\therefore \mathrm{n}=1$

Answer: (a)

2. The minimum value of $\left(\sin ^{-1} \mathrm{x}\right)^{3}+\left(\cos ^{-1} \mathrm{x}\right)^{3}$ is equal to

(a). $\frac{\pi^{3}}{32}$

(b). $\frac{5 \pi^{3}}{32}$

(c). $\frac{9 \pi^{3}}{32}$

(d). $\frac{11 \pi^{3}}{32}$

Show Answer

Solution:

$ \begin{aligned} & \text { Let } y=\left(\sin ^{-1} x\right)^{3}+\left(\cos ^{-1} x\right)^{3} \\ & =\left(\sin ^{-1} x+\cos ^{-1} x\right)\left\{\left(\sin ^{-1} x\right)^{2}+\left(\cos ^{-1} x\right)^{2}-\sin ^{-1} x \cdot \cos ^{-1} x\right\} \\ & =\frac{\pi}{2}\left\{\left(\sin ^{-1} x+\cos ^{-1} x\right)^{2}-3 \sin ^{-1} x \cdot \cos x\right\} \\ & =\frac{\pi}{2}\left\{\frac{\pi^{2}}{4}-3 \sin ^{-1} x\left(\frac{\pi}{2}-\sin ^{-1} x\right)\right\} \\ & =\frac{\pi}{2}\left\{3\left(\sin ^{-1} x\right)^{2}-\frac{3 \pi}{2} \sin ^{-1} x+\frac{\pi^{2}}{4}\right\} \\ & =\frac{\pi}{2}\left\{3\left(\sin ^{-1} x\right)^{2}-\frac{3 \pi}{2} \sin ^{-1} x+\frac{3 \cdot \pi^{2}}{16}-\frac{3 \pi^{2}}{16}+\frac{\pi^{2}}{4}\right\} \\ & =\frac{\pi}{2}\left\{3\left(\sin ^{-1} x-\frac{\pi}{4}\right)^{2}+\frac{\pi^{2}}{16}\right\} \end{aligned} $

Minimum value of $\mathrm{y}=\frac{\pi}{2} \cdot \frac{\pi^{2}}{16}=\frac{\pi^{3}}{32} \quad$ sin ce $\left(\sin ^{-1} \mathrm{x}-\frac{\pi}{4}\right)^{2} \geq 0$

Answer: (a)

3. If $A=2 \tan ^{-1}(2 \sqrt{2}-1)$ and $B=3 \sin ^{-1}\left(\frac{1}{3}\right)+\sin ^{-1}\left(\frac{3}{5}\right)$. then

(a). $\mathrm{A}=\mathrm{B}$

(b). $\mathrm{A}<\mathrm{B}$

(c). $\mathrm{A}>\mathrm{B}$

(d). None of these

Show Answer

Solution:

$ \mathrm{A}=2 \tan ^{-1}(2 \sqrt{2}-1)=2 \tan ^{-1}(1.828)>2 \tan ^{-1} \sqrt{3} $

$ \begin{aligned} \mathrm{A} & >\frac{2 \pi}{3} \\ 3\sin ^{-1} \frac{1}{3} & =\sin ^{-1}\left(3 \cdot \frac{1}{3}-4\left(\frac{1}{3}\right)^{3}\right)=\sin ^{-1}\left(1-\frac{4}{27}\right)=\sin ^{-1} \frac{23}{27}=\sin ^{-1}(0.852) \\ 3\sin ^{-1} \frac{1}{3} & <\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\ \sin ^{-1}\left(\frac{3}{5}\right) & =\sin ^{-1}(0.6)<\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\ \therefore \mathrm{B} & <\frac{\pi}{3}+\frac{\pi}{3}=\frac{2 \pi}{3} \end{aligned} $

Hence $\mathrm{A}>\mathrm{B}$

Answer: (c)

4. The complete solution set of $\sin ^{-1}(\sin 5)>x^{2}-4 x$ is

(a). $|x-2|<\sqrt{9-2 \pi}$

(b). $|\mathrm{x}-2|>\sqrt{9-2 \pi}$

(c). $|x|<\sqrt{9-2 \pi}$

(d). $|\mathrm{x}|>\sqrt{9-2 \pi}$

Show Answer

Solution:

$ \sin ^{-1} \sin 5>x^{2}-4 x $

$ \sin ^{-1} \sin (5-2 \pi)>x^{2}-4 x $

$ \begin{aligned} & 5-2 \pi>x^{2}-4 x \quad(5-2 \pi) \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ & x^{2}-4 x+2 \pi-5<0 \\ & (x-2)^{2}<9-2 \pi \\ & |x-2|<\sqrt{9-2 \pi} \end{aligned} $

Answer: (a)

5. Let $(\mathrm{x}, \mathrm{y})$ be such that $\sin ^{-1}(\mathrm{ax})+\cos ^{-1} \mathrm{y}+\cos ^{-1} \mathrm{bxy}=\frac{\pi}{2}$.

Match the statements in column I with statements in column II

Column I Column II
(a). If $a=1$ and $b=0$, then $(x, y)$ (p). Lies on the circle $x^{2}+y^{2}=1$
(b). If $a=1$ and $b=1$, then ( $x, y)$ (q). Lies on the $\left(x^{2}-1\right)\left(y^{2}-1\right)=0$
(c). If $\mathrm{a}=1$ and $\mathrm{b}=2$, then $(\mathrm{x}, \mathrm{y})$ (r). Lies on $y=x$
(d). If $a=2$ and $b=2$, then ( $x, y)$ (s). Lies on the $(4x^2-1)(y^2-1)=0$
Show Answer

Solution:

$ \begin{aligned} & \cos ^{-1} y+\cos ^{-1} b x y=\frac{\pi}{2}-\sin ^{-1} a x \\ & \cos ^{-1} y+\cos ^{-1} b x y=\cos ^{-1} a x \end{aligned} $

$\begin{aligned} & \text { Let } \cos ^{-1} y=A, \cos ^{-1} b x y=B \text { and } \cos ^{-1} a x=C \\ & A+B=C \\ & B=A-C \\ & \cos (A-C)=\cos B \\ & \cos A \cos C+\sin A \sin C=\cos B \\ & y a x+\sin A \sin C=b x y \\ & \sin A \sin C=b x y-a x y \\ & \sin ^2 A \sin ^2 C=(b-a)^2 x^2 y^2 \\ & \left(1-a^2 x^2\right)\left(1-y^2\right)=x^2 y^2(b-a)^2\end{aligned}$

(a). Put $\mathrm{a}=1$ and $\mathrm{b}=0$

$ \begin{aligned} & \left(1-x^{2}\right)\left(1-y^{2}\right)=x^{2} y^{2} \\ & x^{2}+y^{2}=1 \end{aligned} $

(b). Put $\mathrm{a}=1$ and $\mathrm{b}=1$

$ \begin{aligned} & \left(1-x^{2}\right)\left(1-y^{2}\right)=0 \\ & \left(x^{2}-1\right)\left(y^{2}-1\right)=0 \end{aligned} $

(c). Put $\mathrm{a}=1$ and $\mathrm{b}=2$

$ \begin{gathered} \left(1-x^{2}\right)\left(1-y^{2}\right)=x^{2} y^{2} \\ x^{2}+y^{2}=1 \end{gathered} $

(d). Put $\mathrm{a}=2$ and $\mathrm{b}=2$

$ \left(1-4 x^{2}\right)\left(1-y^{2}\right)=0 $

$ \left(4 x^{2}-1\right)\left(y^{2}-1\right)=0 $

(a) $\rightarrow$ (p), (b) $\rightarrow$ (q), (c) $\rightarrow$ (p), (d) $\rightarrow$ (s)

6. If $\sin ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{4} \ldots \ldots \ldots.\right)+\cos ^{-1}\left(x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4} \ldots \ldots \ldots.\right)=\frac{\pi}{2}$ for $0<|x|<\sqrt{2}$, then $x$ equals

(a). $\frac{1}{2}$

(b). $1$

(c). $-\frac{1}{2}$

(d). $-1$

Show Answer

Solution:

$ \begin{aligned} & \sin ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{4} \ldots \ldots \ldots\right)=\frac{\pi}{2}-\cos ^{-1}\left(x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4} \ldots \ldots \ldots\right) \\ & \sin ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{4} \ldots \ldots \ldots\right)=\sin ^{-1}\left(x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4} \ldots \ldots \ldots . .\right) \end{aligned} $

or $\sin^{-1} \theta +\cos^{-1} \theta =1 / 2$

so,

$x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4} \ldots \ldots \ldots=x-\frac{x^{2}}{2}+\frac{x^{3}}{4} \ldots \ldots \ldots$

$ \begin{aligned} & \frac{\mathrm{x}^{2}}{1-\left(-\frac{\mathrm{x}^{2}}{2}\right)}=\frac{\mathrm{x}}{1-\left(-\frac{\mathrm{x}}{2}\right)} \quad \because \mathrm{S} _{\infty}=\frac{\mathrm{a}}{1-\mathrm{r}} \quad|\mathrm{r}|<1\\ & \frac{2 \mathrm{x}^{2}}{2+\mathrm{x}^{2}}=\frac{2 \mathrm{x}}{2+\mathrm{x}} \\ & 2 \mathrm{x}^{2}+\mathrm{x}^{3}=2 \mathrm{x}+\mathrm{x}^{3} \\ & 2 \mathrm{x}(\mathrm{x}-1)=0 \\ & \mathrm{x}=0,1 \\ & \mathrm{x}=1 \quad (0<|x|\sqrt{2})\\ \end{aligned} $

Answer: (b)

7. Let $a, b, c$ be positive real numbers. Let

$ \theta=\tan ^{-1} \sqrt{\frac{a(a+b+c)}{b c}}+\tan ^{-1} \sqrt{\frac{b(a+b+c)}{c a}}+\tan ^{-1} \sqrt{\frac{c(a+b+c)}{a b}}, \text { then } \tan \theta= $

(a). $\frac{\pi}{4}$

(b). $\frac{\pi}{2}$

(c). $\pi$

(d). None of these

Show Answer

Solution:

Let $\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{u}$

$ \begin{aligned} & \theta=\tan ^{-1} \sqrt{\frac{\mathrm{au}}{\mathrm{bc}}}+\tan ^{-1} \sqrt{\frac{\mathrm{bu}}{\mathrm{ca}}}+\tan ^{-1} \sqrt{\frac{\mathrm{cu}}{\mathrm{ab}}} \quad\left[\begin{array}{l} \text { Also you can use } \tan ^{-1} \mathrm{x}+\tan ^{-1} \mathrm{y}+\tan ^{-1} \mathrm{z} \\ =\tan ^{-1}\left[\frac{\mathrm{x}+\mathrm{y}+\mathrm{z}-\mathrm{xyz}}{1-\mathrm{xy-yz-zx}}\right] \end{array}\right] \\ & \theta=\pi+\tan ^{-1}\left(\frac{\sqrt{\frac{\mathrm{au}}{\mathrm{bc}}}+\sqrt{\frac{\mathrm{bu}}{\mathrm{ca}}}}{1-\sqrt{\frac{\mathrm{au}}{\mathrm{bc}}} \sqrt{\frac{\mathrm{bc}}{\mathrm{ac}}}}\right)+\tan ^{-1} \sqrt{\frac{\mathrm{cu}}{\mathrm{ab}}}, \sqrt{\frac{\mathrm{au}}{\mathrm{bc}}} \sqrt{\frac{\mathrm{bu}}{\mathrm{ca}}}=\frac{\mathrm{u}}{\mathrm{c}}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{\mathrm{c}}=\frac{\mathrm{a}+\mathrm{b}}{\mathrm{c}}+1>1 \\ & \theta=\pi+\tan ^{-1}\left(\frac{\frac{(\mathrm{a}+\mathrm{b}) \sqrt{\mathrm{u}}}{\sqrt{\mathrm{abc}}}}{1-\frac{\mathrm{u}}{\mathrm{c}}}\right)+\tan ^{-1} \sqrt{\frac{\mathrm{cu}}{\mathrm{ab}}} \\ & =\pi+\tan ^{-1}\left(\frac{(\mathrm{u}-\mathrm{c}) \sqrt{\mathrm{u}}}{\sqrt{\mathrm{abc}}} \cdot \frac{\mathrm{c}}{(\mathrm{c}-\mathrm{u})}\right)+\tan ^{-1} \sqrt{\frac{\mathrm{cu}}{\mathrm{ab}}} \\ & =\pi-\tan ^{-1} \sqrt{\frac{\mathrm{uc}}{\mathrm{ab}}}+\tan ^{-1} \sqrt{\frac{\mathrm{cu}}{\mathrm{ab}}} \\ & =\pi \end{aligned} $

Answer: (c)

Practice questions

1. If $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\pi$ or $\frac{\pi}{2}$ then

(a). $x+y+z=3 x y z$

(b). $x+y+z=2 x y z$

(c). $x y+y z+z x=1$

(d). None of these

Show Answer Answer: (c)

2. If $\left[\cos ^{-1} x\right]+\left[\cot ^{-1} x\right]=0$, where $x$ is a nonnegative real number and [.] denotes the greatest integer function then complete set of values of $x$ is

(a). $(\cos 1,1)$

(b). $(\cot 1,1)$

(c). $(\cos 1, \cot 1)$

(d). None of there

Show Answer Answer: (c)

3. Range of the function $\mathrm{f}(\mathrm{x})=\cos ^{-1}(-\{\mathrm{x}\})$, where $\{.\}$ is fractional part function is

(a). $\left(\frac{\pi}{2}, \pi\right)$

(b). $\left(\frac{\pi}{2}, \pi\right]$

(c). $\left[\frac{\pi}{2}, \pi\right)$

(d). $\left(0, \frac{\pi}{2}\right]$

Show Answer Answer: (c)

4. The sum of solutions of the equation $2 \sin ^{-1} \sqrt{\mathrm{x}^{2}+\mathrm{x}+1}+\cos ^{-1} \sqrt{\mathrm{x}^{2}+\mathrm{x}}=\frac{3 \pi}{2}$ is

(a). $0$

(b). $-1$

(c). $1$

(d). $2$

Show Answer Answer: (b)

5. Which of the following is a rational number

(a). $\sin \left(\tan ^{-1} 3+\tan ^{-1} \frac{1}{3}\right)$

(b). $\cos \left(\frac{\pi}{2}-\sin ^{-1} \frac{3}{4}\right)$

(c). $\log _{2}\left(\sin \left(\frac{1}{4} \sin ^{-1} \frac{\sqrt{63}}{8}\right)\right)$

(d). $\tan \left(\frac{1}{2} \cos ^{-1} \frac{\sqrt{5}}{3}\right)$

Show Answer Answer: (a, b, c)

Assertion and Reasoning

6. Statement 1: $\sin ^{-1}\left(\frac{1}{\sqrt{\mathrm{e}}}\right)>\tan ^{-1}\left(\frac{1}{\sqrt{\pi}}\right)$

Statement 2: $\sin ^{-1} \mathrm{x}>\tan ^{-1} \mathrm{y}$ for $\mathrm{x}>\mathrm{y}, \forall \mathrm{x}, \mathrm{y} \in(0,1)$

(a). Statement - 1 is True, Statement -2 is True, Statement -2 is a correct explanation for Statement- 1 .

(b). Statement - 1 is True, Statement- 2 is True, statement- 2 is NOT correct explanation for Statement - 1

(c). Statement-1 is True, Statement - 2 is False

(d). Statement 1 is False, Statement -2 is True.

Show Answer Answer: (a)

Comprehension (Que. no. 7 to 9)

It is given that $\mathrm{A}=\left(\tan ^{-1} \mathrm{x}\right)^{3}+\left(\cot ^{-1} \mathrm{x}\right)^{3}$ where $\mathrm{x}>0$ and $\mathrm{B}=\left(\cos ^{-1} \mathrm{t}\right)^{2}+\left(\sin ^{-1} \mathrm{t}\right)^{2}$ where $\mathrm{t} \in\left[0, \frac{1}{\sqrt{2}}\right]$ and $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$ for $-1 \leq x \leq 1$ and $\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}$ for all $x \in R$.

7. The interval in which $A$ lies is

(a). $\left[\frac{\pi^{3}}{7}, \frac{\pi^{3}}{2}\right]$

(b). $\left(\frac{\pi^{3}}{40}, \frac{\pi^{3}}{10}\right)$

(c). $\left[\frac{\pi^{3}}{32}, \frac{\pi^{3}}{8}\right]$

(d). None of these

Show Answer Answer: (c)

8. The maximum value of $B$ is

(a). $\frac{\pi^{2}}{8}$

(b). $\frac{\pi^{2}}{16}$

(c). $\frac{\pi^{2}}{4}$

(d). None of these

Show Answer Answer: (c)

9. If least value of $A$ is $m$ and maximum value of $B$ is $M$ then $\cot ^{-1} \cot \left(\frac{m-\pi M}{M}\right)=$

(a). $-\frac{7 \pi}{8}$

(b). $\frac{7 \pi}{8}$

(c). $-\frac{\pi}{8}$

(d). $\frac{\pi}{8}$

Show Answer Answer: (d)

Single Integer Answer type Question

10. The number of all positive integral solutions of the equation $\tan ^{-1} \mathrm{x}+\cos ^{-1} \frac{\mathrm{y}}{\sqrt{1+\mathrm{y}^{2}}}=\sin ^{-1}\left(\frac{3}{\sqrt{10}}\right)$, are…………..

Show Answer Answer: $2$

11. If $\cos ^{-1}\left(4 x^{3}-3 x\right)=a+b$

$\cos ^{-1} \mathrm{x}$, for $-1<\mathrm{x}<-\frac{1}{2}$ then $[\mathrm{a}+\mathrm{b}+2]$ is…………

Show Answer Answer: $-2$

12. Match the statement of column I with values of column II

Column I Column II
(a). Absolute difference of greatest and least valu$\text { of } \sqrt{2}(\sin 2 x-\cos 2 x)$ (p). $\frac{\pi}{4}$
(b). Absolute difference of greatest and least valu$\text { of } x^{2}-4 x+3, x \in[1,3] \text { is }$ (q). $\frac{\pi}{6}$
(c). Greatest value of $\tan ^{-1} \frac{1-\mathrm{x}}{1+\mathrm{x}}, \mathrm{x} \in[0,1]$, is (r). $4$
(d). Absolute difference of greatest and leas$\text { value of } \cos ^{-1} x^{2}, x \in\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right] \text {, is }$ (s). $1$
Show Answer Answer: a $\rarr$ r, b $\rarr$ s, c $\rarr$ 0, d $\rarr$ q

13. If $a \leq \tan ^{-1} x+\cot ^{-1} x+\sin ^{-1} x \leq b$, then

(a). $\mathrm{a}=\frac{\pi}{4}$

(b). $\mathrm{a}=0$

(c). $\mathrm{b}=\frac{\pi}{2}$

(d). $\mathrm{b}=\pi$

Show Answer Answer: (b, d)

14. $\cot ^{-1}\left(2.1^{2}\right)+\cot ^{-1}\left(2.2^{2}\right)+\cot ^{-1}\left(2.3^{2}\right)+………$ upto $\infty$ is equal to

(a). $\frac{\pi}{4}$

(b). $\frac{\pi}{3}$

(c). $\frac{\pi}{2}$

(d). $\pi$

Show Answer Answer: (a)

15. Number of solutions of the equation $\tan ^{-1}\left(\frac{1}{2 x+1}\right)^{(c)}+\tan ^{-1}\left(\frac{1}{4 x+1}\right)=\tan ^{-1}\left(\frac{2}{x^{2}}\right)$ is

(a). $1$

(b). $2$

(c). $3$

(d). $4$

Show Answer Answer: (a)


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ