TRIGONOMETRY - 1 (Trigonometric Functions)

1. (a). Measurement of angles. There are three systems of measurement of angles.

i. Sexagesimal system

Here 1 right angle $=90^{\circ}$ (degrees)

$1^{\circ}=60^{\prime}$ (minutes)

$1^{\prime}=60$ " (seconds)

ii. Centrimal system

Here 1 right angle $=100^{g}$ (grades)

$1^{\mathrm{g}}=100^{\prime}$ (minutes)

$1^{\prime}=100$ " (seconds)

iii. Circular system.

Here an angle is measured in radians. One radian corresponds to the angle subtended by arc of length ’ $r$ ’ at the centre of the circle of radius $r$. It is a constant quantity and does not depend upon the radius of the circle.

(b). Relation between the three systems

$ \pi^{\mathrm{c}}=180^{\circ}=200^{\mathrm{g}}=2 \mathrm{rt} \angle \mathrm{s} $

(c). If $\theta$ is the angle subtended at the centre of a circle of radius ’ $r$ ‘, by an arc of length $\ell$ then $\frac{\ell}{\mathrm{r}}=\theta$.

Note that here $\ell, \mathrm{r}$ are in the same units and $\theta$ is always in radians.

Convention for perpendicular and base in a right triangle

Side opposite to $90^{\circ}$ is called hypotenuse and side opposite to angle $\theta$ considered for Tratios is known as perpendicular and third remaining side is base.

T-Ratios (or Trigonometrical functions)

2. $\sin \theta=\frac{\mathrm{p}}{\mathrm{h}}, \cos \theta=\frac{\mathrm{b}}{\mathrm{h}}, \tan \theta=\frac{\mathrm{p}}{\mathrm{b}}$,

$\operatorname{cosec} \theta=\frac{\mathrm{h}}{\mathrm{p}}$,

$\sec \theta=\frac{h}{b}$ and $\cot \theta=\frac{b}{p}$

‘$\mathrm{p}$ ’ perpendicular; ’ $\mathrm{b}$ ’ base and ’ $\mathrm{h}$ ’ stands for hypotenuse.

3. Domains and ranges of trigonal metrical functions

Function Domain Range
$\sin x$ $\mathrm{R}$ $[-1, 1]$
$\cos x\mathrm{R}$ $R$ $[-1, 1]$
$\tan x$ $\mathrm{R}-\{(2 \mathrm{n}+1) \pi / 2: \mathrm{n} \in \mathrm{Z}\}$ $R$
$\operatorname{cotx}$ $\mathrm{R}-\{\mathrm{n} \pi: \mathrm{n} \in \mathrm{Z}\}$ $\mathrm{R}$
$\sec x$ $\mathrm{R}-\{(2 \mathrm{n}+1) \pi / 2: \mathrm{n} \in \mathrm{Z}\}$ $(-\infty,-1] \cup[1, \infty)$
$\operatorname{cosec} x$ $\mathrm{R}-\{\mathrm{n} \pi: \mathrm{n} \in \mathrm{Z}\}$ $(-\infty,-1] \cup[1, \infty)$

Signs of trigonometrical functions in different quadrants

4. (i). I quadrant: All t-ratios are positive ,

(ii). II quadrant : sin and cosec are positive and all others are negative.

(iii). III quadrant: tan and cot are positive and all others are negative.

(iv). IV quadrant: cos and sec are positive and all others are negative.

5. Values of $t$-ratios of some standard angles:

$\theta$ 0 $\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$ $\pi$ $\frac{3 \pi}{2}$ $2 \pi$
$\sin$ 0 $\frac{1}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{\sqrt{3}}{2}$ $1$ $0$ $-1$ $0$
$\cos$ 1 $\frac{\sqrt{3}}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$ $0$ $-1$ $0$ $1$

6. (a). Trigonometric functions of $2 \mathrm{n} \pi+\theta, \mathrm{n} \in \mathrm{Z}$ will be same as of $\theta$

$\quad $i.e., $\sin (2 n \pi+\theta)=\sin \theta, \cos (2 n \pi+\theta)=\cos \theta$, etc.

(b). Trigonometrical functions of $-\theta$, for all values of $\theta$

$\quad $ $\sin (-\theta)=-\sin \theta, \cos (-\theta)=\cos \theta$,

$\quad $ $\tan (-\theta)=-\tan \theta$

$\quad $ $\cot (-\theta)=-\cot \theta, \sec (-\theta)=\sec \theta$,

$\quad $ $\operatorname{\cosec}(-\theta)=-\operatorname{\cosec} \theta$

(c). The values of t-ratios of any angle can be expressed in terms of an angle in first quadrant.

$\quad $ Let $\mathrm{A}=\mathrm{n} \cdot \frac{\pi}{2} \pm \theta$ where $\mathrm{n} \in \mathrm{Z}, 0 \leq \theta<\frac{\pi}{2}$. Then

i. $\quad \sin \left(n \frac{\pi}{2} \pm \theta\right)= \pm \sin \theta$ if $n$ is even $=+\cos \theta$, if $\mathrm{n}$ is odd

ii. $\quad \cos \left(n \frac{\pi}{2} \pm \theta\right)= \pm \cos \theta$ if $n$ is even $=-\sin \theta$, if $\mathrm{n}$ is odd

iii. $\quad \tan \left(\mathrm{n} \frac{\pi}{2} \pm \theta\right)= \pm \tan \theta$ if $n$ is even $= \pm \cot \theta$, if $n$ is odd

iv. $\quad \cot \left(n \frac{\pi}{2} \pm \theta\right)= \pm \cot \theta$ if $n$ is even $= \pm \tan \theta$, if $n$ is odd

v. $\quad \sec \left(n \frac{\pi}{2} \pm \theta\right)= \pm \sec \theta$ if $n$ is even $= \pm \operatorname{cosec} \theta$, if $n$ is odd

vi. $\quad \operatorname{cosec}\left(n \frac{\pi}{2} \pm \theta\right)= \pm \operatorname{cosec} \theta$ if $n$ is even $= \pm \sec \theta$, if $n$ is odd

The sign R.H.S. is decided from the quardrant in which A lies.

Identities

7. $\quad$ 1. $\quad \sin \theta \cdot \operatorname{cosec} \theta=1$ or $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$

$\quad$ 2. $\quad \cos \theta \cdot \sec \theta=1$ or $\sec \theta=\frac{1}{\cos \theta}$

$\quad$ 3. $\quad \tan \theta \cdot \cot \theta=1$ or $\cot \theta=\frac{1}{\tan \theta}$

$\quad$ 4. $\quad \tan \theta=\frac{\sin \theta}{\cos \theta}$

$\quad$ 5. $\quad \cot \theta=\frac{\cos \theta}{\sin \theta}$

$\quad$ 6. $\quad \sin ^{2} \theta+\cos ^{2} \theta=1$ $ \text { or } \sin ^{2} \theta=1-\cos ^{2} \theta$ $\text { or } \cos ^{2} \theta=1-\sin ^{2} \theta$

$\quad$ 7. $\quad \sec ^{2} \theta-\tan ^{2} \theta=1 \quad$ or $\sec ^{2} \theta=1+\tan ^{2} \theta$ or $\tan ^{2} \theta=\sec ^{2} \theta-1$

$\quad$ 8. $\quad \operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1$ or $\operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta$ or $\cot ^{2} \theta=\operatorname{cosec}^{2} \theta-1$

$\quad$ 9. $\quad \sin (A+B)=\sin A \cos \mathrm{B}+\cos \mathrm{A} \sin \mathrm{B}$

$\quad$ 10. $\quad \sin (A-B)=\sin A \cos B-\cos A \sin B$

$\quad$ 11. $\quad \cos (A+B)=\cos A \cos B-\sin A \sin B$

$\quad$ 12. $\quad \cos (\mathrm{A}-\mathrm{B})=\cos \mathrm{A} \cos \mathrm{B}+\sin \mathrm{A} \sin \mathrm{B}$

$\quad$ 13. $\quad \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$

$\quad$ 14. $\quad \cot (\mathrm{A}+\mathrm{B})=\frac{\cot \mathrm{A} \cot \mathrm{B}-1}{\cot \mathrm{A}+\cot \mathrm{B}}$

$\quad$ 15. $\quad \tan (\mathrm{A}-\mathrm{B})=\frac{\tan \mathrm{A}-\tan \mathrm{B}}{1+\tan \mathrm{A} \tan \mathrm{B}}$

$\quad$ 16. $\quad \cot (\mathrm{A}-\mathrm{B})=\frac{\cot \mathrm{A} \cot \mathrm{B}+1}{\cot \mathrm{B}-\cot \mathrm{A}}$

$\quad$ 17. $\quad 2 \sin \mathrm{A} \cos \mathrm{B}=\sin (\mathrm{A}+\mathrm{B})+\sin (\mathrm{A}-\mathrm{B})$

$\quad$ 18. $\quad 2 \cos \mathrm{A} \sin \mathrm{B}=\sin (\mathrm{A}+\mathrm{B})-\sin (\mathrm{A}-\mathrm{B})$

$\quad$ 19. $\quad 2 \cos \mathrm{A} \cos \mathrm{B}=\cos (\mathrm{A}+\mathrm{B})+\cos (\mathrm{A}-\mathrm{B})$

$\quad$ 20. $\quad 2 \sin \mathrm{A} \sin \mathrm{B}=\cos (\mathrm{A}-\mathrm{B})-\cos (\mathrm{A}+\mathrm{B})$

$\quad$ 21. $\quad \sin \mathrm{C}+\sin \mathrm{D}=2 \sin \left(\frac{\mathrm{C}+\mathrm{D}}{2}\right) \cos \left(\frac{\mathrm{C}-\mathrm{D}}{2}\right)$

$\quad$ 22. $\quad\ sin \mathrm{C}-\sin \mathrm{D}=2 \cos \left(\frac{\mathrm{C}+\mathrm{D}}{2}\right) \sin \left(\frac{\mathrm{C}-\mathrm{D}}{2}\right)$

$\quad$ 23. $\quad\cos \mathrm{C}+\cos \mathrm{D}=2 \cos \left(\frac{\mathrm{C}+\mathrm{D}}{2}\right) \cos \left(\frac{\mathrm{C}-\mathrm{D}}{2}\right)$

$\quad$ 24. $\quad\cos \mathrm{C}-\cos \mathrm{D}-2 \sin \left(\frac{\mathrm{C}+\mathrm{D}}{2}\right) \sin \left(\frac{\mathrm{C}-\mathrm{D}}{2}\right)$,

$\quad$ 25. $\quad\sin 2 \theta=2 \sin \theta \cos \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta}$

$\quad$ 26. $\quad\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1$

$\quad$$ =1-2 \sin ^{2} \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta} $

$\quad$ 27. $\quad1+\cos 2 \theta=2 \cos ^{2} \theta$ or $\cos \theta=\sqrt{\frac{1+\cos \theta}{2}}$

$\quad$ 28. $\quad1-\cos 2 \theta=2 \sin ^{2} \theta$ or $\sin \theta=\sqrt{\frac{1-\cos 2 \theta}{2}}$

$\quad$ 29. $\quad\tan \theta=\frac{1-\cos 2 \theta}{\sin 2 \theta}=\frac{\sin 2 \theta}{1+\cos 2 \theta}=\sqrt{\frac{1-\cos 2 \theta}{1+\cos 2 \theta}}$

$\quad$ 30. $\quad\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$

$\quad$ 31. $\quad\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$

$\quad$ 32. $\quad\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$

$\quad$ 33. $ \quad \tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}$

$\quad$ 34. $\quad\sin ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~B}=\sin (\mathrm{A}+\mathrm{B}) \cdot \sin (\mathrm{A}-\mathrm{B})$

$\quad$ $=\cos ^{2} \mathrm{~B}-\cos ^{2} \mathrm{~A}$

$\quad$ 35. $\quad\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~B}=\cos (\mathrm{A}+\mathrm{B}) \cdot \cos (\mathrm{A}-\mathrm{B})=\cos ^{2} \mathrm{~B}-\sin ^{2} \mathrm{~A}$

$\quad$ 36. $\quad\sin (A+B+C)=\sin A \cos B \cos C+\sin B \cos A \cos C$

$\quad$ $+\sin C \cos \mathrm{A} \cos \mathrm{B}-\sin \mathrm{A} \sin \mathrm{B} \sin \mathrm{C}$

$\quad$ $=\quad \cos \mathrm{A} \cos \mathrm{B} \cos \mathrm{C}[\tan \mathrm{A}+\tan \mathrm{B}+\tan \mathrm{C}-\tan \mathrm{A} \tan \mathrm{B} \tan \mathrm{C}]$

$\quad$ 37. $\quad\cos (\mathrm{A}+\mathrm{B}+\mathrm{C})=\cos \mathrm{A} \cos \mathrm{B} \cos \mathrm{C}-\sin \mathrm{A} \sin \mathrm{B} \cos \mathrm{C}$

$\quad$ $-\sin A \cos B \sin C-\cos A \sin B \sin C$

$\quad$ $=\quad \cos \mathrm{A} \cos \mathrm{B} \cos \mathrm{C}[1-\tan \mathrm{A} \tan \mathrm{B}-\tan \mathrm{B} \tan \mathrm{C}-\tan \mathrm{C} \tan \mathrm{A}]$

$\quad$ 38. $\quad\tan (\mathrm{A}+\mathrm{B}+\mathrm{C})=\frac{\tan \mathrm{A}+\tan \mathrm{B}+\tan \mathrm{C}-\tan \mathrm{A} \tan \mathrm{B} \tan \mathrm{C}}{1-\tan \mathrm{A} \tan \mathrm{B}-\tan \mathrm{B} \tan \mathrm{C}-\tan \mathrm{C} \tan \mathrm{A}}$

$\quad$ 39. $\quad\sin \alpha+\sin (\alpha+\beta)+\sin (\alpha+2 \beta)+\ldots \ldots . \sin (\alpha+\overline{n-1})$

$\quad$ $ =\frac{\sin \left\{\alpha+\left(\frac{\mathrm{n}-1}{2}\right) \beta\right\} \sin \left(\frac{\mathrm{n} \beta}{2}\right)}{\sin \left(\frac{\beta}{2}\right)} $

$\quad$ 40. $\quad \cos \alpha+\cos (\alpha+\beta)+\cos (\alpha+2 \beta)+$ $\cos (\alpha+\overline{n-1})$

$\quad=\frac{\cos \left\{\alpha+\left(\frac{\mathrm{n}-1}{2}\right) \beta\right\} \sin \left(\frac{\mathrm{n} \beta}{2}\right)}{\sin \left(\frac{\beta}{2}\right)}$

8. Some t-ration of $18^{0}, 72^{0}, 36^{0}, 54^{0}, 15^{0}, 22 \frac{1}{2}^{0}, 67 \frac{1}{2}^{0}, 7 \frac{1}{2}^{0}, 9^{0}, 81^{0}, 27^{0}, 63^{0}$ et(c).

$\quad$ 1. $\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}=\cos 72^{\circ}$

$\quad$ 2. $\cos 36^{\circ}=\frac{\sqrt{5}+1}{4}=\sin 54^{\circ}$

$\quad$ 3. $\cos 18^{\circ}=\frac{\sqrt{10+2 \sqrt{5}}}{4}=\sin 72^{0}$

$\quad$ 4. $\sin 36^{\circ}=\frac{\sqrt{10-2 \sqrt{5}}}{4}=\cos 54^{0}$

$\quad$ 5. $\sin 75^{\circ}=\frac{\sqrt{3}+1}{2 \sqrt{2}}=\cos 15^{0}$

$\quad$ 6. $\tan 75^{\circ}=\frac{\sqrt{3}+1}{\sqrt{3}-1}=\cot 15^{\circ}$

$\quad$ 7. $\sin 15^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}}=\cos 75^{\circ}$

$\quad$ 8. $\tan 15^{\circ}=2-\sqrt{3}=\frac{\sqrt{3}-1}{\sqrt{3}+1}=\cot 75^{\circ}$

$\quad$ 9. $\tan \left(22 \frac{1^{\circ}}{2}\right)=\sqrt{2}-1=\cot \left(67 \frac{1}{2}^{\circ}\right)$

$\quad$ 10. $\tan \left(67 \frac{1}{2}^{\circ}\right)=\sqrt{2}+1=\cot \left(22 \frac{1^{\circ}}{2}\right)$

$\quad$ 11. $\cot \left(7 \frac{1}{2}^{0}\right)=\sqrt{6}+\sqrt{4}+\sqrt{3}+\sqrt{2}=(\sqrt{3}+\sqrt{2})(\sqrt{2}+1)=\tan \left(88 \frac{1^{\circ}}{2}\right)$

$\quad$ 12. $\tan \left(7 \frac{1^{0}}{2}\right)=\sqrt{6}-\sqrt{4}-\sqrt{3}+\sqrt{2}=(\sqrt{3}-\sqrt{2})(\sqrt{2}-1)=\cot \left(82 \frac{1}{2}^{0}\right)$

$\quad$ 13. $\sin 9^{0}=\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}=\cos 81^{0}$

$\quad$ 14. $\cos 9^{0}=\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}=\cos 81^{0}$

$\quad$ 15. $\sin 27^{\circ}=\frac{\sqrt{5+\sqrt{5}}-\sqrt{3-\sqrt{5}}}{4}=\cos 63^{\circ}$

$\quad$ 16. $\sin 63^{\circ}=\frac{\sqrt{5+\sqrt{5}}+\sqrt{3-\sqrt{5}}}{4}=\cos 27^{\circ}$

$\quad$ 17. $\alpha \cos \theta+b \sin \theta$ will always lie in the interval $\left\{-\sqrt{a^{2}+b^{2}}, \sqrt{a^{2}+b^{2}}\right\}$, i.e. the maximum and minimum value of $a \cos \theta+b \sin \theta$ is $\sqrt{a^{2}+b^{2}}-\sqrt{a^{2}+b^{2}}$ repectively.

$\quad$ 18. For $0<\theta<\pi$, minimum value of a $\sin \theta+b \operatorname{cosec} \theta$ is $2 \sqrt{a b}$

$\quad$ 19. For $-\pi / 2<\theta<\pi / 2$, minumum value of $a \cos \theta+b \sec \theta$ is $2 \sqrt{a b}$

$\quad$ 20. For $0<\theta<\pi / 2$ or $\pi<\theta<\frac{3 \pi}{2}$, Minimum value of $a \tan \theta+b \cot \theta$ is $2 \sqrt{a b}$

$\quad$ 21. Periods of $\sin x, \cos x, \sec x, \operatorname{cosec} x$, is $2 \pi$ and period of $\tan x$ and $\cot x$ is $\pi$.

$\quad$ 22. If a function is periodic with period $\alpha$, i.e. $\mathrm{f}(\mathrm{x}+\alpha)=\mathrm{f}(\mathrm{x})$, then period of the function

$\quad f\left(\frac{p}{q} x\right) \text { is } \frac{q}{p} \alpha$

$\quad$ 23. If $f(x)$ and $g(x)$ are periodic functions with periods $\alpha$ and $\beta$ repectively, then period of the function $f(x) \pm g(x), f(x) \cdot g(x)$ or $\frac{f(x)}{g(x)}$ is L.C.M of $\alpha \operatorname{and} \beta$

$\quad$ 24. LCM of rational numbers is $\frac{\text { LCM of numerators }}{\text { HCF of denominatiors }}$

$\quad$ 25. Expression of $\sin (\mathrm{A} / 2)$ in terms of $\sin \mathrm{A}$

$\quad \left(\sin \frac{A}{2}+\cos \frac{A}{2}\right)^{2}=1+\sin \mathrm{A}$

$\quad$ and $\left(\sin \frac{A}{2}-\cos \frac{A}{2}\right)^{2}=1-\sin \mathrm{A}$

$\quad$ so that $\sin \frac{\mathrm{A}}{2}+\cos \frac{\mathrm{A}}{2}= \pm \sqrt{1+\sin \mathrm{A}}……..(1)$

$\quad$ and $\sin \frac{A}{2}-\cos \frac{A}{2}= \pm \sqrt{1-\sin A}……..(2)$

$\quad$ By addition and subtraction, we have

$\quad$ $2 \sin \frac{\mathrm{A}}{2}= \pm \sqrt{1+\sin \mathrm{A}} \pm \sqrt{1-\sin \mathrm{A}}……(3)$

$\quad$ and $2 \cos \frac{\mathrm{A}}{2}= \pm \sqrt{1+\sin \mathrm{A}} \mp \sqrt{1-\sin \mathrm{A}}………(4)$

$\quad$ The ambiguities of sign in relation (1) and (2) is determined by the following diagram.

1. i. If $\sin \theta _{1}+\sin \theta _{2}+…….$ $\sin \theta _{\mathrm{n}}=\mathrm{n}$, then

$\quad\sin \theta _{1}=\sin \theta _{2}=……$ $=\sin \theta _{\mathrm{n}}=1$

$\quad$ ii. If $\cos \theta _{1}+\cos \theta _{2}+……$ $\cos \theta _{\mathrm{n}}=\mathrm{n}$, then

$\quad$ $\cos \theta _{1}=\cos \theta _{2}=……..$ $\cos \theta _{\mathrm{n}}=1$

2. i. $\sin \theta+\operatorname{cosec} \theta=2 \Rightarrow \sin \theta=1$

$\quad$ ii. $\cos \theta+\sec \theta=1 \Rightarrow \cos \theta=1$

3. i. $\sin 15^{\circ}+\cos 15^{\circ}=\sin 75^{\circ}+\cos 75^{\circ}=\sqrt{\frac{3}{2}}$

$\quad$ ii. $ \cos 15-\sin 15=\sin 75-\cos 75=\frac{1}{\sqrt{2}}$

4. i. $\quad \tan 15^{\circ}+\cot 15^{\circ}=\tan 75^{\circ}+\cot 75^{\circ}=\frac{1}{\sqrt{2}}$

$\quad$ ii. $\quad \cot 15^{\circ}-\tan 15^{\circ}=\tan 75^{\circ}-\cot 75^{\circ}=2 \sqrt{3}$

5. i. $\cos \theta-\cos \left(60^{\circ}+\theta\right)-\cos \left(60^{\circ}-\theta\right)=0$

$\quad$ ii. $\quad \cos \theta+\cos \left(120^{\circ}+\theta\right)+\cos \left(120^{\circ}-\theta\right)=0$

$\quad$ iii. $\cos \theta+\cos \left(240^{\circ}+\theta\right)+\cos \left(240^{\circ}-\theta\right)=0$

$\quad$ iv. $\sin \theta-\sin \left(60^{\circ}+\theta\right)+\sin \left(60^{\circ}-\theta\right)=0$

$\quad$ v. $\sin \theta+\sin \left(120^{\circ}+\theta\right)-\sin \left(120^{\circ}-\theta\right)=0$

$\quad$ vi. $\sin \theta+\sin \left(240^{\circ}+\theta\right)-\sin \left(240^{\circ}-\theta\right)=0$

6. i. $\tan \left(45^{\circ}+\theta\right) \tan \left(45^{\circ}-\theta\right)=1$

$\quad$ ii. $\quad \cot \left(45^{\circ}+\theta\right) \cot \left(45^{\circ}-\theta\right)=1$

7. i. If $\mathrm{A}+\mathrm{B}=45^{\circ}$ then $(1+\tan \mathrm{A})(1+\tan \mathrm{B})=2$

$\quad$ ii. If $A+B=135^{\circ}$ then $(1-\tan A)(1-\tan B)=2$

$\quad$ iii. If $\mathrm{A}+\mathrm{B}=45^{\circ}$ then $(1-\cot \mathrm{A})(1-\cot \mathrm{B})=2$

$\quad$ iv. If $\mathrm{A}+\mathrm{B}=135^{\circ}$ then $(1+\cot \mathrm{A})(1+\cot \mathrm{B})=2$

8. i. If $\cos x+\cos y=a, \sin x+\sin y=b$, then $\tan \frac{x+y}{2}=\frac{b}{a}$

$\quad$ ii. If $\cos x-\cos y=a, \sin x-\sin y=b$, then $\tan \frac{x+y}{2}=\frac{-a}{b}$

$\quad$ iii. If $\cos x-\cos y=a, \sin x+\sin y=b$, then $\tan \frac{x-y}{2}=\frac{a}{b}$

$\quad$ iv. If $\cos x+\cos y=a, \sin x-\sin y=b$, then $\tan \frac{x-y}{2}=\frac{b}{a}$

9. i. $\sin \theta \sin \left(60^{\circ}+\theta\right) \sin \left(60^{\circ}-\theta\right)=\frac{1}{4} \sin 3 \theta$

$\quad$ ii. $ \sin \theta \sin \left(120^{\circ}+\theta\right) \sin \left(120^{\circ}-\theta\right)=\frac{1}{4} \sin 3 \theta$

10. i. $\cos \theta \cos \left(60^{\circ}+\theta\right) \cos \left(60^{\circ}-\theta\right)=\frac{1}{4} \cos 3 \theta$

$\quad$ ii. $ \cos \theta \cos \left(120^{\circ}+\theta\right) \cos \left(120^{\circ}-\theta\right)=\frac{1}{4} \cos 3 \theta$

11. i. $\tan \theta \tan \left(60^{\circ}+\theta\right) \tan \left(60^{\circ}-\theta\right)=\tan 3 \theta$

$\quad$ ii. $\tan \theta \tan \left(120^{\circ}+\theta\right) \tan \left(120^{\circ}-\theta\right)=\tan 3 \theta$

12. i. $\cot \theta \cot \left(60^{\circ}+\theta\right) \cot \left(60^{\circ}-\theta\right)=\cot 3 \theta$

$\quad$ ii. $\quad \cot \theta \cot \left(120^{\circ}+\theta\right) \cot \left(120^{\circ}-\theta\right)=\cot 3 \theta$

Practice questions

1. If $\cot \alpha+\tan \alpha=m$ and $\frac{1}{\cos \alpha}-\cos \alpha=n$, then

(a) $\mathrm{m}\left(\mathrm{mn}^{2}\right)^{1 / 3}-\mathrm{n}\left(\mathrm{nm}^{2}\right)^{1 / 3}=1$

(b) $\mathrm{m}\left(\mathrm{m}^{2} \mathrm{n}\right)^{1 / 3}-\mathrm{n}\left(\mathrm{mn}^{2}\right)^{1 / 3}=1$

(c) $\mathrm{n}\left(\mathrm{mn}^{2}\right)^{1 / 3}-\mathrm{m}\left(\mathrm{nm}^{2}\right)^{1 / 3}=1$

(d) $n\left(m^{2} n\right)^{1 / 3}-m\left(m n^{2}\right)^{1 / 3}=1$

Show Answer

Solution:

Given that

$ \cot \alpha+\tan \alpha=\mathrm{m} $

$1+\tan ^{2} \alpha=\operatorname{mtan} \alpha$ $\sec ^{2} \alpha=m \tan \alpha$

$ \begin{gathered} \text { also } \frac{1-\cos ^{2} \alpha}{\cos \alpha}=n \\ \frac{\sin ^{2} \alpha}{\cos \alpha}=n \\ \tan ^{2} \alpha=n \sec \alpha \\ \operatorname{squaring}^{\tan ^{4} \alpha}=\mathrm{n}^{2} \sec ^{2} \alpha \\ =\mathrm{n}^{2} \mathrm{~m} \tan \alpha \\ \tan ^{3} \alpha=\mathrm{n}^{2} \mathrm{~m} \\ \tan ^{2}=\left(n^{2} m\right)^{1 / 3} \\ \sec ^{2} \alpha=m\left(n^{2} m\right)^{1 / 3} \\ \sec ^{2} \alpha-\tan ^{2} \alpha=1 \\ m\left(n^{2} m\right)^{1 / 3}-\left(n^{2} m\right)^{2 / 3}=1 \\ m\left(n^{2} m\right)^{1 / 3}-\left(n^{4} m^{2}\right)^{1 / 3}=1 \\ m\left(n^{2} m\right)^{1 / 3}-n\left(n m^{2}\right)^{1 / 3}=1 \end{gathered} $

Correct option is ‘a’

2. If $\cos 2 \alpha=\frac{3 \cos 2 \beta-1}{3-\cos 2 \beta}$, then $\frac{\tan \alpha}{\tan \beta}$ equals

(a) $1$

(b) $-1$

(c) $\sqrt{2}$

(d) $-\sqrt{2}$

Show Answer

Solution:

$\cos 2 \alpha=\frac{3 \cos 2 \beta-1}{3-\cos 2 \beta}$

$\frac{1-\tan ^{2} \alpha}{1+\tan ^{2} \alpha}=\frac{\frac{3\left(1-\tan ^{2} \beta\right)}{1+\tan ^{2} \beta}-1}{3-\frac{1-\tan ^{2} \beta}{1+\tan ^{2} \beta}}$

$=\frac{3-3 \tan ^{2} \beta-\tan ^{2} \beta-1}{3+3 \tan ^{2} \beta-1+\tan ^{2} \beta}$

$=\frac{2-4 \tan ^{2} \beta}{2+4 \tan ^{2} \beta}$

$\frac{1-\tan ^{2} \alpha}{1+\tan ^{2} \alpha}=\frac{1-2 \tan ^{2} \beta}{1+2 \tan ^{2} \beta}$

By componendo and dividendo we get,

$\frac{2}{-2 \tan ^{2} \alpha}=\frac{2}{-4 \tan ^{2} \beta}$

$2=\frac{\tan ^{2} \alpha}{\tan ^{2} \beta}$

$\frac{\tan \alpha}{\tan \beta}= \pm \sqrt{2}$

correct options are ‘c’ & ’d’

3. $\cot 15^{\circ}+\cot 75^{\circ}+\cot 135^{\circ}-\operatorname{cose} 30^{\circ}$ is equal to

(a) $-1$

(b) $0$

(c) $1$

(d) None of these

Show Answer

Solution:

$ \begin{aligned} & \cot 15^{\circ}+\cot 75^{\circ}+\cot 135^{\circ}-\operatorname{cosec} 30^{\circ} \\ & =\cot 15^{\circ}+\tan 15^{\circ}-\tan 45^{\circ}-\operatorname{cosec} 30^{\circ} \\ & =\frac{2}{\sin 30^{\circ}}-1-2 \\ & =4-3 \\ & =1 \\ & \because\left[\cot 15^{\circ}+\tan 15^{\circ}=\frac{\cos 15^{\circ}}{\sin 15^{\circ}}+\frac{\sin 15^{\circ}}{\cos 15^{\circ}}\right. \\ & =\frac{2}{\sin 15^{\circ} \cos 15^{\circ}} \\ & \left.=\frac{2}{\sin 30^{\circ}}\right] \end{aligned} $

Correct option is c

4. If $\sin (y+z-x), \sin (z+x-y)$, and $\sin (x+y-z)$ are in A.P then tan $x$, tany and tanz are in

(a) A.P

(b) GP

(c) HP

(d) None of these

Show Answer

Solution:

$\sin (\mathrm{y}+\mathrm{z}-\mathrm{x}), \sin (\mathrm{z}+\mathrm{x}-\mathrm{y})$ and $\sin (\mathrm{x}+\mathrm{y}-\mathrm{z})$ are in AP

$\therefore \sin (z+x-y)-\sin (y+z-x)=\sin (x+y-z)-\sin (z+x-y)$

$2 \operatorname{coszsin}(x-y)=2 \cos x \sin (y-z)$

$\sin x \cos z \cos y-\cos x \sin y \cos z=\cos x \sin y \cos z-\cos x \cos y \sin z$

Divide by cosx cosy cosz we get

$\tan x-\tan y=\tan y-\tan z$

$\tan x+\tan y=2 \tan y$

$\therefore \tan x, \tan y, \tan z$ are in A.P

Option a is correct

5. If $\alpha+\beta=90$, then the maximum value of $\sin \alpha \sin \beta$ is

(a) $1$

(b) $1 / 2$

(c) $3 / 2$

(d) None of these

Show Answer

Solution:

$ \begin{aligned} & \alpha+\beta=90 \\ & \sin \alpha \sin \beta=\sin \alpha \sin (90-\alpha) \\ & =\sin \alpha \cos \alpha \\ & =\frac{2}{2} \sin \alpha \cos \alpha \\ & =\frac{\sin 2 \alpha}{2} \end{aligned} $

We knew that $-1 \leq \sin 2 \alpha \leq 1$ or $\frac{-1}{2} \leq \frac{\sin 2 \alpha}{2} \leq \frac{1}{2}$

$\therefore$ maximum value of $\sin \alpha \sin \beta=\frac{1}{2}$

Correct option is ‘b’

Exercises

1. The least value of $\sec A+\sec B+\sec C$ in an acute angle triangle is

(a). 3

(b). 6

(c). 2

(d). none of these

Show Answer Answer: (b)

2. The sum of maximum and minimum values of $\cos ^{2} \theta-6 \sin \theta \cos \theta+3 \sin ^{2} \theta+2$ is

(a). $2 \sqrt{10}$

(b). $4$

(c). $8$

(d). none of these

Show Answer Answer: (c)

3. Let $f(\theta)=\sin \theta(\sin \theta+\sin 3 \theta)$. Then $f(\theta)$ is

(a). $ \geq 0$ only when $\theta \geq 0$

(b). $\leq 0$ only real $\theta$

(c). $\geq 0$ for all real $\theta$

(d). $\leq 0$ only when $\theta \leq 0$

Show Answer Answer: (c)

4. Let $\theta \varepsilon\left(0, \frac{\pi}{4}\right)$ and $\mathrm{t} _{1}=(\tan \theta)^{\tan \theta}, \mathrm{t} _{2}=(\tan \theta)^{\cot \theta}, \mathrm{t} _{3}=(\cot \theta)^{\tan \theta}$ and $\mathrm{t} _{4}=(\cot \theta)^{\cot \theta}$, then

(a). $\mathrm{t} _{1}>\mathrm{t} _{2}>\mathrm{t} _{3}>\mathrm{t} _{4}$

(b). $ t _{4}>t _{3}>t _{1}>t _{2}$

(c). $ \mathrm{t} _{3}>\mathrm{t} _{1}>\mathrm{t} _{2}>\mathrm{t} _{4}$

(d). $ \mathrm{t} _{2}>\mathrm{t} _{3}>\mathrm{t} _{1}>\mathrm{t} _{2}$

Show Answer Answer: (b)

5. For a positive integer n, let

$\mathrm{f} _{\mathrm{n}}(\theta)=\tan \left(\frac{\theta}{2}\right)(1+\sec \theta)(1+\sec 2 \theta)(1+\sec 4 \theta) \ldots \ldots .\left(1+\sec 2^{n} \theta\right)$. Then

(a). $\mathrm{f} _{2}\left(\frac{\pi}{16}\right)=1$

(b). $\mathrm{f} _{3}\left(\frac{\pi}{32}\right)=1$

(c). $\mathrm{f} _{4}\left(\frac{\pi}{64}\right)=1$

(d). $\mathrm{f} _{5}\left(\frac{\pi}{128}\right)=1$

Show Answer Answer: (a, b, c, d)

6. The maximum value of $\left(\cos \alpha _{1}\right)\left(\cos \alpha _{2}\right)\left(\cos \alpha _{3}\right) \ldots \ldots . .\left(\cos \alpha _{n}\right)$ under the restrictions $0 \leq \alpha _{1}, \alpha _{2} \ldots \alpha _{n} \leq \frac{\pi}{2}$ and $\left(\cot \alpha _{1}\right),\left(\cot \alpha _{2}\right) \ldots \ldots .\left(\cot \alpha _{n}\right)=1$ is

(a). $\frac{1}{2^{\mathrm{n} / 2}}$

(b). $\frac{1}{2^{n}}$

(c). $\frac{1}{2 n}$

(d). $1$

Show Answer Answer: (a)

7. If $\cos ^{4} \theta+\alpha, \sin ^{4} \theta+\alpha$ are the roots of the equaton $x^{2}+b(2 x+1)=0$ and $\cos ^{2} \theta+\beta, \sin 2 \theta+\beta$ are the roots of the equation $x^{2}+4 x+2=0$, then $b$ is equal to

(a). $1$

(b). $-1$

(c). $2$

(d). $-2$

Show Answer Answer: (b, c)

8. If in $\triangle A B C, \tan A+\tan B+\tan C=6$ and $\tan A \tan B=2$, then $\sin ^{2} A: \sin ^{2} B: \sin ^{2} C$ is

(a). $8: 9: 5$

(b). $8: 5: 9$

(c). $5: 9: 8$

(d). $5: 8: 9$

Show Answer Answer: (b, d)

9. If $\frac{\tan 3 \mathrm{~A}}{\cos \mathrm{A}}=k(k \neq 1)$

(a). $\frac{\cos \mathrm{A}}{\cos 3 \mathrm{~A}}=\frac{\mathrm{k}^{2}-1}{2 \mathrm{k}}$

(b). $\frac{\sin 3 \mathrm{~A}}{\sin \mathrm{A}}=\frac{2 \mathrm{k}}{\mathrm{k}-1}$

(c). $\mathrm{k}<\frac{1}{3}$

(d). $k>3$

Show Answer Answer: (a, b, c, d)

10. If $(\mathrm{x}-\mathrm{a}) \cos \theta+\mathrm{y} \sin \theta=(\mathrm{x}-\mathrm{a}) \cos \phi+\mathrm{y} \sin \phi=\mathrm{a}$ and $\tan \frac{\theta}{2}-\tan \frac{\phi}{2}=2 \mathrm{~b}$, then

(a). $\mathrm{y}^{2}=2 \mathrm{ax}-\left(1-\mathrm{b}^{2}\right) \mathrm{x}^{2}$

(b). $\tan \frac{\theta}{2}=\frac{1}{x}(y+b x)$

(c). $\mathrm{y}^{2}=2 \mathrm{ax}-\left(1-\mathrm{a}^{2}\right) \mathrm{x}^{2}$

(d). $\tan \frac{\phi}{2}=\frac{1}{x}(y-b x)$

Show Answer Answer: (a, b, d)

11. Passage

Increasing product with angles are in GP

$\cos \alpha \cos 2 \alpha \cos 2^{2} \alpha \ldots \ldots \cos 2^{\mathrm{n}} \alpha=\left\{\begin{array}{l}\frac{\sin 2^{\mathrm{n}} \alpha}{2^{\mathrm{n}} \sin \alpha} \text { if } \alpha \neq \mathrm{n} \pi \\ \frac{1}{2^{\mathrm{n}}}, \text { if } \alpha=\frac{\pi}{2^{\mathrm{n}}+1} \mathrm{n} \in \mathrm{I} \\ \frac{-1}{2^{\mathrm{n}}}, \text { if } \alpha=\frac{\pi}{2^{\mathrm{n}}-1}\end{array}\right\}$

On the basis of above infromation, answer the following questions.

i. The value of $\cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7} \cos \frac{6 \pi}{7}$ is

(a). $\frac{-1}{2}$

(b). $\frac{1}{2}$

(c). $\frac{1}{4}$

(d). $\frac{1}{8}$

Show Answer Answer: (d)

ii. If $\alpha=\frac{\pi}{13}$ then the value of $\prod _{\mathrm{r}=1}^{6} \cos \mathrm{r} \alpha$ is

(a). $\frac{1}{64}$

(b). $\frac{-1}{64}$

(c). $\frac{1}{32}$

(d). $-\frac{1}{8}$

Show Answer Answer: (a)

iii. The value of $\sin \frac{\pi}{14} \sin \frac{3 \pi}{14} \sin \frac{5 \pi}{14} \sin \frac{7 \pi}{14} \sin \frac{9 \pi}{14} \sin \frac{16 \pi}{14} \sin \frac{13 \pi}{14}$ is

(a). $1$

(b). $\frac{1}{8}$

(c). $\frac{1}{32}$

(d). $\frac{1}{64}$

Show Answer Answer: (d)

iv. The value of $\sin \frac{\pi}{18} \sin \frac{5 \pi}{18} \sin \frac{7 \pi}{18}$ is

(a). $\frac{1}{16}$

(b). $\frac{1}{8}$

(c). $\frac{1}{8}$

(d). $-1$

Show Answer Answer: (b)

v. The value of $64 \sqrt{3} \sin \frac{\pi}{48} \cos \frac{\pi}{48} \cos \frac{\pi}{24} \cos \frac{\pi}{12} \cos \frac{\pi}{6}$ is

(a). $8$

(b). $6$

(c). $4$

(d). $-1$

Show Answer Answer: (b)

12. Matrix Match Type

Column I Column II
(a) In triangle $\mathrm{ABC}, 3 \sin \mathrm{A}+4 \cos \mathrm{B}=6$ and $3 \cos A+4 \sin B=1$ then $\angle \mathrm{c}$ can be (p). $60^{\circ}$
(b) In any triangle if $(\sin \mathrm{A}+\sin \mathrm{B}+\sin \mathrm{C})(\sin \mathrm{A}+\sin \mathrm{B}-\sin \mathrm{C})$ $=3 \sin \mathrm{A} \sin \mathrm{B}$ then the angle $\mathrm{c}$ (q). $30^{\circ}$
(c) If $8 \sin x \cos ^{5} x-8 \sin ^{5} x \cos x=1$ then $x=$ (r). $165^{\circ}$
(d) ‘$\mathrm{O}$ ’ is the centre of the inscribed circle in a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle $A B C$ with right angled at $c$. If the circle is tangents to $A B$ at $D$ then the angle $\angle C O D$ is (s). $75^{\circ}$
Show Answer Answer: $\mathrm{a} \rightarrow \mathrm{q} ; \mathrm{b} \rightarrow \mathrm{p} ; \mathrm{c} \rightarrow \mathrm{s} ; \mathrm{d} \rightarrow \mathrm{r}$

13. Assertion and Reason type questions

$\mathrm{A}$ : Both $\mathrm{A}$ and $\mathrm{R}$ individually true and $\mathrm{R}$ is the correct explanation of $\mathrm{A}$

$\mathrm{B}$ : Both $\mathrm{A}$ and $\mathrm{R}$ individually true and $\mathrm{R}$ is not the correct explanation of $\mathrm{A}$

$\mathrm{C}: \mathrm{A}$ is true but $\mathrm{R}$ is false

$\mathrm{D}: \mathrm{A}$ is false but $\mathrm{R}$ is true

If $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$, then

(i). Assertion (A): $\cos ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~B}+\cos ^{2} \mathrm{C}$ has its minimum value $3 / 4$

Reason $(\mathrm{R})$ : Maximum value of $\cos \mathrm{A} \cos \mathrm{B} \cos \mathrm{C}$ is $1 / 8$

(a) $\mathrm{A}$

(b) $\mathrm{B}$

(c) $\mathrm{C}$

(d) $\mathrm{D}$

Show Answer Answer: (a)

(ii). Assertion (A): $\sin \pi / 18$ is a roots of $8 x^{3}-6 x+1=0$

Reason (R) : For any $\theta \in R, \sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$

(a) $\mathrm{A}$

(b) $\mathrm{B}$

(c) $\mathrm{C}$

(d) $\mathrm{D}$

Show Answer Answer: (a)

(iii). In any $\triangle \mathrm{ABC}$

Assertion (A) : $\ell$ n $\left(\cot \frac{\mathrm{A}}{2}+\cot \frac{\mathrm{B}}{2}+\cot \frac{\mathrm{C}}{2}\right)=\ell \mathrm{n} \cot \frac{\mathrm{A}}{2}+\ell \mathrm{n} \cot \frac{\mathrm{B}}{2}+\ell \mathrm{n} \cot \frac{\mathrm{C}}{2}$

Reason $(\mathrm{R}): \ell \mathrm{n}(1+\sqrt{3}+(2+\sqrt{3}))=\ell \mathrm{n} 1+\ell \mathrm{n} \sqrt{3}+\ell \mathrm{n}(2+\sqrt{3})$

Show Answer Answer: (b)


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ