TRIGONOMETRY - 2 (Trigonometric Functions)

1. $\sin 47^{\circ}+\sin 61^{\circ}-\sin 11^{\circ}-\sin 25^{\circ}$ is equal to

(a) $\sin 36^{\circ}$

(b) $\cos 36^{\circ}$

(c) $\sin 7^{\circ}$

(d) $\cos 7^{\circ}$

Show Answer

Solution:

$ \begin{aligned} & \sin 47+\sin 61^{\circ}-\sin 11^{\circ}-\sin 25^{\circ} \\ & \left(2 \sin 54^{\circ} \cos 7^{\circ}\right)-\left(2 \sin 18^{\circ} \cos 7^{\circ}\right) \\ & =2 \cos 7^{\circ}\left(\sin 54^{\circ}-\sin 18^{\circ}\right) \\ & =2 \cos 7^{\circ}\left(\cos 36^{\circ}-\sin 18^{\circ}\right) \\ & =2 \cos 7^{\circ}\left(\frac{\sqrt{5}+1}{4}-\left(\frac{\sqrt{5}-1}{4}\right)\right) \\ & =2 \cos 7^{\circ}\left(\frac{1}{2}\right) \\ & =\cos 7^{\circ} \end{aligned} $

Correct option is ’d ‘

2. If $\frac{\mathrm{x}}{\cos \theta}=\frac{\mathrm{y}}{\cos \left(\theta-\frac{2 \pi}{3}\right)}=\frac{\mathrm{z}}{\cos \left(\theta+\frac{2 \pi}{3}\right)}$, then $\mathrm{x}+\mathrm{y}+\mathrm{z}$ is equal to

(a) $1$

(b) $0$

(c) $-1$

(d) none of these

Show Answer

Solution:

We have

$ \frac{\mathrm{x}}{\cos \theta}=\frac{\mathrm{y}}{\cos \left(\theta-\frac{2 \pi}{3}\right)}=\frac{\mathrm{z}}{\cos \left(\theta+\frac{2 \pi}{3}\right)} $

we know that each ratio is equal to $\frac{\text { sum of Numerator }}{\text { sum of denominator }}$

$\therefore \frac{\mathrm{x}}{\cos \theta}=\frac{\mathrm{y}}{\cos \left(\theta-\frac{2 \pi}{3}\right)}=\frac{\mathrm{z}}{\cos \left(\theta+\frac{2 \pi}{3}\right)}=\frac{\mathrm{x}+\mathrm{y}+\mathrm{z}}{\cos \theta+\cos \left(\theta-\frac{2 \pi}{3}\right)+\cos \left(\theta+\frac{2 \pi}{3}\right)}$

now, $\quad \cos \theta+\cos \left(\theta-\frac{2 \pi}{3}\right)+\cos \left(\theta+\frac{2 \pi}{3}\right)$

$=\cos \theta+2 \cos \theta \cos \frac{2 \pi}{3} \quad(\cos (\mathrm{A}+\mathrm{B})+\cos (\mathrm{A}-\mathrm{B})=2 \cos \mathrm{A} \cos \mathrm{B})$

$=\cos \theta+2 \cos \theta\left(-\frac{1}{2}\right)$

$=0$

$\therefore \mathrm{x}+\mathrm{y}+\mathrm{z}=0$

Correct option is: ‘b’

3. The value of $\left(1+\cos \frac{\pi}{8}\right)\left(1+\cos \frac{3 \pi}{8}\right)\left(1+\cos \frac{5 \pi}{8}\right)\left(1+\cos \frac{7 \pi}{8}\right)$ is

(a) $\frac{1}{2}$

(b) $\cos \frac{\pi}{8}$

(c) $\frac{1}{8}$

(d) $\frac{1+\sqrt{2}}{2 \sqrt{2}}$

Show Answer

Solution:

$ \begin{aligned} & \cos \frac{7 \pi}{8}=\cos \left(\pi-\frac{\pi}{8}\right)=-\cos \frac{\pi}{8} \\ & \cos \frac{3 \pi}{8}=\cos \left(\frac{\pi}{2}-\frac{\pi}{8}\right)=\sin \frac{\pi}{8} \\ & \cos \frac{5 \pi}{8}=\cos \left(\frac{\pi}{2}+\frac{\pi}{8}\right)=-\sin \frac{\pi}{8} \\ & =\left(1+\cos \frac{\pi}{8}\right)\left(1+\sin \frac{\pi}{8}\right)\left(1-\sin \frac{\pi}{8}\right)\left(1-\cos \frac{\pi}{8}\right) \\ & =\left(1-\cos ^{2} \frac{\pi}{8}\right)\left(1-\sin ^{2} \frac{\pi}{8}\right) \\ & =\sin ^{2} \frac{\pi}{8} \cos ^{2} \frac{\pi}{8} \\ & =\frac{\left(2 \sin \frac{\pi}{8} \cos \frac{\pi}{8}\right)^{2}}{4}=\frac{\left(\sin \frac{\pi}{4}\right)^{2}}{4}=\frac{1}{8} \end{aligned} $

Correct option is: ‘c’

4. If $\mathrm{x} _{1}, \mathrm{x} _{2} \ldots \mathrm{x} _{\mathrm{n}}$ are in AP whose common difference is $\alpha$, then the value of $\sin \alpha\left(\operatorname{\sec x} _{1} \operatorname{\sec x} _{2}+\operatorname{\sec x} _{2} \sec _{3}+\ldots \ldots . .+\operatorname{\sec x} _{n-1} \sec _{n}\right)$ is

(a) $\frac{\sin (\mathrm{n}-1) \alpha}{\cos \mathrm{x} _{1} \cos \mathrm{x} _{\mathrm{n}}}$

(b) $\frac{\sin n \alpha}{\cos x _{1} \cos x _{n}}$

(c) $\sin (\mathrm{n}-1) \alpha \cos \mathrm{x} _{1} \cos \mathrm{x} _{\mathrm{n}}$

(d) $\sin \alpha \cos x _{1} \cos x _{n}$

Show Answer

Solution:

We have

$\sin \alpha \sec x _{1} \sec _{2}+\sin \alpha \sec x _{2} \sec x _{3}+\ldots \ldots \ldots \ldots+\sin \alpha \sec x _{n-1} \sec x _{n}$

$=\frac{\sin \left(\mathrm{x} _{2}-\mathrm{x} _{1}\right)}{\cos \mathrm{x} _{1} \cos \mathrm{x} _{2}}+\frac{\sin \left(\mathrm{x} _{3}-\mathrm{x} _{2}\right)}{\cos \mathrm{x} _{2} \cos \mathrm{x} _{3}}+\ldots \ldots \ldots+\frac{\sin \left(\mathrm{x} _{\mathrm{n}}-\mathrm{x} _{\mathrm{n}-1}\right)}{\cos \mathrm{x} _{\mathrm{n}-1} \cos \mathrm{x} _{\mathrm{n}}}$

$=\frac{\sin x _{2} \cos x _{1}-\cos x _{2} \sin x _{1}}{\cos x _{1} \cos x _{2}}+\frac{\sin x _{3} \cos x _{2}-\cos x _{3} \sin x _{2}}{\cos x _{2} \cos x _{3}}+$

$+\frac{\sin x _{n} \cos x _{n-1}-\cos x _{n} \sin x _{n-1}}{\cos x _{n-1} \cos x _{n}}$

$=\tan x _{2}-\tan x _{1}+\tan x _{3}-\tan x _{2}+\ldots \ldots .+\tan x _{n}-\tan x _{n-1}$

$=\tan x _{n}-\tan x _{1}$

$=\frac{\sin x _{n} \cos x _{1}-\cos x _{n} \sin x _{1}}{\cos x _{n} \cos x _{1}}$

$=\frac{\sin \left(\mathrm{x} _{\mathrm{n}}-\mathrm{x} _{1}\right)}{\cos \mathrm{x} _{\mathrm{n}} \cos \mathrm{x} _{1}}$

$=\frac{\sin (\mathrm{n}-1) \alpha}{\cos \mathrm{x} _{\mathrm{n}} \cos \mathrm{x} _{1}} \quad\left(\because \mathrm{x} _{\mathrm{n}}=\mathrm{x} _{1}+(\mathrm{n}-1) \alpha \quad \mathrm{x} _{\mathrm{n}}-\mathrm{x} _{1}=(\mathrm{n}-1) \alpha\right)$

$\therefore$ correct option is ‘a’

5. Let $f(\mathrm{n})=2 \operatorname{cosnx} \forall \mathrm{n} \in \mathrm{N}$, then $f(1) f(\mathrm{n}+1)-f(\mathrm{n})$ is equal to

(a) $\mathrm{f}(\mathrm{n}+3)$

(b) $\mathrm{f}(\mathrm{n}+2)$

(c) $\mathrm{f}(\mathrm{n}+1) \mathrm{f}(2)$

(d) $\mathrm{f}(\mathrm{n}+2) \mathrm{f}(2)$

Show Answer

Solution:

We have $\mathrm{f}(\mathrm{n})=2 \operatorname{cosnx} \forall \mathrm{n} \in \mathrm{N}$

$\mathrm{f}(1)=2 \cos \mathrm{x}$

$\mathrm{f}(\mathrm{n}+1)=2 \cos (\mathrm{n}+1) \mathrm{x}$

$f(1) f(n+1)=4 \cos x \cos (n+1) x$

$\mathrm{f}(1) \mathrm{f}(\mathrm{n}+1)-\mathrm{f}(\mathrm{n})=4 \cos \mathrm{x} \cos (\mathrm{n}+1) \mathrm{x}-2 \cos n \mathrm{x}$

$=2[2 \cos x \cos (n+1) x-\cos n x]$

$=2[\cos (n+2) x+\cos n x-\cos n x]$

$=2 \cos (\mathrm{n}+2) \mathrm{x}$

$=\mathrm{f}(\mathrm{n}+2)$

Option ‘b’ is correct

6. The ratio of the greatest value of $2-\cos x+\sin ^{2} x$ to its least value is

(a) $1 / 4$

(b) $9 / 4$

(c) $13 / 4$

(d) None of these

Show Answer

Solution:

$2-\cos x+\sin ^{2} x$

$=2-\cos x+1-\cos ^{2} x$

$=-\left(\cos ^{2} x+\cos x\right)+3$

$=-\left(\cos x+\frac{1}{2}\right)^{2}+\frac{1}{4}+3$

$=-\left(\cos x+\frac{1}{2}\right)^{2}+\frac{13}{4}$

$ =\frac{13}{4}-\left(\cos x+\frac{1}{2}\right)^{2} $

Maximum value $\frac{13}{4}$ occurs at $\cos x=-\frac{1}{2}$

Minimum value occurs at $\cos x=1$

$ \begin{aligned} & \therefore \frac{13}{4}-\left(1+\frac{1}{2}\right)^{2} \\ & \frac{13}{4}-\frac{9}{4}=\frac{4}{4}=1 \end{aligned} $

$\therefore$ The ratio of greatest to the least is $\frac{13}{4}$

Option ‘c’ is correct

7. If $\sin (120-\alpha)=\sin (120-\beta), 0<\alpha, \beta<\pi$, then find the relation between $\alpha$ and $\beta$.

Show Answer

Solution:

$ \begin{aligned} & \text { If } \sin A=\sin B \\ & \text { Then } A=B \text { or } A=\pi-B \\ & \text { Here, } \sin \left(120^{\circ} \alpha\right)=\sin \left(120^{\circ}-\beta\right) \\ & \therefore 120^{\circ} \alpha=120^{\circ}-\beta \text { or } 120^{\circ} \alpha=\pi-\left(120^{\circ} \beta\right) \\ & \alpha=\beta \text { or } 120^{\circ}-\alpha=60^{\circ}+\beta \alpha+\beta=60^{\circ} \end{aligned} $

8. If $x, y, z$ are in $A P$, then $\frac{\sin x-\sin z}{\cos z-\cos x}$ is equal to

(a) $\tan y$

(b) $\cot y$

(c) $\sin y$

(d) $\cos y$

Show Answer

Solution:

We have $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in $\mathrm{AP}$

$\therefore \mathrm{x}+\mathrm{z}=2 \mathrm{y}$

Here, $\frac{\sin x-\sin z}{\cos z-\cos x}=\frac{2 \cos \frac{x+z}{2} \sin \left(\frac{x-z}{2}\right)}{2 \sin \left(\frac{x+z}{2}\right) \sin \left(\frac{x-z}{2}\right)}$

$ \begin{aligned} & =\frac{\cos y}{\sin y} \\ & =\operatorname{\cot y} \end{aligned} $

Correct option is ‘b’

Practice questions

1. It $\cos \theta=\frac{a \cos \phi+b}{a+b \cos \phi}$, then $\tan \theta / 2$ equals

(a). $\sqrt{\frac{a-b}{a+b}} \tan \frac{\phi}{2}$

(b). $\sqrt{\frac{a+b}{a-b}} \cos \frac{\phi}{2}$

(c). $\sqrt{\frac{a-b}{a+b}} \sin \frac{\phi}{2}$

(d). none

Show Answer Answer: (a)

2. If $a \cos 2 \theta+b \sin 2 \theta=c$ has $\alpha$ and $\beta$ as its solution, then $\tan \alpha+\tan \beta$ equals

(a). $\frac{2 a}{b+c}$

(b). $\frac{2 b}{c+a}$

(c). $\frac{2 c}{a+b}$

(d). none

Show Answer Answer: (b, c)

3. The value of $\frac{1}{\sin 10^{0}}-\frac{\sqrt{3}}{\cos 10^{\circ}}$ equals

(a). 1

(b). 4

(c). 2

(d). 0

Show Answer Answer: (b)

4. $\cos ^{4} \frac{\pi}{8}+\cos ^{4} \frac{3 \pi}{8}+\cos ^{4} \frac{5 \pi}{8}+\cos ^{4} \frac{7 \pi}{8}$ equals

(a). $\frac{1}{2}$

(b). $1$

(c). $\frac{3}{2}$

(d). $2$

Show Answer Answer: (c)

5. $\sin \frac{\pi}{n}+\sin \frac{3 \pi}{n}+\sin \frac{5 \pi}{n}+…….n$ terms equals

(a). $1$

(b). $0$

(c). $\frac{\mathrm{n}}{2}$

(d). none

Show Answer Answer: (b)

6. If $x=\frac{\sqrt{1-\sin 4 \theta}+1}{\sqrt{1+\sin 4 \theta}-1}$ then one of the values of $x$ is

(a). $-\tan \theta$

(b). $\cot \theta$

(c). $\tan (\pi / 4+\theta)$

(d). $-\cot (\pi / 4+\theta)$

Show Answer Answer: (a, b, c, d)

7. The value of $\cos 12^{\circ}+\cos 84^{\circ}+\cos 156^{\circ}+\cos 132^{\circ}$ is

(a). $\frac{1}{2}$

(b). $1$

(c). $-\frac{1}{2}$

(d). $\frac{1}{8}$

Show Answer Answer: (c)

8. $\sin 6^{\circ}-\sin 66^{\circ}+\sin 78^{\circ}-\sin 42^{\circ}$ is

(a). $-1$

(b). $-\frac{1}{2}$

(c). $\frac{1}{2}$

(d). $1$

Show Answer Answer: (b)

9. $\cos \frac{\pi}{65} \cos \frac{2 \pi}{65} \cos \frac{4 \pi}{65} \cos \frac{8 \pi}{65} \cos \frac{16 \pi}{65} \cos \frac{32 \pi}{65}$ equals

(a). $\frac{1}{8}$

(b). $\frac{1}{16}$

(c). $\frac{1}{32}$

(d). $\frac{1}{64}$

Show Answer Answer: (d)

10. $\sin 36^{\circ} \sin 72^{\circ} \sin 108^{\circ} \sin 144^{\circ}$ equals

(a). $\frac{5}{16}$

(b). $\frac{3}{16}$

(c). $\frac{1}{16}$

(d). none

Show Answer Answer: (a)

11. Passage

If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be the angles of a triangle, then

(a). $\quad \sum \sin 2 \mathrm{~A}=4 \sin \mathrm{A} \sin \mathrm{B} \sin \mathrm{C}$

(b). $\quad \sum \cos 2 \mathrm{~A}=1-4 \cos \mathrm{A} \cos \mathrm{B} \cos \mathrm{C}$

(c). $\quad \sum \sin \mathrm{A}=4 \cos \mathrm{A} / 2 \cos \mathrm{B} / 2 \cos \mathrm{C} / 2$

(d). $\quad \sum \cos \mathrm{A}=-1+4 \sin \mathrm{A} / 2 \sin \mathrm{B} / 2 \sin \mathrm{C} / 2$

(e). $\quad \sum \tan \mathrm{A}=\tan \mathrm{A} \tan \mathrm{B} \tan \mathrm{C}$ ie., $\mathrm{S} _{1}=\mathrm{S} _{3}$

(f). $\quad \sum \tan \mathrm{A} / 2 \tan \mathrm{B} / 2=1$ or $\sum \cot \mathrm{A} / 2=\cot \mathrm{A} / 2 \cot \mathrm{B} / 2 \cot \mathrm{C} / 2$

Answer the following questions based upon above passage.

i. In a triangle $A B C \frac{\sin A+\sin B+\sin C}{\sin A+\sin B-\sin C}$ equals

(a). $\tan \mathrm{A} / 2 \cot \mathrm{B} / 2$

(b). $\cot \mathrm{A} / 2 \tan \mathrm{B} / 2$

(c). $\cot \mathrm{A} / 2 \cot \mathrm{B} / 2$

(d). $\tan \mathrm{A} / 2 \tan \mathrm{B} / 2$

Show Answer Answer: (c)

ii. $\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C}-2 \cos \mathrm{A} \cos \mathrm{B} \cos \mathrm{C}$ equals

(a). 1

(b). 2

(c). 3

(d). 4

Show Answer Answer: (b)

iii. In a $\triangle \mathrm{ABC}$, whose angles are acute and positive such that $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$ and $\cot \mathrm{A} / 2 \cot \mathrm{B} / 2 \cot \mathrm{C} / 2=\mathrm{K}$ then

(a). $\mathrm{K} \leq 3$

(b). $\mathrm{K} \leq 3 \sqrt{3}$

(c). $\mathrm{K} \geq 3 \sqrt{3}$

(d). none

Show Answer Answer: (c)

iv. $\tan \mathrm{A}, \tan \mathrm{B}, \tan C$ are the roots of the cubic equation $\mathrm{x}^{3}-7 \mathrm{x}^{2}+11 \mathrm{x}-7=0$ then $\mathrm{A}+\mathrm{B}+\mathrm{C}$ equals

(a). $\frac{\pi}{2}$

(b). $\pi$

(c). $0$

(d). none

Show Answer Answer: (b)

12. Matchning type question :-

Column I Column II
a. $\sin (\mathrm{B}+\mathrm{C}-\mathrm{A})+\sin (\mathrm{C}+\mathrm{A}-\mathrm{B})+$ $\sin (\mathrm{A}+\mathrm{B}-\mathrm{C})=$ p. $1-2\cos\frac{A}{2}\cos \frac{B}{2}\cos\frac{C}{2}$
b. $\sin ^{2} \frac{\mathrm{A}}{2}+\sin ^{2} \frac{\mathrm{B}}{2}-\sin ^{2} \frac{\mathrm{C}}{2}=$ q. $1$
c. If $\tan ^{2} \frac{\mathrm{A}}{2}+\tan ^{2} \frac{\mathrm{B}}{2}+\tan ^{2} \frac{\mathrm{C}}{2}=\mathrm{K}$ r. $4 \sin \mathrm{A} \sin \mathrm{B} \sin \mathrm{C}$

then $\mathrm{K} \geq$

Show Answer Answer: a - r, b - p, c - q

Assertion and reason type questions

$\mathrm{A}$ : Both $\mathrm{A}$ and $\mathrm{R}$ are individually true and $\mathrm{R}$ is the correct explaination of $\mathrm{A}$

$\mathrm{B}$ : Both $\mathrm{A}$ and $\mathrm{R}$ are individually true and $\mathrm{R}$ is not the correct explaination of $\mathrm{A}$

$\mathrm{C}: \mathrm{A}$ is true but $\mathrm{R}$ is false

$\mathrm{D}: \mathrm{A}$ is false but $\mathrm{R}$ is true

13. Assertion (A) : $\tan \theta+2 \tan 2 \theta+4 \tan 4 \theta+8 \tan 8 \theta+16 \cot 16 \theta=\cot \theta$

Reason $(\mathrm{R}): \cot \theta-\tan \theta=2 \cot 2 \theta$

(a). A

(b). B

(c). C

(d). D

Show Answer Answer: (a)

14. Assertion (A): $\sec ^{2} \theta=\frac{4 x y}{(x+y)^{2}} \Rightarrow x=y$

Reason $(\mathrm{R}): \sec \theta \geq 1$

(a). A

(b). B

(c). C

(d). D

Show Answer Answer: (a)

15. Assertion (A) : If A, B, C, D be the angles of a cyclic quadrilateral then $\cos \mathrm{A}+\cos \mathrm{B}+\cos \mathrm{C}+\cos \mathrm{D}=0$

Reason $(\mathrm{R}): \sin \mathrm{A}+\sin \mathrm{B}+\sin \mathrm{C}+\sin \mathrm{D}=0$

(a). A

(b). B

(c). C

(d). D

Show Answer Answer: (c)


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ