TRIGONOMETRY FUNCTIONS - 3 (Inverse Trigonometric Functions - Problem Solving)

A function f:AB is invertible if f it is a bijection. The inverse of f is denoted by f1 and is defined as f1(y)=xf(x)=y. Trigonometric functions are periodic and hence they are not bijective. But if we restrict their domains and codomains they can be made bijective and we can obtain their inverses.

Domain & range of inverse trigonometric functions

Function Domain Range (Principal value branch)
sin1X [1,1] [π/2,π/2]
cos1X [1,1] [0,π]
tan1X (,) (π/2,π/2)
cot1X (,) (0,π)
cosec1x (,1][1,) [π/2,0)(0,π/2]
sec1X (,1][1,) [0,π/2)(π/2,π]

Note: If no branch of an inverse trigonometric function is mentioned, then it means the principal value branch of the function.

Properties of inverse trigonometric functions

1. (i). sin1(sinx)={2nπ+x,2nππ2x2nπ+π2,nZ(2n+1)πx,(2n+1)ππ2x(2n+1)π+π2,nZ

Period =2π& it is an odd function.

(ii). cos1(cosx)={2nπ+x,2nπx(2n+1)π,nZ2nπx,(2n1)πx2nπ,nZ

Period =2π and it is an even function

(iii). tan1(tanx)=nπ+x,nππ2<x<nπ+π2,nZ

Period =π

(iv). cot1(cotx)=nπ+x,nπ<x<(n+1)π,nZ

Period =π

(v). sec1(secx)={x2nπ,2nπx(2n+1)π,x2π+π2x+2nπ,(2n1)πx2nπ,x(2nππ2,nZ

Period =2π

(vi). cosec1(cosecx)={2nπ+x,2nππ2x2nπ+π2(2n+1)πx,(2n+1)ππ2x(2n+1)π+π2,xnπ,nZ

Period =2π

2. (i). sin(sin1x)=x,1x1 (ii). cos(cos1x)=x,1x1

(iii). tan(tan1x)=x,xR (iv). cot(cot1x)=x,xR

(v). sec(sec1x)=x,xR(,1][1,)

(vi). \cosec(\cosec1x)=x,xR(,1][1,)

3. (i). sin1x+cos1x=π/2,1x1

(ii). tan1x+cot1x=π/2,xR

(iii). sec1x+\cosec1x=π/2,xR(,1][1,)

4. (i). sin1x=\cosec11x,1x1

(ii). cos1x=sec1(1x),1x1

(iii). tan1x={cot1(1/x),x>0π+cot1(1/x),x<0

5. (i). sin1(x)=sin1x,1x1

(ii). cos1(x)=πcos1x,1x1

(iii). tan1(x)=tan1x,<x<

(iv). cot1(x)=πcot1x,<x<

(v). \cosec1(x)=\cosec1x,x1 or x1

(vi). sec1(x)=πsec1x,x1 or x1

6. Conversions of inverse trigonometric functions

sin1x=cos11x2=tan1x1x2=cot11x2x=cosec11x=sec111x2

cos1x=sin11x2=tan11x2x=cot1x1x2=cosec111x2=sec11x

tan1x=

sin1x1+x2=cos111+x2=cot11xcosec11+x2x=sec11+x2

7. (i) sin1x+sin1y={sin1(x1y2+y1x2) if 1x,y1&x2+y21 or if xy<0&x2+y2>1πsin1(x1y2+y1x2) if 0<x,y1&x2+y2>1πsin1(x1y2+y1x2) if 1x,y<0&x2+y2>1

(ii) sin1xsin1y={sin1(x1y2y1x2) if 1x,y1&x2+y21 or if xy>0&x2+y2>1πsin1(x1y2y1x2) if 0<x1,1<y0&x2+y2>1πsin1(x1y2y1x2) if 1x<0,0<y1&x2+y2>1

8. (i) cos1x+cos1y={cos1(xy1x21y2) if 1x,y1&x+y02πcos1(xy1x21y2) if 1x,y1&x+y0

(ii) cos1xcos1y={cos1(xy+1x21y2) if 1x,y1&xycos1(xy+1x21y2) if 1y0,0<x1&xy

9. (i) tan1x+tan1y={tan1(x+y1xy) if xy<1π+tan1(x+y1xy) if x>0,y>0&xy>1π+tan1(x+y1xy) if x<0,y<0&xy>1

(ii) tan1xtan1y={tan1(xy1+xy) if xy>1π+tan1(xy1+xy) if x>0,y<0&xy<1π+tan1(xy1+xy), if x<0,y>0&xy<1

Remark : If x1,x2,xnR, then tan1x1+tan1x2++tan1xn =tan1(s1s3+s5s71s2+s4s6+.)

Where sk is the sum of the product of x1,x2,.xn taken k at a time.

ie.

s1=x1+x2++xn=xis2=x1x2+x2x3+.+xn1xn=x1x2 s3=x1x2x3..etc.

10. (i). 2sin1x={sin1(2x1x2) if 12x12πsin1(2x1x2), if 12x1πsin1(2x1x2), if 1x12

(ii). 3sin1x={sin1(3x4x3), if 12x12πsin1(3x4x3), if 12<x1πsin1(3x4x3), if 1x<12

11. (i). 2cos1x={cos1(2x21), if 0x12πcos1(2x21), if 1x0

(ii). 3cos1x={cos1(4x33x), if 12x12πcos1(4x33x), if 12x122π+cos1(4x33x), if 1x12

12. (i). 2tan1x={tan1(2x1x2), if 1<x<1π+tan1(2x1x2), if x>1π+tan1(2x1x2), if x<1

(ii). 3tan1x={tan1(3xx313x2), if 13<x<13π+tan1(3xx313x2), if x>13π+tan1(3xx313x2), if x<13

Note: If |x|1 then 2tan1x=sin1(2x1+x2)=cos1(1x21+x2)=tan1(2x1x2).

If |x|>1, change x to 1x in the above.

Note: In cases of identities in inverse trigonometric functions, principal values are to be taken. As such signs of x,y etc., will determine the quadrant in which the angles will fall. In order to bring the angles of both sides in the same quadrant, adjustment by π is to be made.

13. Hyperbolic functions

(i). sinh(x) =sinhx odd function
cosh(x) =coshx even function
tanh(x) =tanhx odd function
(ii). Function Domain Range
sinh1x R R
cosh1X (0,) (1,)
tanh1x R (1,1)
coth1x R{0} R[1,1]
sech1X (0,) (0,1)
\cosech1x R{0} R{0}
(iii). sinh(sinh1x)=x sinh1(sinhx)=x
cosh(cosh1x)=x cosh1(coshx)=x
tanh(tanh1x)=x tanh1(tanhx)=x
sinh(sin1x)=xn sinh(sinh1xn)=xn

(iv). sinh1x=loge(x+x2+1)

cosh1x=loge(x+x21)

tanh1x=12loge(x+1x1)x>1,x<1

coth1x=12loge(x1x+1)x>1,x<1

sech1x=loge(1+1x2x)0<x1

\cosech1x={loge(1+1+x2x) if x>0loge(11+x2x) if x<0

(v). sinh1x=cosech1(1x)

sinh1x=cosh1x2+1

cosh1x=sinh1x21

sinh(cosh1x)=x21

Solved examples

1. The sum to infinite terms of the series

tan113+tan117+tan1113+ is

(a).. π6

(b).. π4

(c).. π3

(d).. None of these

Show Answer

Solution : By method of difference

Tn=tan111+n+n2Tn=tan111+n(n+1)=tan1n+1nn(n+1)=tan1(n+1)tan1nTn=tan1(n+1)tan1n T1n=tan12tan11 T2=tan13tan12 T3=tan14tan13..Tn=tan1(n+1)tan1n Adding, Sn=T1+T2++Tn=tan1(n+1)tan11S=tan1tan11=π2π4=π4

Answer: b

2. The sum to infinite terms of the series tan112.12+tan112.22+tan112.32+ is

(a). π4

(b). π3

(c). π2

(d). None

Show Answer

Solution :

Tn=tan112n2=tan124n2=tan1(2n+1)(2n1)1+(2n+1)(2n1)Tn=tan1(2n+1)tan1(2n1)T1=tan13tan11 T2=tan15tan13 T3=tan17tan13

.

.

.

Tn=tan1(2n+1)tan1(2n1)

Adding, Sn=T1+T2+.Tn=Tan1(2n+1)tan11

S=tan1tan11=π2π4=π4

Answer: a

3. The value of

tan1c1xyc1y+x+tan1c2c11+c1c2+tan1c3c21+c2c3++tan11cn is 

(a). tan1xy

(b). tan1yx

(c). tan1xtan1y

(d). None

Show Answer

Solution: Write the series as

tan1xy1c11+xy1c1+tan11c11c21+1c11c2+tan11c21c31+1c21c3+..+tan11cn11cn1+1cn11cn+tan11cn(tan1xytan11c1)+(tan11c1tan11c2)+(tan11c2tan11c3)+..+(tan11cn1tan11cn)+tan11cn=tan1xy

Answer: a

4. The number of positive integral solutions of the equation tan1x+cos1y1+y2 =sin1310 is

(a). 1

(b). 2

(c). 3

(d). None

Show Answer

Solution : tan1x+tan11y=tan13

tan11y=tan13tan1x

1y=3x1+3x

y=1+3x3x

Put x=1, then y=2 Put x=2, then y=7

(1,2)&(2,7) are two sets.

Answer: b

5. If cot1(nπ)>π6;nN, then the maximum value of n can be

(a). 4

(b). 5

(c). 6

(d). None

Show Answer

Solution : nπ<cotπ6(cot1x is a decreasing function )

n<π3

n<5.43n=5(max)

Answer: b

6. The value of

sin1{cot(sin1(234)+cos1124+sec12)}

(a). 0

(b). π4

(c). π2

(d). None

Show Answer

Solution : sin1234=sin14238

=sin13+123(22)2=sin1(3122)2=sin13122

=sin1sinπ12=π12sin1{cot(π12+π6+π4)}=sin1cotπ2=sin10=0

Answer: a

7. The greatest value of (tan1x)2+(cot1x)2 is…………..

Show Answer

Solution :

(tan1x)2+(cot1x)2=(tan1x+cot1x)22tan1xcot1x

=π242tan1x(π2tan1x)

Let tan1x=y, then LHS =π242y(π2y)

=π24πy+2y2=2(y2πy2+π216)2π216+π24=2(tan1xπ4)2+π28

Minimum value is π28

Answer : π28

Practice questions

1. If (tan1x)2+(cot1x)2=5π28, then x equals

(a). 1

(b). 1

(c). 0

(d). None of these

Show Answer Answer: (a).

2. If sin1(xx22+x34..)+cos1(x2x42+x64.)=π2 for 0<|x|<2, then x equals

(a). 12

(b). 1

(c). 12

(d). 1

Show Answer Answer: (b).

3. Match the conditions / expressions in column I with statement in column II.

Let (x,y) be such that sin1(ax)+cos1y+cos1(bxy)=π2

Column I Column II
(a). If a=1&b=0, then( x,y) (p). lies on the circle x2+y2=1
(b). If a=1&b=1, then (x,y) (q). lies on (x21)(y21)=0
(c). If a=1&b=2, then (x,y) (r). lies on y=x
(b). If a=2&b=2, then( x,y) (s). lies on (4x21)(y21)=0
Show Answer Answer: a \rarr p, b \rarr q, c \rarr p, d \rarr s

4. Sum to n terms of the series

cosec110+cosec150+cosec1170++cosec1(n2+1)(n2+2n+2) is 

(a). 0

(b).

(c). tan1(n+1)π4

(d).  cot1(n+1)π4

Show Answer Answer: (c).

5. Match the following.

Let t1=(sin1x)sin1x,t2=(sin1x)cos1x,t3=(cos1x)sin1x,t4=(cos1x)cos1x

Column I Column II
(a). x(0,cos1) (p). t1>t2>t4>t3
(b). x(cos1,12) (q). t4>t3>t1>t2
(c). x(12,sin1) (r). t1>t2>t4>t3
(c). x(sin1,1) (s). t3>t4>t1>t2
Show Answer Answer: a \rarr q, b \rarr s, c \rarr r, d \rarr s

6. Read the passage & answer the following questions

If tan1x:tan1y=1:4( where |x|<tanπ6 ) then

(i). The value of y as an algebraic function of x will be

(a). 4x(1+x2)x46x2+1

(b). 4x(1x2)x46x2+1

(c). 4x(1+x2)x4+6x2+1

(d). None of these.

Show Answer Answer: (b).

(ii). The root of the equation x46x2+1=0 is

(a). tanπ12

(b). tanπ4

(c). tanπ8

(d). tanπ16

Show Answer Answer: (a).

7. If a sin1xbcos1x=c, then asin1x+bcos1x is

(a). 0

(b). πab+c(ba)a+b

(c). π2

(d). πab+c(ba)a+b

Show Answer Answer: (d).

8. r=1nSin1(rr1r(r+1)) is

(a). tan1nπ4

(b). tan1n+1π4

(c). tan1n

(d). tan1n+1

Show Answer Answer: (c).

9. If [cot1x]+[cos1x]=0, then complete set of values of x is

(a). (cos1,1]

(b). (cot1,cos1)

(c). (cot1,1)

(d). None of these

Show Answer Answer: (c).

10. If (sin1x+sin1w)(sin1y+sin1z)=π2, then

D=|xN1yN2zNwN4| where N1,N2,N3,N4W

(a). has a maximum value of 2

(b). has a minimum value of 0

(c). 16 different D are possible

(d). has a minimum value of 2.

Show Answer Answer: (a, c, d)

11. The value of k(k>0) such that the length of the longest interval in which the function f(x)=sin1|sinkx|+cos1(coskx) is constant is π4 is / are

(a). 8

(b). 4

(c). 12

(d). 16

Show Answer Answer: (b).

12. Match the following

Column I Column II
(a). (sin1x)2+(sin1y)2=π22x3+y3= (p). 1
(b). (cos1x)2+(cos1y)2=2π2x5+y5= (q). 2
(c). (sin1x)2+(sin1y)2=π44⇒∣xy∣= (r). 0
(d). sin1xsin1y∣=πxy= (s). 2
Show Answer Answer: a \rarr q, r, s; b \rarr q; c \rarr r, s; d \rarr p