Binomial Theorem - For Positive Integral Index (Lecture-02)

Summation of Series (involving binomial coefficients)

1. Bino-geometric series

${ }^{n} \mathrm{C} _{0}+{ }^{n} \mathrm{C} _{1} \mathrm{x}+{ }^{\mathrm{n}} \mathrm{C} _{2} \mathrm{x}^{2}$.

$+{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{n}} \mathrm{x}^{\mathrm{n}}=(1+\mathrm{x})^{\mathrm{n}}$

2. Bino-arithmetic series

$a^{n} C _{o}+(a+d)^{n} C _{1}+(a+2 d)^{n} C _{2}+\ldots \ldots \ldots \ldots \ldots \ldots . .+(a+n d)^{n} C _{n}$

This series is the sum of the products of corresponding terms of

${ }^{\mathrm{n}} \mathrm{C} _{0},{ }^{\mathrm{n}} \mathrm{C} _{1},{ }^{\mathrm{n}} \mathrm{C} _{2}, \ldots \ldots \ldots \ldots . .{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{n}}$ (binomial coefficients) and $\mathrm{a}, \mathrm{a}+\mathrm{d}, \mathrm{a}+2 \mathrm{~d}$ ……………a+nd

(arithmetic progression)

Such series can be solved either by

(i) eliminating $\mathrm{r}$ in the multiplier of binomial coefficient from the $(\mathrm{r}+1)^{\text {th }}$ terms of the series (i.e. using $\mathrm{r}^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}=\mathrm{n}^{\mathrm{n}-1} \mathrm{C} _{\mathrm{r}-1}$ )

or

(ii) Differentiating the expansion of $\mathrm{x}^{\mathrm{a}}\left(1+\mathrm{x}^{\mathrm{d}}\right)^{\mathrm{n}}$ or (If product of two or more numericals occur, then differentiate again and again till we get the desired result)

3. Bino-harmonic series

$\dfrac{{ }^{n} C _{0}}{a}+\dfrac{{ }^{n} C _{1}}{a+d}+\dfrac{{ }^{n} C _{2}}{a+2 d}+\ldots \ldots . .+\dfrac{{ }^{n} C _{n}}{a+n d}$

This series is the sum of the products of corresponding terms of

${ }^{\mathrm{n}} \mathrm{C} _{0},{ }^{\mathrm{n}} \mathrm{C} _{1},{ }^{\mathrm{n}} \mathrm{C} _{2}, \ldots \ldots \ldots \ldots . .{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{n}}$ (binomial coefficients) and

$\dfrac{1}{a}, \dfrac{1}{a+d}, \dfrac{1}{a+2 d}, \ldots \ldots \ldots \ldots \ldots . . . \dfrac{1}{a+n d}$ (harmonic progression)

Such seris can be solved either by

(i) eliminating $\mathrm{r}$ in the multiplier of binomial coefficient from the $(\mathrm{r}+1)^{\text {th }}$ term of the series

(ie using $\dfrac{1}{\mathrm{r}+1}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}=\dfrac{1}{\mathrm{n}+1}{ }^{\mathrm{n}+1} \mathrm{C} _{\mathrm{r}+1}$ ) or

(iii) integrating suitable expansion

Note

(i) If the sum contains $\mathrm{C} _{0}, \mathrm{C} _{1}, \mathrm{C} _{2} \ldots \ldots \ldots \ldots \mathrm{C} _{\mathrm{n}}$ are all positive signs, integrate between limits 0 to 1

(ii) If the sum contains alternate signs (i.e. + & ) then integrate between limits -1 to 0

(iii) If the sum contains odd coefficients (i.e. $\mathrm{C} _{0}, \mathrm{C} _{2}, \mathrm{C} _{4}, \ldots \ldots .$. ) then integrate between -1 to +1 .

(iv) If the sum contains even coefficient (i.e. $\mathrm{C} _{1}, \mathrm{C} _{3}, \mathrm{C} _{5}, \ldots \ldots .$. ) then find the difference between (i) & (iii) and then divide by 2

(v) If in denominator of binomial coefficient is product of two numericals then integrate two times first time take limits between 0 to $x$ and second time take suitable limits

4. Bino-binomial series.

${ }^{\mathrm{n}} \mathrm{C} _{0}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}+{ }^{\mathrm{n}} \mathrm{C} _{1}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}+1}+{ }^{\mathrm{n}} \mathrm{C} _{2}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}+2}+\ldots \ldots \ldots .+{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{n}-\mathrm{r}}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{n}} \quad$ or

${ }^{\mathrm{m}} \mathrm{C} _{0}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}+{ }^{\mathrm{m}} \mathrm{C} _{1}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}-1}+{ }^{\mathrm{m}} \mathrm{C} _{2}{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}-2}+\ldots \ldots \ldots . .+{ }^{\mathrm{m}} \mathrm{C} _{\mathrm{r}}{ }^{\mathrm{n}} \mathrm{C} _{0}$

Such series can be solved by multiplying two expansions, one involving the first factors as coefficient and the other involving the second factors as coefficients and finally equating coefficients of a suitable power of $x$ on both sides.

Divisibility Problems

To show that an expression is divisible by an integer

  • write $a^{p n+r}=a^{p n} a^{r}=\left(a^{p}\right)^{n} a^{r}$ if a, $p, n, r \in N$
  • to show the expression is divisible by $\mathrm{k}$, express $\mathrm{a}^{\mathrm{p}}=1+\left(\mathrm{a}^{\mathrm{p}}-1\right)$; if some power of $\left(\mathrm{a}^{\mathrm{p}}-1\right)$ has $\mathrm{k}$ as a factor $a^{p}=2+\left(a^{p}-2\right)$; if some power of $\left(a^{p}-2\right)$ has $k$ as a factor

$a^{p}=q+\left(a^{p}-q\right) \text { if some power of }\left(a^{p}-q\right) \text { has } k \text { as a factor }$

Binomial coefficients

1. $\mathrm{C} _0+\mathrm{C} _1+\mathrm{C} _2+\mathrm{C} _3+\ldots \ldots \ldots \ldots 2^{\mathrm{n}}$

2. $\mathrm{C} _0-\mathrm{C} _1+\mathrm{C} _2-\mathrm{C} _3+\ldots \ldots \ldots \ldots=0$

3. $\mathrm{C} _0-\mathrm{C} _1+\mathrm{C} _2-\mathrm{C} _3+\ldots \ldots \ldots+\mathrm{C} _{\mathrm{r}}(-1)^{\mathrm{r}}={ }^{\mathrm{n}-1} \mathrm{C} _{\mathrm{r}}(-1)^{\mathrm{r}} ; \mathrm{r}<\mathrm{n}$

4. $\mathrm{C} _0+\mathrm{C} _2+\mathrm{C} _4+\mathrm{C}_6+\ldots \ldots \ldots \ldots=2^{\mathrm{n}-1}$

5. $\mathrm{C} _1+\mathrm{C} _3+\mathrm{C} _5+\mathrm{C}_7+\ldots \ldots \ldots \ldots=2^{\mathrm{n}-1}$

6. $\mathrm{C} _0-\mathrm{C} _2+\mathrm{C} _4-\mathrm{C}_6+\ldots \ldots \ldots=(\sqrt{2})^{\mathrm{n}} \cos \dfrac{\mathrm{n} \pi}{4}$

7. $\mathrm{C} _1-\mathrm{C} _3+\mathrm{C} _5-\mathrm{C}_7+\ldots \ldots=(\sqrt{2})^{\mathrm{n}} \sin \dfrac{\mathrm{n} \pi}{4}$

8. $\mathrm{C} _0+\mathrm{C} _4+\mathrm{C} _8+\mathrm{C} _{12}+\ldots \ldots=\dfrac{1}{2}\left(2^{\mathrm{n}-1}+\sqrt{2}^{\mathrm{n}} \cos \dfrac{\mathrm{n} \pi}{4}\right)$

9. $\mathrm{C} _1+\mathrm{C} _5+\mathrm{C} _9+\mathrm{C} _{13}+\ldots \ldots=\dfrac{1}{2}\left(2^{\mathrm{n}-1}+\sqrt{2}^{\mathrm{n}} \sin \dfrac{\mathrm{n} \pi}{4}\right)$

10. $\mathrm{C} _0+\mathrm{C} _3+\mathrm{C} _6+\mathrm{C} _9+\ldots \ldots=\dfrac{1}{3}\left(2^{\mathrm{n}}+2 \cos \dfrac{\mathrm{n} \pi}{3}\right)$

11. $\mathrm{C} _1+2 \mathrm{C} _2+\ldots \ldots \ldots \ldots=\sum \mathrm{rC} _{\mathrm{r}}=\mathrm{n} \cdot 2^{\mathrm{n}-1}$

12. $\mathrm{C} _1-2 \mathrm{C} _2+3 \mathrm{C} _3 \ldots \ldots \ldots \ldots \ldots=\sum(-1)^{\mathrm{r}-1} \mathrm{r} \mathrm{C} _{\mathrm{r}}=0$

13. $1^2 \mathrm{C}_1+2^2 \mathrm{C}_2+\ldots \ldots \ldots \ldots \ldots \ldots=n(\mathrm{n}+1) 2^{2 \mathrm{n}-2}$

14. $1^2 \mathrm{C}_1-2^2 \mathrm{C}_2 \ldots \ldots \ldots \ldots=0$

15. $\mathrm{C} _0{ }^2+\mathrm{C} _1{ }^2+{ }^2 \mathrm{C} _2{ }^2+\ldots \ldots \ldots \ldots . .={ }^{2 \mathrm{n}} \mathrm{C} _{\mathrm{n}}$

16. $\mathrm{C} _0{ }^2-\mathrm{C} _1{ }^2+\mathrm{C} _2{ }^2-\mathrm{C} _3{ }^2 \ldots \ldots \ldots \ldots \ldots=\left\{\begin{array}{l}0 \text { if } \mathrm{n} \text { is odd } \\ (-1)^{\mathrm{n} / 2}{ }^n \mathrm{C} _{\mathrm{n} / 2} \text { if } \mathrm{n} \text { is even }\end{array}\right.$

17. $\sum_{0 \leq i<j \leq n} C_i C_j=2^{2 n-1}-{ }^{2 n-1} C_n$

18. $\sum_{0 \leq i<j \leq n}\left(C_i-C_j\right)^2=(n+1)^{2 n} C_n-2^{2 n}$

Note: Consider the equation $\mathrm{x} _{1}+\mathrm{x} _{2}+\ldots \ldots \ldots+\mathrm{x} _{\mathrm{r}}=\mathrm{n}, . \mathrm{n} \in \mathrm{N}$.

Number of positive integral solutions $={ }^{n-1} \mathrm{C} _{\mathrm{r}-1}$

Number of non negative integral solutions $={ }^{n+r-1} C _{r-1}$

Solved Examples

1. The value of $\sum\limits _{\mathrm{r}=1}^{\mathrm{n}}{ }^{2 \mathrm{n}} \mathrm{C} _{\mathrm{r}} \mathrm{r}$ is

(a) $n .2^{2 n-1}$

(b) $2^{2 \mathrm{n}-1}$

(c) $2^{\mathrm{n}-1}+1$

(d) None of these

Show Answer

Solution:

$\begin{aligned} & \sum\limits _{r=1}^{n} r \dfrac{2 n}{r}{ }^{2 n-1} C _{r-1} \\ = & 2 n \sum\limits _{r=1}^{n}{ }^{2 n-1} C _{r-1} \\ = & 2 n\left({ }^{2 n-1} C _{0}+{ }^{2 n-1} C _{1}+{ }^{2 n-1} C _{2}+\ldots . .{ }^{2 n-1} C _{n-1}\right) \\ = & 2 n \cdot \dfrac{2^{2 n-1}}{2}=n \cdot 2^{2 n-1}\left[\because 2^{2 n-1}=C _{0}+C _{1}+\ldots \ldots . .+C _{2 n-1} \Rightarrow 2^{2 n-1}=2\left(C _{0}+C _{1}+C _{2}+\ldots \ldots . C _{n-1}\right)\right] \end{aligned}$

Answer (a)

2. The coefficient of $x^{5}$ in the expansion of $(1+x)^{21}+(1+x)^{22}+\ldots \ldots \ldots+(1+x)^{30}$ is

(a) ${ }^{31} \mathrm{C} _{5}{ }^{21} \mathrm{C} _{5}$

(b) ${ }^{31} \mathrm{C} _{6}{ }^{-21} \mathrm{C} _{6}$

(c) ${ }^{30} \mathrm{C} _{6}-{ }^{20} \mathrm{C} _{6}$

(d) None of these

Show Answer

Solution:

Co-efficient of $\mathrm{x}^{5}$ in $(1+\mathrm{x})^{21}+(1+\mathrm{x})^{22+}$ $+(1+\mathrm{x})^{30}$

$=$ Co-efficient of $x^{5}$ in $\dfrac{(1+x)^{21}\left{(1+x)^{10}-1\right}}{(1+x)-1}$

$\Rightarrow$ coefficient of $\mathrm{x}^{6}$ in $(1+\mathrm{x})^{31}-(1+\mathrm{x})^{21}$ is ${ }^{31} \mathrm{C} _{6}-{ }^{21} \mathrm{C} _{6}$

Answer (b)

3. The number of distinct terms in the expansion of $(x+y-z)^{16}$ is

(a) 136

(b) 153

(c) 16

(d) 17

Show Answer

Solution:

Apply ${ }^{n+r-1} \mathrm{C} _{\mathrm{r}-1}$ to get number of terms ${ }^{16+3-1} \mathrm{C} _{3-1}={ }^{18} \mathrm{C} _{2}=153$

Answer (b)

4. If I is the integral part of $(2+\sqrt{3})^{\mathrm{n}}$ and $\mathrm{f}$ is the fractional part. Then $(\mathrm{I}+\mathrm{f})(1-\mathrm{f})$ is equal to

(a) 0

(b) 1

(c) $\mathrm{n}$

(d) None of these

Show Answer

Solution:

Let $(2+\sqrt{3})^{\mathrm{n}}=\mathrm{I}+\mathrm{f}$ ………………(1) $\quad \quad \quad$ $(0 \leq \mathrm{f}<1)$

and $(2-\sqrt{3})^{\mathrm{n}}=\mathrm{F}$ ………………(2) $\hspace {1.5 cm}$ $(0<\mathrm{F}<1)$

(1) + (2) gives $\hspace {4 cm}$ (adding $0<\mathrm{f}+\mathrm{F}<2$ )

$2\left({ }^{n} \mathrm{C} _{0} \cdot 2^{\mathrm{n}}+{ }^{\mathrm{n}} \mathrm{C} _{2} \cdot 2^{\mathrm{n}-2}(\sqrt{3})^{2}+\ldots \ldots \ldots\right)=\mathrm{I}+\mathrm{f}+\mathrm{F}$

$\Rightarrow \mathrm{I}+\mathrm{f}+\mathrm{F}$ is an even integer

$\Rightarrow \mathrm{I}+\mathrm{F}$ is an integer

$\Rightarrow \mathrm{f}+\mathrm{F}=1$

$\mathrm{F}=1-\mathrm{f}$ $\hspace {4.5 cm}$ $(\because 0<\mathrm{f}+\mathrm{F}<2)$

$\therefore(\mathrm{I}+\mathrm{F})(1-\mathrm{f})=(2+\sqrt{3})^{\mathrm{n}}(2-\sqrt{3})^{\mathrm{n}}=(4-3)^{\mathrm{n}}=1$

Answer (b)

5. If the middle term of $(1+x)^{2 n}(n \in N)$ is the greatest term of the expansion, then the interval in which $\mathrm{x}$ lies is

(a) $\left[\dfrac{\mathrm{n}+1}{\mathrm{n}}, \dfrac{\mathrm{n}+2}{\mathrm{n}}\right]$

(b) $\left[\dfrac{\mathrm{n}-1}{\mathrm{n}}, \dfrac{\mathrm{n}+1}{\mathrm{n}}\right]$

(c) $\left[\dfrac{\mathrm{n}}{\mathrm{n}+1}, \dfrac{\mathrm{n}+1}{\mathrm{n}}\right]$

(d) None of these

Show Answer

Solution:

$\begin{aligned} & T _{n} \leq T _{n+1} \\ & \Rightarrow \quad{ }^{2 n} C _{n-1}^{n} x^{n-1} \leq \leq^{2 n} C _{n} \cdot x^{n} \\ & & \\ & \Rightarrow \quad \dfrac{{ }^{2 n} C _{n-1}}{{ }^{2 n} C _{n}} \leq x \\ & & \\ & T _{n+1} \geq T _{n+2} \\ & { }^{2 n} C _{n} \cdot x^{n} \geq{ }^{n+2} C _{n+1} x^{n+1} \\ & \dfrac{{ }^{2 n} C _{n}}{{ }^{2 n} C _{n+1}} \geq x \\ & x \geq \dfrac{n}{2 n-n+1} \\ & & \\ & x \leq \dfrac{n+1}{2 n-n} \\ & \Rightarrow \quad \mathrm{x} \in\left[\dfrac{\mathrm{n}}{\mathrm{n}+1}, \dfrac{\mathrm{n}+1}{\mathrm{n}}\right] \end{aligned}$

Answer (c)

6. If $\mathrm{C} _0, \mathrm{C} _1, \mathrm{C} _2, \ldots \ldots \ldots \ldots \ldots \ldots \mathrm{C} _{\mathrm{n}}$ are the binomial coefficients in expansion of $(1+\mathrm{x})^{\mathrm{n}}, \mathrm{n}$ being even, then $\mathrm{C} _0+\left(\mathrm{C} _0+\mathrm{C} _1\right)+\left(\mathrm{C} _0+\mathrm{C} _1+\mathrm{C} _2\right)+\ldots \ldots \ldots+\left(\mathrm{C} _0+\mathrm{C}_1+\ldots \ldots+\mathrm{C} _{0-1}\right)$ is equal to

(a) $\mathrm{n} \cdot 2^{\mathrm{n}}$

(b) $\text { n. } 2^{\mathrm{n}-1}$

(c) $\mathrm{n} .2^{\mathrm{n}-2}$

(d) $n .2^{n-3}$

Show Answer

Solution:

$\begin{aligned} & \therefore \mathrm{C} _{0}+\left(\mathrm{C} _{0}+\mathrm{C} _{1}\right)+\ldots \ldots \ldots+\left(\mathrm{C} _{0}+\mathrm{C} _{1}+\ldots \ldots . \mathrm{C} _{\mathrm{n}-2}\right)+\left(\mathrm{C} _{0}+\mathrm{C} _{1}+\ldots \ldots \ldots \mathrm{C} _{\mathrm{n}-1}\right) \\ & =\left(\mathrm{C} _{\mathrm{n}}\right)+\left(\mathrm{C} _{\mathrm{n}}+\mathrm{C} _{\mathrm{n}-1}\right)+\ldots \ldots .+\left(\mathrm{C} _{0}+\mathrm{C} _{1}+\ldots \ldots . .+\mathrm{C} _{\mathrm{n}-2}\right)+\left(\mathrm{C} _{0}+\mathrm{C} _{1}+\ldots . .+\mathrm{C} _{\mathrm{n}-1}\right) \\ & =2^{\mathrm{n}}+2^{\mathrm{n}}+2^{\mathrm{n}}+\ldots \dfrac{\mathrm{n}}{2} \text { times (Adding the terms equidistant from the beginning and the end) } \\ & =\dfrac{\mathrm{n}}{2} \cdot 2^{\mathrm{n}}=\mathrm{n} \cdot 2^{\mathrm{n}-1} \end{aligned}$

Answer (b)

7. The number of terms in the expansion of $\left(\mathrm{x}^{3}+\dfrac{1}{\mathrm{x}^{3}}+1\right)^{100}$ is

(a) 201

(b) 200

(c) 300

(d) 100 $\mathrm{C} _{3}$

Show Answer

Solution:

$\left(\mathrm{x}^{3}+\dfrac{1}{\mathrm{x}^{3}}+1\right)^{100}=\mathrm{C} _{0}+\mathrm{C} _{1}\left(\mathrm{x}^{3}+\dfrac{1}{\mathrm{x}^{3}}\right)+\mathrm{C} _{2}\left(\mathrm{x}^{3}+\dfrac{1}{\mathrm{x}^{3}}\right)^{2}+\ldots \ldots \ldots . .+\mathrm{C} _{100}\left(\mathrm{x}^{3}+\dfrac{1}{\mathrm{x}^{3}}\right)^{100}$

gives terms of $\mathrm{x}^{3}, \mathrm{x}^{6}, \ldots \ldots \ldots \ldots \ldots \mathrm{x}^{300}, \dfrac{1}{\mathrm{x}^{3}}, \dfrac{1}{\mathrm{x}^{6}}, \ldots \ldots \ldots \dfrac{1}{\mathrm{x}^{300}}$ and a constant term

$\therefore 201$ terms

Answer (a)

Exercise

1. If $\mathrm{C} _{\mathrm{r}}$ stands for ${ }^{n} \mathrm{C} _{\mathrm{r}}$, then the sum of the series $2 \dfrac{\left(\dfrac{\mathrm{n}}{2}\right) !\left(\dfrac{\mathrm{n}}{2}\right) !}{\mathrm{n} !}\left(\mathrm{C} _{0}{ }^{2}-2 \mathrm{C} _{1}{ }^{2}+3 \mathrm{C} _{2}{ }^{2}-\ldots \ldots \ldots+(-1)^{\mathrm{n}}(\mathrm{n}+1) \mathrm{C} _{\mathrm{n}}{ }^{2}\right)$ when $\mathrm{n}$ is an even positive integer, is equal to

(a) $(-1)^{\mathrm{n} / 2}(\mathrm{n}+2)$

(b) $(-1)^{\mathrm{n}}(\mathrm{n}+1)$

(c) $(-1)^{\mathrm{n} / 2}(\mathrm{n}+1)$

(d) None of these

Show Answer Answer: a

2. $\left(\begin{array}{c}30 \ 0\end{array}\right)\left(\begin{array}{c}30 \ 10\end{array}\right)-\left(\begin{array}{c}30 \ 1\end{array}\right)\left(\begin{array}{c}30 \ 11\end{array}\right)+\ldots \ldots \ldots+\left(\begin{array}{l}30 \ 20\end{array}\right)\left(\begin{array}{l}30 \ 30\end{array}\right)$ is equal to

(a) ${ }^{30} \mathrm{C} _{11}$

(b) ${ }^{60} \mathrm{C} _{10}$

(c) ${ }^{30} \mathrm{C} _{10}$

(d) ${ }^{65} \mathrm{C} _{55}$

Show Answer Answer: c

3. If $\mathrm{r}=0,1,2$ 10 , let $\mathrm{A} _{r}, \mathrm{~B} _{r}$ and $\mathrm{C} _{r}$ denote, respectively, the coefficent of $\mathrm{x}^{r}$ in the expansions of $(1+x)^{10},(1+x)^{20}$ and $(1+x)^{30}$. Then $\sum\limits _{r=1}^{10} \mathrm{~A} _{\mathrm{r}}\left(\mathrm{B} _{10} \mathrm{~B} _{\mathrm{r}}-\mathrm{C} _{10} \mathrm{~A} _{\mathrm{r}}\right)$ is equal to

(a) $\mathrm{B} _{10}-\mathrm{C} _{10}$

(b) $\mathrm{A} _{10}\left(\mathrm{~B} _{10}^{2}-\mathrm{C} _{10} \mathrm{~A} _{10}\right)$

(c) 0

(d) $\mathrm{C} _{10}-\mathrm{B} _{10}$

Show Answer Answer: d

4. Value of $2^{k}\left(\begin{array}{l}n \ 0\end{array}\right)\left(\begin{array}{l}n \ k\end{array}\right)-2^{k-1}\left(\begin{array}{l}n \ 1\end{array}\right)\left(\begin{array}{l}n-1 \ k-1\end{array}\right)+2^{k-2}\left(\begin{array}{l}n \ 2\end{array}\right)\left(\begin{array}{l}n-2 \ k-2\end{array}\right)-\ldots \ldots+(-1)^{k}\left(\begin{array}{l}n \ k\end{array}\right)\left(\begin{array}{c}n-k \ 0\end{array}\right)$ is

(a) $\left(\begin{array}{l}\mathrm{n} \ \mathrm{k}\end{array}\right)$

(b) $\left(\begin{array}{l}n-1 \ \mathrm{k}-1\end{array}\right)$

(c) 1

(d) None of these

Show Answer Answer: a

5. $\sum\limits _{\mathrm{r}=0}^{\mathrm{n}}(-1)^{\mathrm{r}}{ }^{n} C _{\mathrm{r}}\left(\dfrac{1}{2^{\mathrm{r}}}+\dfrac{3^{\mathrm{r}}}{2^{2 \mathrm{r}}}+\dfrac{7^{\mathrm{r}}}{2^{3^{\mathrm{r}}}}+\dfrac{15^{\mathrm{r}}}{2^{4 \mathrm{r}}}+\ldots \ldots \ldots\right.$. up to $\mathrm{m}$ tems $\left.)\right)=$

(a) $\dfrac{2^{\mathrm{mn}}-1}{2^{\mathrm{mn}}\left(2^{\mathrm{n}}-1\right)}$

(b) $\dfrac{2^{m}-2^{n}}{m-n}$

(c) 1

(d) None of these

Show Answer Answer: a

6. If $\sum\limits _{\mathrm{r}=0}^{2 \mathrm{n}} \mathrm{a} _{\mathrm{r}}(\mathrm{x}-2)^{\mathrm{r}}=\sum\limits _{\mathrm{r}=0}^{2 \mathrm{n}} \mathrm{b} _{\mathrm{r}}(\mathrm{x}-3)^{\mathrm{r}}$ and $\mathrm{a} _{\mathrm{k}}=1$ for all $\mathrm{k} \geq \mathrm{n}$, then $\mathrm{b} _{\mathrm{n}}=$

(a) ${ }^{n} C _{n}$

(b) ${ }^{2 n+1} \mathrm{C} _{\mathrm{n}+1}$

(c) ${ }^{2 n+1} C _{n}$

(d) None of these

Show Answer Answer: b

7. If $(1+x)^{n}=C _{0}+C _{1} x+C _{2} x^{2}+\ldots \ldots \ldots+C _{n} x^{n}$, then the sum of the products of the $C _{i}{ }^{\prime} \mathrm{s}$ taken two at a time represented by $\sum \sum \mathrm{C} _{\mathrm{i}} \mathrm{C} _{\mathrm{j}}(0 \leq \mathrm{i}<\mathrm{j} \leq \mathrm{n})$ is equal to

(a) $2^{2 n-1}$

(b) $2^{\mathrm{n}}-\dfrac{(2 \mathrm{n}) !}{2(\mathrm{n} !)^{2}}$

(c) $2^{2 \mathrm{n}-1}-\dfrac{(2 \mathrm{n}) !}{2(\mathrm{n} !)^{2}}$

(d) None of these

Show Answer Answer: c

8. Given $\mathrm{s} _{\mathrm{n}}=1+\mathrm{q}^{2} \mathrm{q}^{2}+\ldots \ldots \ldots .+\mathrm{q}^{\mathrm{n}}$ and $\mathrm{S} _{\mathrm{n}}=1+\dfrac{\mathrm{q}+1}{2}+\left(\dfrac{\mathrm{q}+1}{2}\right)^{2}+\ldots \ldots \ldots+\left(\dfrac{\mathrm{q}+1}{2}\right)^{\mathrm{n}}, \mathrm{q} \neq 1$ then ${ }^{n+1} \mathrm{C} _{1}+{ }^{n+1} \mathrm{C} _{2} \mathrm{~S} _{1}+{ }^{n+1} \mathrm{C} _{3} \mathrm{~S} _{2}+\ldots \ldots . .+{ }^{\mathrm{n+1}} \mathrm{C} _{\mathrm{n}+1} \mathrm{~S} _{\mathrm{n}}=$

(a) $2^{\mathrm{n}} \mathrm{S} _{\mathrm{n}}$

(b) $\mathrm{S} _{\mathrm{n}}$

(c) $\dfrac{S _{n}}{2^{n}}$

(d) None of these

Show Answer Answer: a

9. $\lim _{n \rightarrow \infty} \sum\limits _{\mathrm{r}=0}^{\mathrm{n}}\left(\begin{array}{l}\mathrm{n} \ \mathrm{r}\end{array}\right) \dfrac{1}{(\mathrm{r}+3) \mathrm{n}^{\mathrm{r}}}=$

(a) e

(b) e-1

(c) $\mathrm{e}+1$

(d) e-2

Show Answer Answer: d

10. The coefficient of $x^{8}$ is the expansion of $\left(1+\dfrac{x^{2}}{2 !}+\dfrac{x^{4}}{4 !}+\dfrac{x^{6}}{6 !}+\dfrac{x^{8}}{8 !}\right)^{2}$ is

(a) $\dfrac{1}{315}$

(b) $\dfrac{2}{315}$

(c) $\dfrac{1}{105}$

(d) $\dfrac{1}{210}$

Show Answer Answer: a

11. Match the following:

Column I Column II
(a) The sum of binomial coefficients of terms containing power of $x$ more than $x^{20}$ in $(1+x)^{41}$ is divisibile by (p) $2^{39}$
(b) The sum of binomial coefficients of rational terms in the expansion of $(1+\sqrt{2})^{42}$ is divisible by (q) $2^{40}$
(c) If $\left(x+\dfrac{1}{x}+x^{2}+\dfrac{1}{x^{2}}\right)^{21}=a _{0} x^{-42}+a _{1} x^{-41}+a _{2} x^{-40}+\ldots \ldots . .+a _{82} x^{40}$, then $\mathrm{a} _{0}+\mathrm{a} _{2}+\ldots . .+\mathrm{a} _{82}$ is divisible by (r) $2^{41}$
(d) The sum of binomial coefficients of positive real terms in the expansion of $(1+\mathrm{ix})^{42}(\mathrm{x}>0)$ is divisible by (s) $2^{38}$
Show Answer Answer: $\mathrm{a} \rightarrow \mathrm{p}, \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{r}, \mathrm{d} \rightarrow \mathrm{q}$

12. Read the passage and answer the questions that follow:

An equation $\mathrm{a} _{0}+\mathrm{a} _{1} \mathrm{x}+\mathrm{a} _{2} \mathrm{x}^{2}+$ $+\mathrm{a} _{99} \mathrm{x}^{99}+\mathrm{x}^{100}=0$ has roots ${ }^{99} \mathrm{C} _{0},{ }^{99} \mathrm{C} _{1},{ } _{,}^{99} \mathrm{C} _{2}$ ${ }^{99} \mathrm{C} _{99}$.

(i) The value of $\mathrm{a} _{99}$ is

(a) $2^{98}$

(b) $2^{99}$

(c) $-2^{99}$

(d) None of these

(ii) The value of $\mathrm{a} _{98}$ is

(b) $\dfrac{2^{198}+{ }^{198} \mathrm{C} _{99}}{2}$

(c) $2{ }^{99}-{ }^{99} \mathrm{C} _{49}$

(d) None of these

(a) $\dfrac{2^{198}-{ }^{198} \mathrm{C} _{99}}{2}$

(iii) The value of $\left({ }^{99} \mathrm{C} _0\right)^2+\left({ }^{99} \mathrm{C} _1\right)^2+\ldots \ldots \ldots \ldots+\left({ }^{99} \mathrm{C} _{99}\right)^2 \text { is }$

(a) $2 \mathrm{a} _{98}-\mathrm{a} _{99}^{2}$

(b) $\mathrm{a} _{98}^{2}-\mathrm{a} _{99}^{2}$

(c) $\mathrm{a} _{99}^{2}-2 \mathrm{a} _{98}$

(d) None of these

Show Answer Answer: (i) c (ii) a (iii) c


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ