Binomial Theorem - Principle and simple applications (Lecture-01)

1. Binomial Theorem for positive integral index.

If $x, y \varepsilon R$ and $n \varepsilon N$

$(x+y)^{n}={ }^{n} C _{0} x^{n}+{ }^{n} C _{1} x^{n-1} y+{ }^{n} C _{2} x^{n-2} y^{2}+\ldots \ldots \ldots+{ }^{n} C _{r} x^{n-r} y^{r}+\ldots .+{ }^{n} C _{n} y^{n}=\sum\limits _{r=0}^{n}{ }^{n} C _{r} x^{n-r} y^{r}$

Properties
  • Number of terms of the above expansion is $(\mathrm{n}+1)$
  • The binomial coefficients equidistant from the beginning and the end in a binomial expansion are equal.
  • General term $=\mathrm{T} _{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \mathrm{y}^{\mathrm{r}}$

Middle term $-\left[\begin{array}{l}\mathrm{n} \text { is even : only one middle term }\left(\dfrac{\mathrm{n}}{2}+1\right)^{\text {th }} \text { term. } \\ \mathrm{n} \text { is odd : Two middle terms }\left(\dfrac{\mathrm{n}+1}{2}\right)^{\text {th }} \text { and }\left(\dfrac{\mathrm{n}+3}{2}\right)^{\text {th }} \text { term. }\end{array}\right.$

Greatest coefficient $-\left[\begin{array}{l}n \text { is even }{ }^{n} C _{\dfrac{n}{2}} \\ n \text { is odd }{ }^{n} C _{\dfrac{n-1}{2}} \text { and }{ }^{n} C _{\dfrac{n+1}{2}}\end{array}\right.$

Greatest Term

To find numerically greatest term in the expansion of $(1+x)^{n}$

i. Calculate $\mathrm{m}=\dfrac{|\mathrm{x}|(\mathrm{n}+1)}{|\mathrm{x}|+1}$

ii. If $\mathrm{m}$ is an integer, then $\mathrm{T} _{\mathrm{m}}$ and $\mathrm{T} _{\mathrm{m}+1}$ are equal and both are greatest term.

iii. If $\mathrm{m}$ is not an integer then $\mathrm{T} _{[\mathrm{m}]+1}$ is the greatest term.

Note : To find the greatest term in the expansion of $(x+y)^{n}$, find the greatest term in $\left(1+\dfrac{y}{x}\right)^{n}$ and then multiply by $x^{n}\left(\operatorname{since}(x+y)^{n}=x^{n}\left(1+\dfrac{y}{x}\right)^{n}\right.$

2. Multinomial Theorem (for a positive integral index)

$\left(\mathrm{x} _{1}+\mathrm{x} _{2}+\mathrm{x} _{3}+\ldots . \mathrm{x} _{\mathrm{k}}\right)^{\mathrm{n}}=\sum \dfrac{\mathrm{n} !}{\mathrm{n} _{1} ! \mathrm{n} _{2} ! \mathrm{n} _{3} ! \ldots . \mathrm{n} _{\mathrm{k}} !} \mathrm{x} _{1}^{\mathrm{n} _{1}} \mathrm{x} _{2}^{\mathrm{n} _{2}} \mathrm{x} _{3}{ }^{\mathrm{n} _{3}} \ldots . . \mathrm{x} _{\mathrm{k}}{ }^{\mathrm{n} _{k}}$

where $\mathrm{n} _{\mathrm{i}} \varepsilon \quad{0,1,2, \ldots \mathrm{n}}, \mathrm{n} _{1}+\mathrm{n} _{2}+\ldots . .+\mathrm{n} _{\mathrm{k}}=\mathrm{n}$

  • The greatest coefficient in this expansion is $\dfrac{\mathrm{n} !}{(\mathrm{q} !)^{\mathrm{k}-\mathrm{r}}((\mathrm{q}+1) !)^{\mathrm{r}}}$ where $\mathrm{q}$ is the quotient and $r$ is the remainder when $n$ is divided by $\mathrm{k}$.

Eg. Find the greatest coefficient in $(x+y+z+w)^{15}$

$\mathrm{n}=15, \mathrm{k}=4$ we have $15=4 \times 3+3$ i.e. $\mathrm{q}=3, \mathrm{r}=3$ greatest coefficient $=\dfrac{15 !}{(3 !)^{1}(4 !)^{3}}$

  • Number of distinct terms in the expansion is ${ }^{n+k-1} C _{k-1}$ (Total number of terms).
  • Number of positive integer solutions of $\mathrm{x} _{1}+\mathrm{x} _{2}+\ldots .+\mathrm{x} _{\mathrm{k}}=n$ is $\mathrm{x}^{\mathrm{n}-1} \mathrm{C} _{\mathrm{k}-1}$.
  • Number of non negative integer solutions of $x _{1}+x _{2}+\ldots .+x _{k}=n$ is ${ }^{n+k-1} C _{k-1}$.
  • Sum of all the coefficients is obtained by setting $x _{1}=x _{2}=\ldots . . x _{k}=1$.

3. Binomial Theorem for Negative or Fractional Indices

If $n \varepsilon Q$, then

$(1+\mathrm{x})^{\mathrm{n}}=1+\mathrm{nx}+\dfrac{\mathrm{n}(\mathrm{n}-1)}{2 !} \mathrm{x}^{2}+\dfrac{\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)}{3 !} \mathrm{x}^{2}+\ldots \ldots \infty$ provided $|\mathrm{x}|<1$.

  • For any index $n$, the general term in the expansion of

i. $(1+x)^{n}$ is $T _{r+1}=\dfrac{n(n-1) \ldots \ldots \ldots .(n-r+1)}{r !} x^{r}$

ii. $(1+\mathrm{x})^{-\mathrm{n}}$ is $\mathrm{T} _{\mathrm{r}+1}=\dfrac{(-1)^{\mathrm{r}} \mathrm{n}(\mathrm{n}+1) \ldots \ldots \ldots .(\mathrm{n}+\mathrm{r}-1)}{\mathrm{r} !} \mathrm{x}^{\mathrm{r}}$

iii. $(1-x)^{n}$ is $T _{r+1}=\dfrac{(-1)^{r} n(n-1) \ldots \ldots \ldots .(n-r+1)}{r !} x^{r}$

iv. $(1-\mathrm{x})^{-\mathrm{n}}$ is $\mathrm{T} _{\mathrm{r}+1}=\dfrac{\mathrm{n}(\mathrm{n}+1) \ldots \ldots \ldots .(\mathrm{n}+\mathrm{r}-1)}{\mathrm{r} !} \mathrm{x}^{\mathrm{r}}$

  • The following expansions should be remembered (for $|\mathrm{x}|<1$ ).

i. $(1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots \ldots \ldots \infty$

ii. $(1-x)^{-1}=1+x+x^{2}+x^{3}+\ldots \ldots . . \infty$

iii. $(1+x)^{-2}=1-2 x+3 x^{2}-4 x^{3}+\ldots \ldots \ldots \infty$

iv. $(1-x)^{-2}=1+2 x+3 x^{2}+4 x^{3}+\ldots \ldots \ldots \infty$

  • Note : The expansion in ascending powers of $x$ is valid if $x$ is small. If $x$ is large (i.e. $|x|>1$ ), then we may find it convenient to expand in powers of $\dfrac{1}{\mathrm{x}}$, which then will be small.

4. Exponential series

  • $\mathrm{e}^{\mathrm{x}}=1+\dfrac{\mathrm{x}}{1 !}+\dfrac{\mathrm{x}^{2}}{2 !}+\dfrac{\mathrm{x}^{3}}{3 !}+\ldots . \infty$

  • $\mathrm{e}=1+\dfrac{1}{1 !}+\dfrac{1}{2 !}+\dfrac{1}{3 !}+\ldots . . \infty(\mathrm{e} \simeq 2.72)$

  • $\mathrm{e}+\mathrm{e}^{-1}=2\left(1+\dfrac{1}{2 !}+\dfrac{1}{4 !}+\dfrac{1}{6 !}+\ldots . . \infty\right)$

  • $\mathrm{e}-\mathrm{e}^{-1}=2\left(\dfrac{1}{1 !}+\dfrac{1}{3 !}+\dfrac{1}{5 !}+\dfrac{1}{7 !}+\ldots . . \infty\right)$

5. Logarithmic series

For $-1<\mathrm{x} \leq 1$

$\log _{e}(1+x)=x-\dfrac{x^{2}}{2}+\dfrac{x^{3}}{3}-\dfrac{x^{4}}{4}+\ldots . \infty$

  • $\log _{e}(1-x)=-x-\dfrac{x^{2}}{2}-\dfrac{x^{3}}{3}-\dfrac{x^{4}}{4}+\ldots . \infty,-1 \leq x<1$

  • $\log \left(\dfrac{1+x}{1-x}\right)=2\left(x+\dfrac{x^{3}}{3}+\dfrac{x^{5}}{5}+\ldots . \infty\right),-1<x<1$

  • $\log _{\mathrm{e}} 2=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\ldots . . \infty \approx 0.693$

Solved Examples

1. Let $(1+\mathrm{x})^{\mathrm{n}}=\sum\limits _{\mathrm{r}=0}^{\mathrm{n}} \mathrm{a} _{\mathrm{r}} \mathrm{x}^{\mathrm{r}}$, then $\left(1+\dfrac{a _{1}}{a _{0}}\right)\left(1+\dfrac{a _{2}}{a _{1}}\right)\left(1+\dfrac{a _{3}}{a _{2}}\right) \ldots \ldots .\left(1+\dfrac{a _{n}}{a _{n-1}}\right)$ is equal to

(a) $\dfrac{(\mathrm{n}+1)^{\mathrm{n}+1}}{\mathrm{n} !}$

(b) $\dfrac{(\mathrm{n}+1)^{\mathrm{n}}}{\mathrm{n} !}$

(c) $\dfrac{(n)^{n-1}}{(n-1) !}$

(d) None of these

Show Answer

Solution:

$\begin{aligned} (1+x)^{n} & ={ }^{n} C _{0}+{ }^{n} C _{1} x+{ }^{n} C _{2} x^{2}+\ldots \ldots \ldots .+{ }^{n} C _{n} x^{n} \\ & =a _{0}+a _{1} x+a _{2} x^{2}+\ldots \ldots \ldots .+a _{n} x^{n} \text { (given) } \end{aligned}$

Comparing $\mathrm{a} _{0}={ }^{n} \mathrm{C} _{0}, \mathrm{a} _{1}={ }^{\mathrm{n}} \mathrm{C} _{1}, \mathrm{a} _{2}={ }^{\mathrm{n}} \mathrm{C} _{2}, \ldots \ldots \ldots .$. and so on.

$\begin{aligned} & \therefore\left(1+\dfrac{{ }^{n} C _{1}}{{ }^{n} C _{0}}\right)\left(1+\dfrac{{ }^{n} C _{2}}{{ }^{n} C _{1}}\right)\left(1+\dfrac{{ }^{n} C _{3}}{{ }^{n} C _{2}}\right) \cdots \cdots \cdot\left(1+\dfrac{{ }^{n} C _{n}}{{ }^{n} C _{n-1}}\right) \\ & =\left(1+\dfrac{n-0}{1}\right)\left(1+\dfrac{n-1}{2}\right)\left(1+\dfrac{n-2}{3}\right) \ldots \ldots .\left(1+\dfrac{n-n+1}{n}\right) \\ & =\dfrac{1+n}{1} \cdot \dfrac{1+n}{2} \cdot \dfrac{1+n}{3} \cdots \cdots \cdot \dfrac{1+n}{n}=\dfrac{(n+1)^{n}}{n !} \end{aligned}$

Answer b

2. If $\mathrm{a} _{\mathrm{n}}=\sum\limits _{\mathrm{r}=0}^{\mathrm{n}} \dfrac{1}{{ }^{n} \mathrm{C} _{\mathrm{r}}}$, then $\sum\limits _{\mathrm{r}=0}^{\mathrm{n}} \dfrac{\mathrm{r}}{{ }^{n} \mathrm{C} _{\mathrm{r}}}$ equals

(a) $(n-1) \cdot a _{n}$

(b) $n _{n}$

(c) $\dfrac{1}{2} \mathrm{na} _{\mathrm{n}}$

(d) None of these

Show Answer

Solution:

Let $S=\sum\limits _{\mathrm{r}=0}^{\mathrm{n}} \dfrac{\mathrm{r}}{{ }^{n} \mathrm{C} _{\mathrm{r}}}$

$\Rightarrow S=\dfrac{0}{{ }^{n} C _{0}}+\dfrac{1}{{ }^{n} C _{1}}+\dfrac{2}{{ }^{n} C _{2}}+\dfrac{3}{{ }^{n} C _{3}}+\ldots \ldots \ldots+\dfrac{n}{{ }^{n} C _{n}}$

Also, $S=\dfrac{n}{{ }^{n} C _{0}}+\dfrac{n-1}{{ }^{n} C _{1}}+\dfrac{n-2}{{ }^{n} C _{2}}+\dfrac{n-3}{{ }^{n} C _{3}}+\ldots \ldots \ldots+\dfrac{0}{{ }^{n} C _{n}}$

Adding (1) and 2

$\begin{aligned} & 2 S=\dfrac{n}{{ }^{n} C _{0}}+\dfrac{n}{{ }^{n} C _{1}}+\dfrac{n}{{ }^{n} C _{2}}+\ldots \ldots .+\dfrac{n}{{ }^{n} C _{n}} \\ & 2 S=n\left(\dfrac{1}{{ }^{n} C _{0}}+\dfrac{1}{{ }^{n} C _{1}}+\dfrac{1}{{ }^{n} C _{2}}+\ldots \ldots .+\dfrac{1}{{ }^{n} C _{n}}\right) \\ & \Rightarrow 2 S=n a _{n} \Rightarrow S=\dfrac{1}{2} n a _{n} \end{aligned}$

Answer c

3. If $(1+x)^{10}=a _{0}+a _{1} x+a _{2} x^{2}+a _{3} x^{3}+\ldots \ldots .+a _{10} x^{10}$, then $\left(a _{0}-a _{2}+a _{4}-a _{6}+a _{8}-a _{10}\right)^{2}+\left(a _{1}-a _{3}+a _{5}-a _{7}+a _{9}\right)^{2}$ is equal to

(a) $3^{10}$

(b) $2^{10}$

(c) $2^{9}$

(d) none of these

Show Answer

Solution:

Put $\mathrm{x}=\mathrm{i}$ and $\mathrm{x}=-\mathrm{i}$

$\Rightarrow(1+i)^{10}=\left(a _{0}-a _{2}+a _{4}-a _{6}+a _{8}-a _{10}\right)+i\left(a _{1}-a _{3}+a _{5}+a _{5}-a _{7}+a _{9}\right)$

Also, $(1-i)^{10}=\left(a _{0}-a _{2}+a _{4}-a _{6}+a _{8}-a _{10}\right)-i\left(a _{1}-a _{3}+a _{5}-a _{7}+a _{9}\right)$

Multiply (1) and (2)

$\left((1+i)(1-i)^{10}=\left(a _{0}-a _{2}+a _{4}-a _{6}+a _{8}-a _{10}\right)^{2}+\left(a _{1}-a _{3}+a _{5}-a _{7}+a _{9}\right)^{2}\right.$

$2^{10}=\left(a _{0}-a _{2}+a _{4}-a _{6}+a _{8}-a _{10}\right)^{2}+\left(a _{1}-a _{3}+a _{5}-a _{7}+a _{9}\right)^{2}$

Answer b

4. If $\left(1+x+2 x^{2}\right)^{20}=a _{0}+a _{1} x+a _{2} x^{2}+a _{3} x^{3}+\ldots \ldots .+a _{40} x^{40}$, then $a _{0}+a _{2}+a _{4}+\ldots \ldots .+a _{38}$ is equal to

(a) $2^{19}\left(2^{20}-1\right)$

(b) $2^{20}\left(2^{19}-1\right)$

(c) $2^{19}\left(2^{20}+1\right)$

(d) none of these

Show Answer

Solution:

Put $\mathrm{x}=1$ and $\mathrm{x}=-1$ and adding we get $4^{20}+2^{20}=2\left(\mathrm{a} _{0}+\mathrm{a} _{2}+\mathrm{a} _{4}+\ldots+\mathrm{a} _{38}+\mathrm{a} _{40}\right)$

$\Rightarrow 2^{39}+2^{19}=\mathrm{a} _{0}+\mathrm{a} _{2}+\ldots .+\mathrm{a} _{38}+2^{20} \quad\left(\because \mathrm{a} _{40}=2^{20}\right)$

$\therefore \mathrm{a} _{0}+\mathrm{a} _{2}+\mathrm{a} _{4}+\ldots .+\mathrm{a} _{38}=2^{39}+2^{19}-2^{20}$

$=2^{19}\left(2^{20}+1-2\right)$

$=2^{19}\left(2^{20}-1\right)$

Answer a

5. The coefficient of $x^{13}$ in the expansion of $(1-x)^{5}\left(1+x+x^{2}+x^{3}\right)^{4}$ is

(a) 4

(b) -4

(c) 0

(d) none of these

Show Answer

Solution:

Coefficient of $x^{13}$ in $=(1-x)^{5}\left(1+x+x^{2}+x^{3}\right)^{4}=(1-x)^{5}\left((1+x)\left(1+x^{2}\right)\right)^{4}$

$=(1-\mathrm{x})\left\{(1-\mathrm{x})(1+\mathrm{x})\left(1+\mathrm{x}^{2}\right)\right\}^{4}$

$=(1-\mathrm{x})\left\{\left(1-\mathrm{x}^{4}\right)^{4}\right.$

$=(1-x)\left(1-4 x^{4}+6 x^{8}-4 x^{12}+x^{16}\right)$

$\therefore \quad$ coefficient of $\mathrm{x}^{13}$ is $-1 \times-4=4$

Answer a

6. The sum ${ }^{20} \mathrm{C} _{0}+{ }^{20} \mathrm{C} _{1}+{ }^{20} \mathrm{C} _{2}+\ldots \ldots \ldots \ldots . .+{ }^{20} \mathrm{C} _{10}$ is equal to

(a) $2^{20}+\dfrac{20 !}{(10 !)^{2}}$

(b) $2^{19}-\dfrac{1}{2} \dfrac{20 !}{(10 !)^{2}}$

(c) $2^{19}+\dfrac{20 !}{(10 !)^{2}}$

(d) none of these

Show Answer

Solution:

In the expansion of $(1+\mathrm{x})^{20}$, put $\mathrm{x}=1$

$\begin{aligned} & 2^{20}={ }^{20} \mathrm{C} _{0}+{ }^{20} \mathrm{C} _{1}+{ }^{20} \mathrm{C} _{2}+\ldots \ldots \ldots \ldots \ldots+{ }^{20} \mathrm{C} _{9}+{ }^{20} \mathrm{C} _{10}+\ldots \ldots .{ }^{20} \mathrm{C} _{20} \\ & =2\left({ }^{20} \mathrm{C} _{0}+{ }^{+20} \mathrm{C} _{1}+\ldots \ldots \ldots \ldots \ldots+{ }^{20} \mathrm{C} _{10}\right)-{ }^{20} \mathrm{C} _{10} \quad\left(\because{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C} _{\mathrm{n}-\mathrm{r}}\right) \\ & \Rightarrow \dfrac{2^{20}+{ }^{20} \mathrm{C} _{10}}{2}={ }^{20} \mathrm{C} _{0}+{ }^{20} \mathrm{C} _{1}+\ldots \ldots \ldots \ldots . .+{ }^{20} \mathrm{C} _{10} \\ & =2^{19}+\dfrac{1}{2} \dfrac{20 !}{(10 !)^{2}}={ }^{20} \mathrm{C} _{0}+{ }^{20} \mathrm{C} _{1}+\ldots \ldots \ldots \ldots .+{ }^{20} \mathrm{C} _{10} \end{aligned}$

Answer d

Exercise

1. The coefficient of $\mathrm{x}^{4}$ in $\left(\dfrac{\mathrm{x}}{2}-\dfrac{3}{\mathrm{x}^{2}}\right)^{10}$ is

(a) $\dfrac{405}{256}$

(b) $\dfrac{405}{259}$

(c) $\dfrac{450}{263}$

(d) None of these

Show Answer Answer: a

2. Let $T _{n}$ denotes the number of triangles which can be formed using the vertices of a regular polygon of $n$ sides. If $T _{n+1}-T _{n}=21$, then $n$ equals

(a) 5

(b) 7

(c) 6

(d) 4

Show Answer Answer: b

3. The sum $\sum\limits _{i=1}^{m}\left(\begin{array}{c}10 \ i\end{array}\right)\left(\begin{array}{c}20 \ m-i\end{array}\right)$, where $\left(\begin{array}{l}p \ q\end{array}\right)=0$ if $p>q$, is maximum when $m$ is

(a) 5

(b) 10

(c) 15

(d) 20

Show Answer Answer: c

4. Coefficient of $\mathrm{t}^{24}$ in $\left(1+\mathrm{t}^{2}\right)^{12}\left(1+\mathrm{t}^{12}\right)\left(1+\mathrm{t}^{24}\right)$ is

(a) $\quad{ }^{12} \mathrm{C} _{6}+3$

(b) $\quad{ }^{12} \mathrm{C} _{6}+1$

(c) $\quad{ }^{12} \mathrm{C} _{6}$

(d) $\quad{ }^{12} \mathrm{C} _{6}+2$

Show Answer Answer: d

5. If ${ }^{n-1} C _{r}=\left(k^{2}-3\right)^{n} C _{r+1}$, then $k$ belongs to

(a) $(-\infty,-2]$

(b) $[2, \infty)$

(c) $[-\sqrt{3}, \sqrt{3}]$

(d) $(\sqrt{3}, 2)$

Show Answer Answer: d

6. If $(1+a x)^{n}=1+8 x+24 x^{2}$ then $\mathrm{a}=\ldots$ and $\mathrm{n}=$ ____________.

Show Answer Answer: a=2, n=4

7. The greatest term in the expansion of $\sqrt{3}\left(1+\dfrac{1}{\sqrt{3}}\right)^{20}$ is

(a) $\quad\left(\begin{array}{c}20 \ 7\end{array}\right) \dfrac{1}{27}$

(b) $\quad\left(\begin{array}{c}20 \ 6\end{array}\right) \dfrac{1}{81}$

(c) $\quad \dfrac{1}{9}\left(\begin{array}{c}20 \ 9\end{array}\right)$

(d) none of these

Show Answer Answer: a

8. If $x=(\sqrt{2}+1)^{6}$, then the integral part of $[x]$ is

(a) 98

(b) 197

(c) 196

(d) 198

Show Answer Answer: b

9. The greatest integer $m$ such that $5^{m}$ divides $7^{2 n}+2^{3 n-3} \cdot 3^{n-1}$ for $n \varepsilon N$ is

(a) 0

(b) 1

(c) 2

(d) 3

Show Answer Answer: c

10. If $\dfrac{1}{(1-a x)(1-b x)}=a _{0}+a _{1}+a _{2} x^{2} \ldots .$. , then $a _{n}=$

(a) $\dfrac{a^{n+1}-b^{n+1}}{b-a}$

(b) $\dfrac{b^{n+1}-a^{n+1}}{b-a}$

(c) $\dfrac{b^{n}-a^{n}}{b-a}$

(d) $\dfrac{a^{n}-b^{n}}{b-a}$

Show Answer Answer: b

11. Read the passage and answer the following questions.

If $\mathrm{n}$ is a positive integer and $\mathrm{a} _{1}, \mathrm{a} _{2}, \mathrm{a} _{3} \ldots . . \mathrm{a} _{\mathrm{m}} \varepsilon \mathrm{C}$, then $\left(a _{1}+a _{2}+a _{3}+\ldots . .+a _{m}\right)^{n}=\sum \dfrac{n !}{n _{1} ! n _{2} ! n _{3} ! \ldots \ldots . n _{m} !} \cdot a _{1}{ }^{n _{1}} \cdot a _{2}{ }^{n _{2}} \cdot a _{3}{ }^{n _{3}} \ldots \ldots . a _{m}{ }^{n _{m}}$ where $n _{1}, n _{2}, n _{3} \ldots . . n _{m}$ are all non-negative integers subject to the condition $\mathrm{n} _{1}+\mathrm{n} _{2}+\mathrm{n} _{3}+\ldots .+\mathrm{n} _{\mathrm{m}}=\mathrm{n}$.

i. The number of distinct terms in the expansion of $\left(\mathrm{x} _{1}+\mathrm{x} _{2}+\mathrm{x} _{3}+\ldots . .+\mathrm{x} _{\mathrm{n}}\right)^{4}$ is

(a) ${ }^{n+1} C _{4}$

(b) ${ }^{n+2} \mathrm{C} _{4}$

(c) ${ }^{n+3} C _{4}$

(d) ${ }^{n+4} \mathrm{C} _{4}$

ii. The coefficient of $x^{3} y^{4} z$ in the expansion of $(1+x-y+z)^{9}$ is

(a) 2320

(b) 2420

(c) 2520

(d) 2620

iii. The coefficient of $a^{3} b^{4} c^{5}$ in the expansion of $(b c+c a+a b)^{6}$ is

(a) 40

(b) 60

(c) 80

(d) 100

iv. The coefficient of $x^{39}$ in the expansion of $\left(1+x+2 x^{2}\right)^{20}$ is

(a) $5.2^{19}$

(b) $5.2^{20}$

(c) $5.2^{21}$

(d) $5.2^{23}$

v. The coefficient of $x^{20}$ in $\left(1-x+x^{2}\right)^{20}$ and in $\left(1+x-x^{2}\right)^{20}$ are respectively $a$ and $b$, then

(a) $\mathrm{a}=\mathrm{b}$

(b) $\mathrm{a}>\mathrm{b}$

(c) $\mathrm{a}<\mathrm{b}$

(d) $a+b=0$

Show Answer Answer: (i) c, (ii) c (iii) b (iv) c (v) b

12.* Match the following:

Column I Column II
(a) If $n$ be the degree of the polynomial $\sqrt{\left(3 x^2+1\right)}\left(\left(x+\sqrt{\left(3 x^2+1\right)}\right)^7-\left(x-\sqrt{\left(3 x^2+1\right)}\right)^2\right),$ then $\mathrm{n}$ is divisible by (p) 2
(b) In the expression of $(x+a)^n$ there is only one middle term for $\mathrm{x}=3, \mathrm{a}=2$ and seventh term is numerically greatest term, then $n$ is divisible by (q) 4
(c) The sum of the binomial coefficients in the expansion of $\left(x^{-3 / 4}+n x^{5 / 4}\right)^m$, where $m$ is positive integer lies between 200 and 400 and the term independent of $x$ is equals 448 . Then $\mathrm{n}^5$ is divisible by (r) 8
(s) 16
(t) 32
Show Answer Answer: $\mathrm{a} \rightarrow \mathrm{p}, \mathrm{q}, \mathrm{r} ; \mathrm{b} \rightarrow \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s} ; \mathrm{c} \rightarrow \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}$


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ