TRIGONOMETRY FUNCTIONS - 3 (Inverse Trigonometric Functions - Problem Solving)

A function $f: \mathrm{A} \rightarrow \mathrm{B}$ is invertible if $f$ it is a bijection. The inverse of $f$ is denoted by $f^{-1}$ and is defined as $f^{-1}(\mathrm{y})=\mathrm{x} \Leftrightarrow f(\mathrm{x})=\mathrm{y}$. Trigonometric functions are periodic and hence they are not bijective. But if we restrict their domains and codomains they can be made bijective and we can obtain their inverses.

Domain & range of inverse trigonometric functions

Function Domain Range (Principal value branch)
$\sin ^{-1} \mathrm{X}$ $[-1,1]$ $[-\pi / 2,-\pi / 2]$
$\cos ^{-1} \mathrm{X}$ $[-1,1]$ $[0, \pi]$
$\tan ^{-1} \mathrm{X}$ $(-\infty, \infty)$ $(-\pi / 2, \pi / 2)$
$\cot ^{-1} \mathrm{X}$ $(-\infty, \infty)$ $(0, \pi)$
$\operatorname{cosec}^{-1} \mathrm{x}$ $(-\infty,-1] \cup[1, \infty)$ $[-\pi / 2,0) \cup(0, \pi / 2]$
$\sec ^{-1} \mathrm{X}$ $(-\infty,-1] \cup[1, \infty)$ $[0, \pi / 2) \cup(\pi / 2, \pi]$

Note: If no branch of an inverse trigonometric function is mentioned, then it means the principal value branch of the function.

Properties of inverse trigonometric functions

1. (i). $ \sin ^{-1}(\sin \mathrm{x})=\left\{\begin{array}{l}-2 \mathrm{n} \pi+\mathrm{x}, 2 \mathrm{n} \pi-\frac{\pi}{2} \leq \mathrm{x} \leq 2 \mathrm{n} \pi+\frac{\pi}{2}, \mathrm{n} \in \mathrm{Z} \\ (2 \mathrm{n}+1) \pi-\mathrm{x},(2 \mathrm{n}+1) \pi-\frac{\pi}{2} \leq \mathrm{x} \leq(2 \mathrm{n}+1) \pi+\frac{\pi}{2}, \mathrm{n} \in \mathrm{Z}\end{array}\right.$

Period $=2 \pi \&$ it is an odd function.

(ii). $\cos ^{-1}(\cos x)=\left\{\begin{array}{l}-2 n \pi+x, 2 n \pi \leq x \leq(2 n+1) \pi, n \in Z \\ 2 n \pi-x,(2 n-1) \pi \leq x \leq 2 n \pi, n \in Z\end{array}\right.$

Period $=2 \pi$ and it is an even function

(iii). $\tan ^{-1}(\tan \mathrm{x})=-\mathrm{n} \pi+\mathrm{x}, \mathrm{n} \pi-\frac{\pi}{2}<\mathrm{x}<\mathrm{n} \pi+\frac{\pi}{2}, \mathrm{n} \in \mathrm{Z}$

Period $=\pi$

(iv). $\cot ^{-1}(\operatorname{cotx})=-\mathrm{n} \pi+\mathrm{x}, \mathrm{n} \pi<\mathrm{x}<(\mathrm{n}+1) \pi, \mathrm{n} \in \mathrm{Z}$

Period $=\pi$

(v). $\sec ^{-1}(\sec x)=\left\{\begin{array}{l}x-2 n \pi, 2 n \pi \leq x \leq(2 n+1) \pi, \quad x \neq 2 \pi+\frac{\pi}{2} \\ -x+2 n \pi,(2 n-1) \pi \leq x \leq 2 n \pi, \quad x \neq\left(2 n \pi-\frac{\pi}{2}, n \in Z\right.\end{array}\right.$

Period $=2 \pi$

(vi). $\operatorname{cosec}^{-1}(\operatorname{cosec} x)=\left\{\begin{array}{l}-2 n \pi+x, 2 n \pi-\frac{\pi}{2} \leq x \leq 2 n \pi+\frac{\pi}{2} \\ (2 n+1) \pi-x,(2 n+1) \pi-\frac{\pi}{2} \leq x \leq(2 n+1) \pi+\frac{\pi}{2}, x \neq n \pi, n \in Z\end{array}\right.$

Period $=2 \pi$

2. (i). $\sin \left(\sin ^{-1} x\right)=x,-1 \leq x \leq 1$ $\hspace{1cm}$(ii). $\cos \left(\cos ^{-1} \mathrm{x}\right)=\mathrm{x},-1 \leq \mathrm{x} \leq 1$

(iii). $\tan \left(\tan ^{-1} \mathrm{x}\right)=\mathrm{x}, \mathrm{x} \in \mathrm{R}$ $\hspace{1cm}$(iv). $\cot \left(\cot ^{-1} \mathrm{x}\right)=\mathrm{x}, \mathrm{x} \in \mathrm{R}$

(v). $\sec \left(\sec ^{-1} x\right)=x, x \in R(-\infty,-1] \cup[1, \infty)$

(vi). $\operatorname{\cosec}\left(\operatorname{\cosec}^{-1} \mathrm{x}\right)=\mathrm{x}, \mathrm{x} \in \mathrm{R}(-\infty,-1] \cup[1, \infty)$

3. (i). $\sin ^{-1} x+\cos ^{-1} x=\pi / 2,-1 \leq x \leq 1$

(ii). $\tan ^{-1} \mathrm{x}+\cot ^{-1} \mathrm{x}=\pi / 2, \mathrm{x} \in \mathrm{R}$

(iii). $\sec ^{-1} \mathrm{x}+\operatorname{\cosec}^{-1} \mathrm{x}=\pi / 2, \mathrm{x} \in \mathrm{R}(-\infty,-1] \cup[1, \infty)$

4. (i). $\sin ^{-1} x=\operatorname{\cosec}^{-1} \frac{1}{x},-1 \leq x \leq 1$

(ii). $\cos ^{-1} \mathrm{x}=\sec ^{-1}\left(\frac{1}{\mathrm{x}}\right),-1 \leq \mathrm{x} \leq 1$

(iii). $\tan ^{-1} x=\left\{\begin{array}{l}\cot ^{-1}(1 / x), x>0 \\ -\pi+\cot ^{-1}(1 / x), x<0\end{array}\right.$

5. (i). $\sin ^{-1}(-x)=-\sin ^{-1} x, \quad-1 \leq x \leq 1$

(ii). $\cos ^{-1}(-x)=\pi-\cos ^{-1} x, \quad-1 \leq x \leq 1$

(iii). $\tan ^{-1}(-x)=-\tan ^{-1} x, \quad-\infty<x<\infty$

(iv). $\cot ^{-1}(-x)=\pi-\cot ^{-1} x, \quad-\infty<x<\infty$

(v). $\operatorname{\cosec}^{-1}(-x)=-\operatorname{\cosec}^{-1} x, \quad x \leq-1$ or $x \geq 1$

(vi). $\sec ^{-1}(-x)=\pi-\sec ^{-1} x, \quad x \leq-1$ or $x \geq 1$

6. Conversions of inverse trigonometric functions

$ \begin{aligned} \sin ^{-1} \mathrm{x} & =\cos ^{-1} \sqrt{1-\mathrm{x}^{2}}=\tan ^{-1} \frac{\mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}} \\ & =\cot ^{-1} \frac{\sqrt{1-\mathrm{x}^{2}}}{\mathrm{x}}=\operatorname{cosec}^{-1} \frac{1}{\mathrm{x}}=\sec ^{-1} \frac{1}{\sqrt{1-\mathrm{x}^{2}}} \end{aligned} $

$ \begin{aligned} \cos ^{-1} \mathrm{x} & =\sin ^{-1} \sqrt{1-\mathrm{x}^{2}}=\tan ^{-1} \frac{\sqrt{1-\mathrm{x}^{2}}}{\mathrm{x}} \\ & =\cot ^{-1} \frac{\mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}}=\operatorname{cosec}^{-1} \frac{1}{\sqrt{1-\mathrm{x}^{2}}}=\sec ^{-1} \frac{1}{\mathrm{x}} \end{aligned} $

$\tan ^{-1} \mathrm{x}=$

$ \begin{aligned} & \sin ^{-1} \frac{x}{\sqrt{1+x^{2}}}=\cos ^{-1} \frac{1}{\sqrt{1+x^{2}}}=\cot ^{-1} \frac{1}{x} \\ & \operatorname{cosec}^{-1} \frac{\sqrt{1+x^{2}}}{x}=\sec ^{-1} \sqrt{1+x^{2}} \end{aligned} $

7. (i) $\sin ^{-1} x+\sin ^{-1} y=\left\{\begin{array}{c}\sin ^{-1}\left(x \sqrt{1-y^2}+y \sqrt{1-x^2}\right) \text { if }-1 \leq x, y \leq 1 \& x^2+y^2 \leq 1 \\ \text { or if } x y<0 {\&} x^2+y^2>1 \\ \pi-\sin ^{-1}\left(x \sqrt{1-y^2}+y \sqrt{1-x^2}\right) \text { if } 0<x, y \leq 1 \& x^2+y^2>1 \\ -\pi-\sin ^{-1}\left(x \sqrt{1-y^2}+y \sqrt{1-x^2}\right) \text { if }-1 \leq x, y<0 \& x^2+y^2>1\end{array}\right.$

(ii) $\sin ^{-1} x-\sin ^{-1} y=\left\{\begin{array}{l}\sin ^{-1}\left(x \sqrt{1-y^2}-y \sqrt{1-x^2}\right) \text { if }-1 \leq x, y \leq 1 {\&} x^2+y^2 \leq 1 \\ \text { or if } x y>0 {\&} x^2+y^2>1 \\ \pi-\sin ^{-1}\left(x \sqrt{1-y^2}-y \sqrt{1-x^2}\right) \text { if } 0<x \leq 1,-1<y \leq 0 {\&} x^2+y^2>1 \\ -\pi-\sin ^{-1}\left(x \sqrt{1-y^2}-y \sqrt{1-x^2}\right) \text { if }-1 \leq x<0,0<y \leq 1 {\&} x^2+y^2>1\end{array}\right.$

8. (i) $\cos ^{-1} x+\cos ^{-1} y=\left\{\begin{array}{l}\cos ^{-1}\left(x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right) \text { if }-1 \leq x, y \leq 1 {\&} x+y \geq 0 \\ 2 \pi-\cos ^{-1}\left(x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right) \text { if }-1 \leq x, y \leq 1 {\&} x+y \leq 0\end{array}\right.$

(ii) $ \cos ^{-1} \mathrm{x}-\cos ^{-1} \mathrm{y}=\left\{\begin{array}{l}\cos ^{-1}\left(\mathrm{xy}+\sqrt{1-\mathrm{x}^{2}} \sqrt{1-\mathrm{y}^{2}}\right) \text { if }-1 \leq \mathrm{x}, \mathrm{y} \leq 1 \quad {\&} \mathrm{x} \leq \mathrm{y} \\ -\cos ^{-1}\left(\mathrm{xy}+\sqrt{1-\mathrm{x}^{2}} \sqrt{1-\mathrm{y}^{2}}\right) \text { if }-1 \leq \mathrm{y} \leq 0,0<\mathrm{x} \leq 1 \quad {\&} \mathrm{x} \geq \mathrm{y}\end{array}\right.$

9. (i) $\tan ^{-1} x+\tan ^{-1} y=\left\{\begin{array}{l} \tan ^{-1}\left(\frac{x+y}{1-x y}\right) \text { if } x y<1 \\ \pi+\tan ^{-1}\left(\frac{x+y}{1-x y}\right) \text { if } x>0, y>0 {\&} x y>1 \\ -\pi+\tan ^{-1}\left(\frac{x+y}{1-x y}\right) \text { if } x<0, y<0 {\&} x y>1 \end{array}\right.$

(ii) $\tan ^{-1} x-\tan ^{-1} y=\left\{\begin{array}{l}\tan ^{-1}\left(\frac{x-y}{1+x y}\right) \text { if } x y>-1 \\ \pi+\tan ^{-1}\left(\frac{x-y}{1+x y}\right) \text { if } x>0, y<0 {\&} x y<-1 \\ -\pi+\tan ^{-1}\left(\frac{x-y}{1+x y}\right), \text { if } x<0, y>0 {\&} x y<-1\end{array}\right.$

Remark : If $\mathrm{x} _{1}, \mathrm{x} _{2}, \ldots \ldots \ldots \mathrm{x} _{\mathrm{n}} \in \mathrm{R}$, then $\tan ^{-1} \mathrm{x} _{1}+\tan ^{-1} \mathrm{x} _{2}+\ldots \ldots \ldots+\tan ^{-1} \mathrm{x} _{\mathrm{n}}$ $=\tan ^{-1}\left(\frac{\mathrm{s} _{1}-\mathrm{s} _{3}+\mathrm{s} _{5}-\mathrm{s} _{7} \ldots \ldots \ldots}{1-\mathrm{s} _{2}+\mathrm{s} _{4}-\mathrm{s} _{6}+\ldots \ldots .}\right)$

Where $\mathrm{s} _{\mathrm{k}}$ is the sum of the product of $\mathrm{x} _{1}, \mathrm{x} _{2},……….x_n$ taken $k$ at $a$ time.

ie.

$ \begin{array}{ll} \mathrm{s} _{1}= & \mathrm{x} _{1}+\mathrm{x} _{2}+\ldots \ldots \ldots+\mathrm{x} _{\mathrm{n}}=\sum \mathrm{x} _{\mathrm{i}} \\ \mathrm{s} _{2}= & \mathrm{x} _{1} \mathrm{x} _{2}+\mathrm{x} _{2} \mathrm{x} _{3}+\ldots \ldots .+\mathrm{x} _{\mathrm{n}-1} \mathrm{x} _{\mathrm{n}}=\sum \mathrm{x} _{1} \mathrm{x} _{2} \\ \mathrm{~s} _{3}= & \sum \mathrm{x} _{1} \mathrm{x} _{2} \mathrm{x} _{3} \ldots \ldots \ldots \ldots \ldots \ldots . . \mathrm{etc.} \end{array} $

10. (i). $2 \sin ^{-1} x=\left\{\begin{array}{l}\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right) \text { if } \frac{-1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}} \\ \pi-\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right), \text { if } \frac{1}{\sqrt{2}} \leq x \leq 1 \\ -\pi-\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right), \text { if }-1 \leq x \leq \frac{-1}{\sqrt{2}}\end{array}\right.$

(ii). $3 \sin ^{-1} x=\left\{\begin{array}{l}\sin ^{-1}\left(3 x-4 x^3\right), \text { if } \frac{-1}{2} \leq x \leq \frac{1}{2} \\ \pi-\sin ^{-1}\left(3 x-4 x^3\right), \text { if } \frac{1}{2}<x \leq 1 \\ -\pi-\sin ^{-1}\left(3 x-4 x^3\right), \text { if }-1 \leq x<\frac{-1}{2}\end{array}\right.$

11. (i). $2 \cos ^{-1} x=\left\{\begin{array}{l}\cos ^{-1}\left(2 x^{2}-1\right), \text { if } 0 \leq x \leq 1 \\ 2 \pi-\cos ^{-1}\left(2 x^{2}-1\right), \text { if }-1 \leq x \leq 0\end{array}\right.$

(ii). $\quad 3 \cos ^{-1} x=\left\{\begin{array}{l}\cos ^{-1}\left(4 x^{3}-3 x\right), \text { if } \frac{1}{2} \leq x \leq 1 \\ 2 \pi-\cos ^{-1}\left(4 x^{3}-3 x\right), \text { if } \frac{-1}{2} \leq x \leq \frac{1}{2} \\ 2 \pi+\cos ^{-1}\left(4 x^{3}-3 x\right) \text {, if }-1 \leq x \leq \frac{-1}{2}\end{array}\right.$

12. (i). $2 \tan ^{-1} x=\left\{\begin{array}{l}\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right), \text { if }-1<x<1 \\ \pi+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right), \text { if } x>1 \\ -\pi+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right), \text { if } x<-1\end{array}\right.$

(ii). $3 \tan ^{-1} x=\left\{\begin{array}{l}\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right), \text { if } \frac{-1}{\sqrt{3}}<x<\frac{1}{\sqrt{3}} \\ \pi+\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right), \text { if } x>\frac{1}{\sqrt{3}} \\ -\pi+\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right), \text { if } x<\frac{1}{\sqrt{3}}\end{array}\right.$

Note: If $|x| \leq 1$ then $2 \tan ^{-1} x=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$.

If $|x|>1$, change $x$ to $\frac{1}{x}$ in the above.

Note: In cases of identities in inverse trigonometric functions, principal values are to be taken. As such signs of $x, y$ etc., will determine the quadrant in which the angles will fall. In order to bring the angles of both sides in the same quadrant, adjustment by $\pi$ is to be made.

13. Hyperbolic functions

(i). $\sin h (-x)$ $=-\sin h x$ odd function
$\cos h (-\mathrm{x})$ $=-\cos h \mathrm{x} $ even function
$\tan h (-\mathrm{x})$ $=\tan h \mathrm{x} $ odd function
(ii). Function Domain Range
$\sin h ^{-1} \mathrm{x}$ $\mathrm{R}$ $ \mathrm{R}$
$\cos h ^{-1} \mathrm{X} $ $(0, \infty)$ $ (1, \infty)$
$\tan h ^{-1} \mathrm{x} $ $\mathrm{R}$ $ (-1, 1)$
$\operatorname{\cot h}^{-1} \mathrm{x} $ $ \mathrm{R}-\{0\}$ $ R-[-1, 1]$
$\operatorname{\sec h}^{-1} \mathrm{X} $ $(0, \infty)$ $ (0, 1)$
$\operatorname{\cosec h}^{-1} \mathrm{x} $ $ \mathrm{R}-\{0\} $ $ R-\{0\}$
(iii). $\sin h \left(\sin h ^{-1} \mathrm{x}\right)=\mathrm{x}$ $\sin h ^{-1}(\sin h x)=x$
$\cos h \left(\cos h ^{-1} \mathrm{x}\right)=\mathrm{x}$ $\cos h ^{-1}(\cos h x)=x$
$\tan h \left(\tan h ^{-1} x\right)=x$ $\tan h ^{-1}(\tan h x)=x$
$\sin h \left(\sin ^{-1} x\right)=x^{n}$ $\sin h \left(\sin h ^{-1} x^{n}\right)=x^{n}$

(iv). $\sin h ^{-1} \mathrm{x}=\log _{\mathrm{e}}\left(\mathrm{x}+\sqrt{\mathrm{x}^{2}+1}\right)$

$\cos h ^{-1} x=\log _{e}\left(x+\sqrt{x^{2}-1}\right)$

$\tan h ^{-1} x=\frac{1}{2} \log _{e}\left(\frac{x+1}{x-1}\right) x>1, x<-1$

$\operatorname{\cot h}^{-1} x=\frac{1}{2} \log _{e}\left(\frac{x-1}{x+1}\right) x>1, x<-1$

$\operatorname{\sec h}^{-1} x=\log _{e}\left(\frac{1+\sqrt{1-x^{2}}}{x}\right) 0<x \leq 1$

$\operatorname{\cosec h}^{-1} x=\left\{\begin{array}{lll}\log _{e}\left(\frac{1+\sqrt{1+x^{2}}}{x}\right) & \text { if } & x>0 \\ \log _{e}\left(\frac{1-\sqrt{1+x^{2}}}{x}\right) & \text { if } & x<0\end{array}\right.$

(v). $\sin h ^{-1} x=\operatorname{cosech}^{-1}\left(\frac{1}{x}\right)$

$\sin h ^{-1} x=\cos h ^{-1} \sqrt{x^{2}+1}$

$\cos h ^{-1} \mathrm{x}=\sin h ^{-1} \sqrt{\mathrm{x}^{2}-1}$

$\sin h \left(\cos h ^{-1} \mathrm{x}\right)=\sqrt{\mathrm{x}^{2}-1}$

Solved examples

1. The sum to infinite terms of the series

$\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{13}+……………$ is

(a).. $\frac{\pi}{6}$

(b).. $\frac{\pi}{4}$

(c).. $\frac{\pi}{3}$

(d).. None of these

Show Answer

Solution : By method of difference

$ \begin{aligned} & \operatorname{Tn}=\tan ^{-1} \frac{1}{1+\mathrm{n}+\mathrm{n}^{2}} \\ & \operatorname{Tn}=\tan ^{-1} \frac{1}{1+n(n+1)}=\tan ^{-1} \frac{n+1-n}{n(n+1)}=\tan ^{-1}(n+1)-\tan ^{-1} n \\ & \therefore \quad T _{n}=\tan ^{-1}(n+1)-\tan ^{-1} n \\ & \mathrm{~T} _{1}^{\mathrm{n}}=\tan ^{-1} 2-\tan ^{-1} 1 \\ & \mathrm{~T} _{2}=\tan ^{-1} 3-\tan ^{-1} 2 \\ & \mathrm{~T} _{3}=\tan ^{-1} 4-\tan ^{-1} 3 \\ &.\\ &.\\ & T _{n}=\tan ^{-1}(n+1)-\tan ^{-1} n \\ & \text { Adding, } \mathrm{S} _{\mathrm{n}}=\mathrm{T} _{1}+\mathrm{T} _{2}+\ldots \ldots \ldots \ldots+\mathrm{T} _{\mathrm{n}} \\ & =\tan ^{-1}(\mathrm{n}+1)-\tan ^{-1} 1 \\ & \therefore \quad \mathrm{S} _{\infty}=\tan ^{-1} \infty-\tan ^{-1} 1=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4} \end{aligned} $

Answer: b

2. The sum to infinite terms of the series $\tan ^{-1} \frac{1}{2.1^{2}}+\tan ^{-1} \frac{1}{2.2^{2}}+\tan ^{-1} \frac{1}{2.3^{2}}+\ldots \ldots \ldots \ldots \ldots \ldots \infty$ is

(a). $\frac{\pi}{4}$

(b). $\frac{\pi}{3}$

(c). $\frac{\pi}{2}$

(d). None

Show Answer

Solution :

$ \begin{aligned} & \operatorname{Tn}=\tan ^{-1} \frac{1}{2 \mathrm{n}^{2}}=\tan ^{-1} \frac{2}{4 \mathrm{n}^{2}}=\tan ^{-1} \frac{(2 \mathrm{n}+1)-(2 \mathrm{n}-1)}{1+(2 \mathrm{n}+1)(2 \mathrm{n}-1)} \\ & \Rightarrow \quad \mathrm{T} _{\mathrm{n}}=\tan ^{-1}(2 \mathrm{n}+1)-\tan ^{-1}(2 \mathrm{n}-1) \\ & \therefore \quad \mathrm{T} _{1}=\tan ^{-1} 3-\tan ^{-1} 1 \\ & \mathrm{~T} _{2}=\tan ^{-1} 5-\tan ^{-1} 3 \\ & \mathrm{~T} _{3}=\tan ^{-1} 7-\tan ^{-1} 3 \end{aligned} $

$.$

$.$

$.$

$ \operatorname{Tn}=\tan ^{-1}(2 n+1)-\tan ^{-1}(2 n-1) $

Adding, $\mathrm{S} _{\mathrm{n}}=\mathrm{T} _{1}+\mathrm{T} _{2}+\ldots \ldots . \mathrm{T} _{\mathrm{n}}=\operatorname{Tan}^{-1}(2 \mathrm{n}+1)-\tan ^{-1} 1$

$ \therefore \quad \mathrm{S} _{\infty}=\tan ^{-1} \infty-\tan ^{-1} 1=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4} $

Answer: a

3. The value of

$ \tan ^{-1} \frac{\mathrm{c} _{1} \mathrm{x}-\mathrm{y}}{\mathrm{c} _{1} \mathrm{y}+\mathrm{x}}+\tan ^{-1} \frac{\mathrm{c} _{2}-\mathrm{c} _{1}}{1+\mathrm{c} _{1} \mathrm{c} _{2}}+\tan ^{-1} \frac{\mathrm{c} _{3}-\mathrm{c} _{2}}{1+\mathrm{c} _{2} \mathrm{c} _{3}}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots+\tan ^{-1} \frac{1}{\mathrm{c} _{\mathrm{n}}} \text { is } $

(a). $\tan ^{-1} \frac{x}{y}$

(b). $\tan ^{-1} \frac{y}{x}$

(c). $\tan ^{-1} x-\tan ^{-1} \mathrm{y}$

(d). None

Show Answer

Solution: Write the series as

$ \begin{gathered} \tan ^{-1} \frac{\frac{x}{y}-\frac{1}{c _{1}}}{1+\frac{x}{y} \frac{1}{c _{1}}}+\tan ^{-1} \frac{\frac{1}{c _{1}}-\frac{1}{c _{2}}}{1+\frac{1}{c _{1}} \frac{1}{c _{2}}}+\tan ^{-1} \frac{\frac{1}{c _{2}}-\frac{1}{c _{3}}}{1+\frac{1}{c _{2}} \frac{1}{c _{3}}}+\ldots \ldots . .+\tan ^{-1} \frac{\frac{1}{c _{n-1}}-\frac{1}{c _{n}}}{1+\frac{1}{c _{n-1}} \frac{1}{c _{n}}}+\tan ^{-1} \frac{1}{c _{n}} \\ \Rightarrow\left(\tan ^{-1} \frac{x}{y}-\tan ^{-1} \frac{1}{c _{1}}\right)+\left(\tan ^{-1} \frac{1}{c _{1}}-\tan ^{-1} \frac{1}{c _{2}}\right)+\left(\tan ^{-1} \frac{1}{c _{2}}-\tan ^{-1} \frac{1}{c _{3}}\right)+ \\ \ldots \ldots \ldots \ldots \ldots . .+\left(\tan ^{-1} \frac{1}{c _{n-1}}-\tan ^{-1} \frac{1}{c _{n}}\right)+\tan ^{-1} \frac{1}{c _{n}}=\tan ^{-1} \frac{x}{y} \end{gathered} $

Answer: a

4. The number of positive integral solutions of the equation $\tan ^{-1} x+\cos ^{-1} \frac{y}{\sqrt{1+y^{2}}}$ $=\sin ^{-1} \frac{3}{\sqrt{10}}$ is

(a). 1

(b). 2

(c). 3

(d). None

Show Answer

Solution : $\tan ^{-1} x+\tan ^{-1} \frac{1}{y}=\tan ^{-1} 3$

$\tan ^{-1} \frac{1}{y}=\tan ^{-1} 3-\tan ^{-1} x$

$\Rightarrow \frac{1}{\mathrm{y}}=\frac{3-\mathrm{x}}{1+3 \mathrm{x}}$

$y=\frac{1+3 x}{3-x}$

Put $\mathrm{x}=1$, then $\mathrm{y}=2 \quad$ Put $\mathrm{x}=2$, then $\mathrm{y}=7$

$\therefore(1,2) \&(2,7)$ are two sets.

Answer: b

5. If $\cot ^{-1}\left(\frac{\mathrm{n}}{\pi}\right)>\frac{\pi}{6} ; \mathrm{n} \in \mathrm{N}$, then the maximum value of $\mathrm{n}$ can be

(a). 4

(b). 5

(c). 6

(d). None

Show Answer

Solution : $\frac{\mathrm{n}}{\pi}<\cot \frac{\pi}{6}\left(\because \cot ^{-1} \mathrm{x}\right.$ is a decreasing function $)$

$\Rightarrow \mathrm{n}<\pi \sqrt{3}$

$\mathrm{n}<5.43 \quad \Rightarrow \quad \mathrm{n}=5(\max )$

Answer: b

6. The value of

$ \sin ^{-1}\left\{\cot \left(\sin ^{-1}\left(\sqrt{\frac{2-\sqrt{3}}{4}}\right)+\cos ^{-1} \frac{\sqrt{12}}{4}+\sec ^{-1} \sqrt{2}\right)\right\} $

(a). $0$

(b). $\frac{\pi}{4}$

(c). $\frac{\pi}{2}$

(d). None

Show Answer

Solution : $\because \sin ^{-1} \sqrt{\frac{2-\sqrt{3}}{4}} \quad=\sin ^{-1} \sqrt{\frac{4-2 \sqrt{3}}{8}}$

$ \begin{aligned} & =\sin ^{-1} \sqrt{\frac{3+1-2 \sqrt{3}}{(2 \sqrt{2})^{2}}} \\ & =\sin ^{-1} \sqrt{\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}\right)^{2}} \\ & =\sin ^{-1} \frac{\sqrt{3}-1}{2 \sqrt{2}} \end{aligned} $

$ \begin{aligned} & =\sin ^{-1} \sin \frac{\pi}{12}=\frac{\pi}{12} \\ \therefore \sin ^{-1}\left\{\cot \left(\frac{\pi}{12}+\frac{\pi}{6}+\frac{\pi}{4}\right)\right\} & =\sin ^{-1} \cot \frac{\pi}{2} \\ & =\sin ^{-1} 0=0 \end{aligned} $

Answer: a

7. The greatest value of $\left(\tan ^{-1} x\right)^{2}+\left(\cot ^{-1} x\right)^{2}$ is…………..

Show Answer

Solution :

$\left(\tan ^{-1} x\right)^{2}+\left(\cot ^{-1} x\right)^{2}=\left(\tan ^{-1} x+\cot ^{-1} x\right)^{2}-2 \tan ^{-1} x \cot ^{-1} x$

$=\frac{\pi^{2}}{4}-2 \tan ^{-1} x\left(\frac{\pi}{2}-\tan ^{-1} \mathrm{x}\right)$

Let $\tan ^{-1} \mathrm{x}=\mathrm{y}$, then LHS $=\frac{\pi^{2}}{4}-2 \mathrm{y}\left(\frac{\pi}{2}-\mathrm{y}\right)$

$ \begin{aligned} & =\frac{\pi^{2}}{4}-\pi y+2 y^{2}=2\left(y^{2}-\frac{\pi y}{2}+\frac{\pi^{2}}{16}\right)-\frac{2 \cdot \pi^{2}}{16}+\frac{\pi^{2}}{4} \\ & =2\left(\tan ^{-1} x-\frac{\pi}{4}\right)^{2}+\frac{\pi^{2}}{8} \end{aligned} $

$\therefore$ Minimum value is $\frac{\pi^{2}}{8}$

Answer : $\frac{\pi^{2}}{8}$

Practice questions

1. If $\left(\tan ^{-1} x\right)^{2}+\left(\cot ^{-1} x\right)^{2}=\frac{5 \pi^{2}}{8}$, then $x$ equals

(a). $-1 $

(b). $1$

(c). $0$

(d). None of these

Show Answer Answer: (a).

2. If $\sin ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{4}-\ldots \ldots ..\right)+\cos ^{-1}\left(x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4}-\ldots \ldots \ldots.\right)=\frac{\pi}{2}$ for $0<|x|<\sqrt{2}$, then $x$ equals

(a). $\frac{1}{2}$

(b). $1$

(c). $\frac{-1}{2}$

(d). $-1$

Show Answer Answer: (b).

3. Match the conditions / expressions in column I with statement in column II.

Let $(\mathrm{x}, \mathrm{y})$ be such that $\sin ^{-1}(\mathrm{ax})+\cos ^{-1} \mathrm{y}+\cos ^{-1}(\mathrm{bxy})=\frac{\pi}{2}$

Column I Column II
(a). If $a=1 \& b=0$, then( $x, y)$ (p). lies on the circle $x^{2}+y^{2}=1$
(b). If $a=1 \& b=1$, then $(x, y)$ (q). lies on $\left(x^{2}-1\right)\left(y^{2}-1\right)=0$
(c). If $a=1 \& b=2$, then $(x, y)$ (r). lies on $y=x$
(b). If $a=2 \& b=2$, then( $x, y)$ (s). lies on $\left(4 x^{2}-1\right)\left(y^{2}-1\right)=0$
Show Answer Answer: a $\rarr$ p, b $\rarr$ q, c $\rarr$ p, d $\rarr$ s

4. Sum to $n$ terms of the series

$ \operatorname{cosec}^{-1} \sqrt{10}+\operatorname{cosec}^{-1} \sqrt{50}+\operatorname{cosec}^{-1} \sqrt{170}+\ldots \ldots \ldots+\operatorname{cosec}^{-1} \sqrt{\left(n^{2}+1\right)\left(n^{2}+2 n+2\right)} \text { is } $

(a). $0$

(b). $\infty$

(c). $\tan ^{-1}(\mathrm{n}+1)-\frac{\pi}{4}$

(d). $\ \cot ^{-1}(\mathrm{n}+1)-\frac{\pi}{4}$

Show Answer Answer: (c).

5. Match the following.

Let $t _{1}=\left(\sin ^{-1} x\right)^{\operatorname{\sin}^{-1} x}, t _{2}=\left(\sin ^{-1} x\right)^{\cos ^{-1} x}, t _{3}=\left(\cos ^{-1} x\right)^{\sin ^{-1} x}, t _{4}=\left(\cos ^{-1} x\right)^{\cos ^{-1} x}$

Column I Column II
(a). $\mathrm{x} \in(0, \cos 1)$ (p). $\mathrm{t} _{1}>\mathrm{t} _{2}>\mathrm{t} _{4}>\mathrm{t} _{3}$
(b). $\mathrm{x} \in\left(\cos 1, \frac{1}{\sqrt{2}}\right)$ (q). $\mathrm{t} _{4}>\mathrm{t} _{3}>\mathrm{t} _{1}>\mathrm{t} _{2}$
(c). $\mathrm{x} \in\left(\frac{1}{\sqrt{2}}, \sin 1\right)$ (r). $\mathrm{t} _{1}>\mathrm{t} _{2}>\mathrm{t} _{4}>\mathrm{t} _{3}$
(c). $\mathrm{x} \in(\sin 1,1)$ (s). $t _{3}>t _{4}>t _{1}>t _{2}$
Show Answer Answer: a $\rarr$ q, b $\rarr$ s, c $\rarr$ r, d $\rarr$ s

6. Read the passage & answer the following questions

If $\tan ^{-1} x: \tan ^{-1} \mathrm{y}=1: 4\left(\right.$ where $|\mathrm{x}|<\tan \frac{\pi}{6}$ ) then

(i). The value of $y$ as an algebraic function of $x$ will be

(a). $\frac{4 x\left(1+x^{2}\right)}{x^{4}-6 x^{2}+1}$

(b). $\frac{4 x\left(1-x^{2}\right)}{x^{4}-6 x^{2}+1}$

(c). $\frac{4 x\left(1+x^{2}\right)}{x^{4}+6 x^{2}+1}$

(d). None of these.

Show Answer Answer: (b).

(ii). The root of the equation $x^{4}-6 x^{2}+1=0$ is

(a). $\tan \frac{\pi}{12}$

(b). $\tan \frac{\pi}{4}$

(c). $\tan \frac{\pi}{8}$

(d). $\tan \frac{\pi}{16}$

Show Answer Answer: (a).

7. If a $\sin ^{-1} \mathrm{x}-\mathrm{b} \cos ^{-1} \mathrm{x}=\mathrm{c}$, then $a \sin ^{-1} \mathrm{x}+\mathrm{b} \cos ^{-1} \mathrm{x}$ is

(a). $0$

(b). $\frac{\pi \mathrm{ab}+\mathrm{c}(\mathrm{b}-\mathrm{a})}{\mathrm{a}+\mathrm{b}}$

(c). $\frac{\pi}{2}$

(d). $\frac{\pi \mathrm{ab}+\mathrm{c}(\mathrm{b}-\mathrm{a})}{\mathrm{a}+\mathrm{b}}$

Show Answer Answer: (d).

8. $\sum _{\mathrm{r}=1}^{\mathrm{n}} \operatorname{Sin}^{-1}\left(\frac{\sqrt{\mathrm{r}}-\sqrt{\mathrm{r}-1}}{\sqrt{\mathrm{r}(\mathrm{r}+1)}}\right)$ is

(a). $\tan ^{-1} \sqrt{\mathrm{n}}-\frac{\pi}{4}$

(b). $\tan ^{-1} \sqrt{\mathrm{n}+1}-\frac{\pi}{4}$

(c). $\tan ^{-1} \sqrt{\mathrm{n}}$

(d). $\tan ^{-1} \sqrt{\mathrm{n}+1}$

Show Answer Answer: (c).

9. If $\left[\cot ^{-1} x\right]+\left[\cos ^{-1} x\right]=0$, then complete set of values of $x$ is

(a). $(\cos 1,1]$

(b). $(\cot 1, \cos 1)$

(c). $(\cot 1, 1)$

(d). None of these

Show Answer Answer: (c).

10. If $\left(\sin ^{-1} x+\sin ^{-1} w\right)\left(\sin ^{-1} y+\sin ^{-1} z\right)=\pi^{2}$, then

$D=\left|\begin{array}{ll}x^{N} 1 & y^{N} 2 \\ z^{N} & w^{N} 4\end{array}\right|$ where $N _{1}, N _{2}, N _{3}, N _{4} \in W$

(a). has a maximum value of $2$

(b). has a minimum value of $0$

(c). 16 different $\mathrm{D}$ are possible

(d). has a minimum value of $-2 .$

Show Answer Answer: (a, c, d)

11. The value of $k(k>0)$ such that the length of the longest interval in which the function $f(x)=\sin ^{-1}|\sin k x|+\cos ^{-1}(\cos k x)$ is constant is $\frac{\pi}{4}$ is $/$ are

(a). 8

(b). 4

(c). 12

(d). 16

Show Answer Answer: (b).

12. Match the following

Column I Column II
(a). $\left(\sin ^{-1} \mathrm{x}\right)^{2}+\left(\sin ^{-1} \mathrm{y}\right)^{2}=\frac{\pi^{2}}{2\Rightarrow \mathrm{x}^{3}+\mathrm{y}^{3}}=$ (p). $1$
(b). $\left(\cos ^{-1} \mathrm{x}\right)^{2}+\left(\cos ^{-1} \mathrm{y}\right)^{2}=2 \pi^{2\Rightarrow \mathrm{x}^{5}+\mathrm{y}^{5}}=$ (q). $-2$
(c). $\left(\sin ^{-1} \mathrm{x}\right)^{2}+\left(\sin ^{-1} \mathrm{y}\right)^{2}=\frac{\pi^{4}}{4}\Rightarrow\mid\mathrm{x}-\mathrm{y}\mid=$ (r). $0$
(d). $\mid\sin ^{-1} x-\sin ^{-1} y\mid=\pi \Rightarrow \mathrm{x}^{\mathrm{y}}=$ (s). $2$
Show Answer Answer: a $\rarr$ q, r, s; b $\rarr$ q; c $\rarr$ r, s; d $\rarr$ p


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ