Complex Numbers - nth Roots of Unity (Lecture-01)

1. Let $\mathrm{x}, \mathrm{y} \in \mathrm{R}$ & $\mathrm{i}=\sqrt{-1}$, then $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ is called a complex number

$\operatorname{Re}(\mathrm{z})=\mathrm{x}, \operatorname{Im}(\mathrm{z})=\mathrm{y}$

If $x=0, z$ is purely imaginary

If $y=0, z$ is purely real

2. For two complex numbers $z _{1}=x _{1}+i y _{1} z _{2}=z _{2}+i y _{2}$

(i) $z _{1}=z _{2}$ if and only if $x _{1}=x _{2}$ and $y _{1}=y _{2}$

Note that no order relation is possible among the set of complex numbers. i.e. it is wrong to say $1+\mathrm{i}<4+3 \mathrm{i}$. But $|1+\mathrm{i}|<|4+3 \mathrm{i}|$

(ii) $\mathrm{z} _{1} \pm \mathrm{z} _{2}=\left(\mathrm{x} _{1} \pm \mathrm{x} _{2}\right)+\mathrm{i}\left(\mathrm{y} _{1} \pm \mathrm{y} _{2}\right)$

(iii) $\mathrm{z} _{1} \mathrm{z} _{2}=\left(\mathrm{x} _{1} \mathrm{x} _{2}-\mathrm{y} _{1} \mathrm{y} _{2}\right)+\mathrm{i}\left(\mathrm{x} _{1} \mathrm{y} _{2}+\mathrm{x} _{2} \mathrm{y} _{1}\right)$

(iv) $\dfrac{\mathrm{z} _{1}}{\mathrm{z} _{2}}=\dfrac{\left(\mathrm{x} _{1} \mathrm{x} _{2}+\mathrm{y} _{1} \mathrm{y} _{2}\right)+\mathrm{i}\left(\mathrm{x} _{2} \mathrm{y} _{1}-\mathrm{x} _{1} \mathrm{y} _{2}\right)}{\mathrm{x} _{2}{ }^{2}+\mathrm{y} _{2}{ }^{2}} ; \mathrm{z} _{2} \neq 0$

3. Conjugate of $z$

Conjugate of $z=x+i y$ is defined as $\bar{z}=x-i y$ (i.e. replace $i$ by $-i$ )

Properties

(i) $\overline{(\bar{z})}=\mathrm{z}$

(ii) $\mathrm{z}=\overline{\mathrm{z}} \Leftrightarrow \mathrm{z}$ is puraly real

(iii) $\mathrm{z}=-\overline{\mathrm{z}} \Leftrightarrow \mathrm{z}$ is purely imaginary

(iv) $\mathrm{z}^{+} \overline{\mathrm{z}}=2 \operatorname{Re}(\mathrm{z})=2 \operatorname{Re}(\overline{\mathrm{z}})$

(v) $\mathrm{z}-\overline{\mathrm{z}}=2 \mathrm{i} \operatorname{Im}(\mathrm{z})$

(vi) $\overline{\mathrm{z} _{1} \pm \mathrm{z} _{2}}=\overline{\mathrm{z} _{1}} \pm \overline{\mathrm{z} _{2}}$

(vii) $\overline{\mathrm{z} _{2} \mathrm{z} _{2}}=\overline{\mathrm{z} _{1}} \overline{\mathrm{z} _{2}}$ (also $\left.\left.\overline{\left(\mathrm{z}^{\mathrm{n}}\right.}\right)=(\overline{\mathrm{z}})^{\mathrm{n}}\right)$

(viii) $\overline{\left(\dfrac{\mathrm{z} _{1}}{\mathrm{z} _{2}}\right)}=\dfrac{\overline{\mathrm{z} _{1}}}{\overline{\mathrm{z} _{2}}}$

4. Geometric representation

Coordinate representation Complex number representation Vector representation
$\text { Point P :P(x,y) }$ $\text { Point P: } z=(x+i y)$ Point P : Position vector of $\overrightarrow{P O P}=x \hat{i}+y \hat{j}$

5. Modulus and amplitude

$|z|=r=\sqrt{x^{2}+y^{2}}$, the modulus of $z$ (distance of $z$ from the origin)

$\theta=\tan ^{-1}\left(\dfrac{y}{x}\right)=\arg z$, the inclination of OP with positive direction of $x-$ axis where $P$ is $(x, y)$.

Here $-\pi<\operatorname{argz} \leq \pi$

$\mathrm{z}=\mathrm{x}+\mathrm{iy} ; \mathrm{x}, \mathrm{y} \in \mathrm{R}$ (algebraic form)

$=\mathrm{r}(\cos \theta+\mathrm{isin} \theta)$ or $\mathrm{r} \operatorname{cis} \theta$ (polar/trigonometric form)

$=r e^{i \theta}$ (Eulers form)

Properties of modulus

(i) $-|z| \leq \operatorname{Re}(z), \operatorname{Im}(z) \leq|z|$

(ii) $|\mathbf{z}|=|\bar{z}|+|-z|+|-\bar{z}|$

(iii) $\mathrm{z} \overline{\mathrm{Z}}=|\mathrm{z}|^{2}$

(iv) $\left|z _{1} z _{2}\right|=\left|z _{1}\right|\left|z _{2}\right|$ Also $\left|\mathrm{z}^{\mathrm{n}}\right|=|\mathrm{z}|^{\mathrm{n}}$

(iv) $\left|\dfrac{z _{1}}{z _{2}}\right|=\dfrac{\left|z _{1}\right|}{\left|z _{2}\right|}$

(vi) ||$z _{1}|-| z _{2}|\leq| z _{1} \pm z _{2}|\leq| z _{1}|+| z _{2} \mid$ (Triangle inequality)

i.e. $\left|z _{1}\right|+\left|z _{2}\right|$ is the maximum and ||$z _{1}|-| z _{2} \mid$ is the minimum value of $\left|z _{1} \pm z _{2}\right|$

(vii) $\left|z _{1} \pm z _{2}\right|^{2}=\left\{\begin{array}{c}\left|z _{1}\right|^{2}+\left|z _{2}\right|^{2} \pm 2 \operatorname{Re}\left(z _{1} \bar{z} _{2}\right) \\ \left|z _{1}\right|^{2}+\left|z _{2}\right|^{2} \pm 2\left|z _{1}\right|\left|z _{2}\right| \cos \left(\theta _{1} \pm \theta _{2}\right) \text { where } \\ \theta _{1}=\arg \left(z _{1}\right) & \theta _{2}=\arg z _{2}\end{array}\right.$

(viii) $\left|z _{1}+z _{2}\right|^{2}+\left|z _{1}-z _{2}\right|^{2}=2\left(\left|z _{1}\right|^{2}+\left|z _{2}\right|^{2}\right.$ ) (parallelogram law)

Also $\left|\mathrm{az}-\mathrm{bz} \mathrm{z} _{2}\right|^{2}+\left.\left|\mathrm{bz} \mathrm{z} _{1}+\mathrm{az}\right| _{2}\right|^{2}=\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)\left(\left|\mathrm{z} _{1}\right|^{2}+\left|\mathrm{z} _{2}\right|^{2}\right) ; \mathrm{a}, \mathrm{b} \in \mathrm{R}$

Note : If $\left|z+\dfrac{1}{z}\right|=a$, the greatest and least value of $|z|$ are respectively $\dfrac{a+\sqrt{a^{2}+4}}{2}$ and $\dfrac{-a+\sqrt{a^{2}+4}}{2}$

Properties of argument

(i) $\arg \left(\mathrm{z} _{1} \mathrm{z} _{2}\right)=\arg \left(\mathrm{z} _{1}\right)+\arg \left(\mathrm{z} _{2}\right)+2 \mathrm{k} \pi$, where $\mathrm{k}=-1$ or 0 or 1 Also $\arg \left(z^{\mathrm{n}}\right)=\operatorname{narg}(\mathrm{z})+2 \mathrm{k} \pi$

(ii) $\quad \arg \left(\dfrac{z _{1}}{z _{2}}\right)=\arg z _{1}-\arg z _{2}+2 k \pi$, where $k=-1$ or 0 or 1

(iii) $\arg \left(\dfrac{\mathrm{z}}{\mathrm{z}}\right)=2 \arg (\mathrm{z})+2 \mathrm{k} \pi$, where $\mathrm{k}=-1$ or 0 or 1

(iv) argument of zero is not defined $\arg (\mathrm{z})=0 \Leftrightarrow \mathrm{z}$ is real and positive $\arg (\mathrm{z})=\pi \Leftrightarrow \mathrm{z}$ is real and negative $\arg (\mathrm{z})=\dfrac{\pi}{2} \Leftrightarrow \mathrm{z}$ is purely imaginary, $\operatorname{Im} z>0$

$\arg (\mathrm{z})=\dfrac{-\pi}{2} \Leftrightarrow \mathrm{z}$ is purely imaginary, $\operatorname{Imz}<0$

(v) $\left|z _{1}+z _{2}\right|=\left|z _{1}\right|+\left|z _{2}\right|$

$\arg z _{1}-\arg z _{2}=0, \dfrac{z _{1}}{z _{2}}>0$

$0, z _{1}, z _{2}$ are collinear and $z _{1}, z _{2}$ lie on the same side of 0 .

(vi) $\left|z _{1}-z _{2}\right|=\left|z _{1}\right|+\left|z _{2}\right|$

$\arg z _{1}-\operatorname{argz} z _{2}=\pi, \dfrac{z _{1}}{z _{2}}<0$

$0, z _{1}, z _{2}$ are collinear and 0 lies between $z _{1} & z _{2}$.

(vii) $\left|\mathrm{z} _{1}-\mathrm{z} _{2}\right|=\left|\mathrm{z} _{1}+\mathrm{z} _{2}\right|$

$\operatorname{argz}-\operatorname{argz} z _{2}= \pm \dfrac{\pi}{2}$

$\dfrac{z _{1}}{z _{2}}$ and $\overline{z _{1}} z _{2}$ are purely imaginary.

6. De Moivres theorem

(i) For any rational number $\mathrm{n}$, then

$(\cos \theta+\sin \theta)^{\mathrm{n}}=\cos n+\sin n \theta$

i.e. , $\left(\mathrm{e}^{\mathrm{i} \theta}\right)^{\mathrm{n}}=\mathrm{e}^{\mathrm{i} \theta}$

(ii) $\left(\cos \theta _{1}+i \sin \theta _{1}\right)\left(\cos \theta _{2}+i \sin \theta _{2}\right)$ $\left(\cos \theta _{n}+i \sin \theta _{n}\right)$

$=\cos \left(\theta _{1}+\theta _{2}+\ldots \ldots+\theta _{\mathrm{n}}\right)+\mathrm{i} \sin \left(\theta _{1}+\theta _{2}+\right.$. $+\theta _{\mathrm{n}}$ )

(iii) If $z=r(\cos \theta+i \sin \theta)$ and $n \in Z^{+}$, then

$\mathrm{z}^{1 / \mathrm{n}}=\mathrm{r}^{1 / \mathrm{n}}\left(\cos \left(\dfrac{2 \mathrm{r} \pi+\theta}{\mathrm{n}}\right)+\mathrm{i} \sin \left(\dfrac{2 \mathrm{r} \pi+\theta}{\mathrm{n}}\right)\right)$ where $\mathrm{r}=0,1,2$,

( $\mathrm{n}^{\text {th }}$ roots of $\mathrm{z}$ )

7. The $\mathrm{n}^{\text {th }}$ roots of unity

$\mathrm{z}=\sqrt[n]{1}=1^{1 / \mathrm{n}}=\mathrm{e}^{\mathrm{i} 2 \pi / \mathrm{n}}, \mathrm{r}=0,1,2$, , (n-1)

Let $\mathrm{z}=\alpha^{\mathrm{r}}$ where $\alpha=\mathrm{e}^{\mathrm{i} 2 \pi / \mathrm{n}}$

The $\mathrm{n}^{\text {th }}$ roots of unity are $\left(\alpha^{\circ}=\right) 1, \alpha, \alpha^{2}, \ldots \ldots \ldots \alpha^{\mathrm{n}-1}$ where $\alpha=\mathrm{e}^{\mathrm{i} 2 \pi / \mathrm{n}}=\cos \dfrac{2 \pi}{\mathrm{n}}+\mathrm{i} \sin \dfrac{2 \pi}{\mathrm{n}}$

Properties

(i) $\mathrm{n}^{\text {th }}$ roots of unity are solutions of the equation $\mathrm{z}=1^{1 / \mathrm{n}}$

i.e. $\mathrm{z}^{\mathrm{n}}=1$

$\mathrm{z}^{\mathrm{n}}-1=(\mathrm{z}-1)(\mathrm{z}-\alpha)\left(\mathrm{z}-\alpha^{2}\right) \ldots \ldots \ldots . .\left(\mathrm{z}-\alpha^{\mathrm{n}-1}\right)$

$\mathrm{n}^{\text {th }}$ roots of -1 are the solutions of $z^{\mathrm{n}}+1=0$

(ii) $\mathrm{n}^{\text {th }}$ roots of unity lie on a unit circle $|z|=1$ and divide the circumference into $n$ equal parts and are the vertices of a regular polygon of $n$ sides inscribed in the circle $|z|=1$

(iii) Product of $n^{\text {th }}$ roots of unity $=(-1)^{n-1}$

(iv) Sum of $\mathrm{n}^{\text {th }}$ roots of unity is always zero.

(v) $\mathrm{n}^{\text {th }}$ roots of unity form a G.P with common ratio $\mathrm{e}^{\mathrm{i} 2 \pi / \mathrm{n}}$

(vi) Sum of $\mathrm{p}^{\text {th }}$ power of $\mathrm{n}^{\text {th }}$ roots of unity

$=1+\alpha^{p}+\left(\alpha^{2}\right)^{p}+\left(\alpha^{3}\right)^{p}+\ldots \ldots \ldots \ldots . .\left(+\alpha^{n-1}\right)^{p}=\left\{\begin{array}{l}0 \text {; if } p \text { is not a multiple of } n \\ n \text {; if } p \text { is a multiple of } n\end{array}\right.$

8. Cube roots of unity

$1^{1 / 3}=\cos \dfrac{2 \mathrm{r} \pi}{3}+\mathrm{i} \sin \dfrac{2 \mathrm{r} \pi}{3} ; \mathrm{r}=0,1,2$

$=1, \dfrac{-1+\mathrm{i} \sqrt{3}}{2}, \dfrac{-1-\mathrm{i} \sqrt{3}}{2}$

If one of the non real complex roots be $\omega$, then the other non real complex root will be $\omega^{2}$.

i.e. if $\omega=\dfrac{-1+i \sqrt{3}}{2}$, then $\omega^{2}=\dfrac{-1-i \sqrt{3}}{2}$

$\therefore$ the 3 cube roots of unity are $1, \omega & \omega^{2}$.

Properties

(i) $\mathrm{z}^{3}-1=(\mathrm{z}-1)(\mathrm{z}-\omega)\left(\mathrm{z}-\omega^{2}\right)$

(ii) $\omega$ & $\omega^{2}$ are roots of $z^{2}+z^{+}+1=0$ i.e., $z^{2}+z+1=(z-\omega)\left(z-\omega^{2}\right)$

(iii) $\arg \omega=2 \pi / 3$ & $\arg \omega^{2}=4 \pi / 3$

(iv) cube roots of unity lie on the unit circle $|z|=1$ and divide its circumference into three equal parts

(v) If $\mathrm{A}(1), \mathrm{B}(\omega)$ & $\mathrm{C}\left(\omega^{2}\right)$, then $\triangle \mathrm{ABC}$ is an equilateral triangle.

(vi) $\omega^{3}=1 ; 1+\omega+\omega^{2}=0 ; \omega^{3 n}=1 ; \omega^{3 n+1}=\omega ; \omega^{3 n+2}=\omega^{2}$

(vii) $\bar{\omega}=\dfrac{1}{\omega}=\omega^{2} ; \overline{\omega^{2}}=\dfrac{1}{\omega^{2}}=\omega$

(viii) $\bullet \mathrm{x}^{2}+\mathrm{y}^{2}=(\mathrm{x}+\mathrm{iy})(\mathrm{x}-\mathrm{iy})$

  • $x^{3}+y^{3}=(x+y)(x+\omega y)\left(x+\omega^{2} y\right)$
  • $\mathrm{x}^{3}-\mathrm{y}^{3}=(\mathrm{x}-\mathrm{y})(\mathrm{x}-\omega \mathrm{y})\left(\mathrm{x}-\omega^{2} \mathrm{y}\right)$
  • $\mathrm{x}^{2}+\mathrm{xy}+\mathrm{y}^{2}=(\mathrm{x}-\omega \mathrm{y})\left(\mathrm{x}-\omega^{2} \mathrm{y}\right)$
  • $\mathrm{x}^{2}-\mathrm{xy}+\mathrm{y}^{2}=(\mathrm{x}+\omega \mathrm{y})\left(\mathrm{x}+\omega^{2} \mathrm{y}\right)$
  • $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-\mathrm{xy}-\mathrm{yz-zx}=\left(\mathrm{x}+\mathrm{y} \omega+\mathrm{z} \omega^{2}\right)\left(\mathrm{x}+\mathrm{y} \omega^{2}+\mathrm{z} \omega\right)$
  • $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x+y \omega+z \omega^{2}\right)\left(x+y \omega^{2}+z \omega\right)$

Note $\therefore \bullet$ If $\mathrm{a}+\mathrm{b}+\mathrm{c}=0=\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}$, then $\mathrm{a}: \mathrm{b}: \mathrm{c}=1: \omega: \omega^{2}$

  • Any complex number for which $\left|\dfrac{\text { real part }}{\text { imaginary part }}\right|=1: \sqrt{3}$ or $\sqrt{3}: 1$, can be expressed in terms of $\omega, \omega^{2}$ & $\mathrm{i}$

9. Square root of a complex number

Let $\mathrm{z}=\mathrm{a}+\mathrm{ib}$

$\sqrt{\mathrm{a}+\mathrm{ib}}= \pm\left\{\sqrt{\dfrac{1}{2}(|z|+\operatorname{Re}(\mathrm{z}))}+\mathrm{i} \sqrt{\dfrac{1}{2}(|z|-\operatorname{Re}(\mathrm{z}))}\right\}$

i.e. $\sqrt{a+i b}= \pm\left\{\sqrt{\dfrac{1}{2}\left(\sqrt{a^{2}+b^{2}}+a\right)}+i \sqrt{\dfrac{1}{2}\left(\sqrt{a^{2}+b^{2}}-a\right)}\right\}$

To find the square root of $\mathrm{a}-\mathrm{ib}$, replace $\mathrm{i}$ by $-\mathrm{i}$ in the above result.

10 .Logarithm of a complex number

Let $z=a+i b=r e^{i \theta}$

$|\mathrm{z}|=\mathrm{r}=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$

$\log \mathrm{z}=\log |z|+\operatorname{iarg} \mathrm{z}$

11. Expansions

(i) $\cos \theta={ }^{n} C _{0} \cos ^{n} \theta-{ }^{n} C _{2} \cos ^{n-2} \theta \sin ^{2} \theta+{ }^{n} C _{4} \cos ^{n-4} \theta \sin ^{4} \theta+$.

(ii) $\operatorname{sinn} \theta={ }^{n} C _{1} \cos ^{n-1} \theta \sin \theta-{ }^{n} C _{3} \cos ^{n-3} \sin ^{3} \theta^{n}{ }^{n} C _{5} \cos ^{n-5} \sin ^{5} \theta$ (using De-Moivres theorem)

(iii) $\cos ^n \theta=\dfrac{1}{2^{n-1}}\left\{{ }^n C_0 \cos n \theta+{ }^n C_1 \cos (n-2) \theta^{+}+{ }^n C_2 \cos (n-4)+\ldots \ldots \ldots \ldots \ldots . . \ldots\right\}$

(iv) $\sin ^n \theta=\dfrac{(-1)^{n / 2}}{2^{n-1}}\left\{\cos n \theta-{ }^n C_1 \cos (n-2) \theta+{ }^n C_2 \cos (n-4) \theta+\ldots \ldots \ldots . . .\right\}$

$\sin ^i \theta=\dfrac{(-1)^{\dfrac{n-1}{2}}}{2^{n-1}}\left\{\operatorname{sinn} \theta-{ }^n C_1 \sin (n-2) \theta+{ }^n C_2 \sin (n-4) \theta+\ldots \ldots \ldots . . .\right\}$

Solved Examples

1. If $\omega$ is a complex cube root of unity, then the value of $\dfrac{a+b \omega+c \omega^{2}}{c+a \omega+b \omega^{2}}+\dfrac{a+b \omega+c \omega^{2}}{b+c \omega+a \omega^{2}}$ is equal to

(a) -1

(b) 2

(c) $2 \omega$

(d) None of these

Show Answer

Solution:

$\dfrac{1}{\omega} \dfrac{\left(a+b \omega^{2}+c \omega^{3}\right)}{a \omega+a \omega^{2}+c}+\dfrac{1}{\omega^{2}} \dfrac{\left(a \omega^{2}+b \omega^{3}+c \omega^{4}\right)}{b+c \omega+a \omega^{2}}$

$=\dfrac{1}{\omega}+\dfrac{1}{\omega^{2}} \Rightarrow \omega^{2}+\omega=-1$

Answer (a)

2. If $x^{2}+x+1=0$, then the value of $\left(x+\dfrac{1}{x}\right)^{2}+\left(x^{2}+\dfrac{1}{x^{2}}\right)^{2}+\ldots \ldots \ldots \ldots+\left(x^{27}+\dfrac{1}{x^{27}}\right)^{2}$ is

(a) 27

(b) 72

(c) 54

(d) None of these

Show Answer

Solution:

Roots of $x^{2}+x+1=0$ are $\omega$ and $\omega^{2}$

Put $\mathrm{x}=\omega$

$\begin{aligned} & \therefore\left(\omega+\frac{1}{\omega}\right)^2+\left(\omega^2+\frac{1}{\omega^2}\right)^2+\left(\omega^3+\frac{1}{\omega^3}\right)^2 \ldots \ldots \ldots+\left(\omega^{27}+\frac{1}{\omega^{27}}\right)^2 \\ & =(-1)^2+(-1)^2+(2)^2+\ldots \ldots \ldots \ldots \ldots+(2)^2 \\ & =18 \times 1+9 \times 4=54 \end{aligned}$

Answer (c)

3. If $\alpha, \beta, \gamma$ are roots of $x^{3}-3 x^{2}+3 x+7=0$ and $\omega$ is a complex cube roots of unity, then $\dfrac{\alpha-1}{\beta-1}+\dfrac{\beta-1}{\gamma-1}+\dfrac{\gamma-1}{\alpha-1}$ is equal to

(a) $\omega$

(b) $2 \omega$

(c) $2 \omega^{2}$

(d) $3 \omega^{2}$

Show Answer

Solution:

$\begin{aligned} & (x-1)^{3}=-8 \\ & x-1=\neq \\ & x-1=-2,-2 \omega,-2 \omega^{2} \\ & x=-1,1-2 \omega, 1-2 \omega^{2} \end{aligned}$

Let

$\alpha=-1 \quad \beta=1-2 \omega, \gamma=-1-2 \omega^{2}$

$\Rightarrow \alpha-1=-2 ; \beta-1=-2 \omega, \gamma-1=-2 \omega^{2}$

$\therefore \quad \dfrac{\alpha-1}{\beta-1}+\dfrac{\beta-1}{\gamma-1}+\dfrac{\gamma-1}{\alpha-1}=\dfrac{-2}{-2 \omega} \dfrac{-2 \omega}{-2 \omega^{2}} \dfrac{-2 \omega^{2}}{-2}$

$=\dfrac{1}{\omega}+\dfrac{1}{\omega}+\omega^{2}=3 \omega^{2}$

Answer (d)

4. If $(x-1)^{4}-16=0$, then the sum of non real complex roots of the equation is

(a) 2

(b) 0

(c) 4

(d) None of these

Show Answer

Solution:

$\begin{aligned} & (\mathrm{x}-1)^{4}=16 \\ & \mathrm{x}-1=(16)^{\dfrac{1}{4}} \\ & \mathrm{x}-1= \pm 2, \pm 2 \mathrm{i} \\ & \mathrm{x}=1 \pm 2,1 \pm 2 \mathrm{i} \end{aligned}$

Sum of non-real roots is $(1+2 i)+(1-2 i)=2$

Answer (a)

5. If $z$ is a non-real root of $\sqrt[7]{-1}$, then $z^{86}+z^{175}+z^{289}$ is equal to

(a) 0

(b) -1

(c) 3

(d) 1

Show Answer

Solution:

$\begin{aligned} \mathrm{z}=\sqrt[7]{-1} & \Rightarrow \mathrm{z}^{7}=-1 \\ \therefore \mathrm{z}^{86}+\mathrm{z}^{175}+\mathrm{z}^{289} & =\left(\mathrm{z}^{7}\right)^{12} \mathrm{z}^{2}+\left(\mathrm{z}^{7}\right)^{25}+\left(\mathrm{z}^{7}\right)^{41} \cdot \mathrm{z}^{2} \\ & =\mathrm{z}^{2}-1-\mathrm{z}^{2}=-1 \end{aligned}$

$=z^{2}-1-z^{2}=-1$

Answer (b)

Exercise

1. The value of $\sum\limits _{\mathrm{k}=1}^{6}\left(\sin \dfrac{2 \pi \mathrm{k}}{7}-\mathrm{i} \cos \dfrac{2 \pi \mathrm{k}}{7}\right)$ is

(a) -1

(b) 0

(c) $-\mathrm{i}$

(d) i

Show Answer Answer: d

2. For positive integers $n _{1}, n _{2}$ the value of expression $(1+i)^{n _{1}}+\left(1+i^{3}\right)^{n _{1}}+\left(1+i^{5}\right)^{n _{2}}+\left(1+i^{7}\right)^{n _{2}}$ is a real number if and only if

(a) $\mathrm{n} _{1}=\mathrm{n} _{2}+1$

(b) $\mathrm{n} _{1}=\mathrm{n} _{2}-1$

(c) $\mathrm{n} _{1}=\mathrm{n} _{2}$

(d) $n _{1}>0, n _{2}>0$

Show Answer Answer: d

3. The minimum value of $\left|\mathrm{a}+\mathrm{b} \omega+\mathrm{c} \omega^{2}\right|$ where $\mathrm{a}, \mathrm{b} & \mathrm{c}$ are all not equal integers and $\omega(\neq 1)$ is $\mathrm{a}$ cube root of unity, is

(a) $\sqrt{3}$

(b) $\dfrac{1}{2}$

(c) 1

(d) 0

Show Answer Answer: c

4. If $x$ is a complex root of the equation

$\left|\begin{array}{lll} 1 & x & x \\ x & 1 & x \\ x & x & 1 \end{array}\right|+\left|\begin{array}{ccc} 1-x & 1 & 1 \\ 1 & 1-x & 1 \\ 1 & 1 & 1-x \end{array}\right|=0 \text {, then } x^{2005}+\dfrac{1}{x^{2005}} \text { is }$

(a) 1

(b) -1

(c) i

(d) $\omega$

Show Answer Answer: a

5. If $\mathrm{z}=\mathrm{i} \log _{\mathrm{e}}(2-\sqrt{3})$, then $\operatorname{cosz}=$

(a) 0

(b) 1

(c) 2

(d) None of these

Show Answer Answer: c

6. If $\omega$ is a complex cube roots of unity and $a, b, c$ are such that $\dfrac{1}{a+\omega}+\dfrac{1}{b+\omega}+\dfrac{1}{c+\omega}=2 \omega^{2}$ and $\dfrac{1}{\mathrm{a}+\omega^{2}}+\dfrac{1}{\mathrm{~b}+\omega^{2}}+\dfrac{1}{\mathrm{c}+\omega^{2}}=2 \omega$, then $\dfrac{1}{\mathrm{a}+1}+\dfrac{1}{\mathrm{~b}+1}+\dfrac{1}{\mathrm{c}+1}=$

(a) 1

(b) -1

(c) 2

(d) -2

Show Answer Answer: c

7. If $\omega(\neq 1)$ be a cube root of unity and $\left(1+\omega^{2}\right)^{\mathrm{m}}=\left(1+\omega^{4}\right)^{\mathrm{m}}$, then the least positive integral value of mis

(a) 2

(b) 5

(c) 1

(d) 3

Show Answer Answer: d

8. $\cot \left(-i \log _{e}\left(\dfrac{x+i y}{x-i y}\right)\right)$

(a) $\dfrac{x^{2}-y^{2}}{2 x y}$

(b) $\dfrac{2 x y}{x^{2}-y^{2}}$

(c) $\dfrac{2 x y}{x^{2}+y^{2}}$

(d) $\dfrac{y^{2}-x^{2}}{2 x y}$

Show Answer Answer: a

9. $\quad \sin \dfrac{2 \pi}{7}+\sin \dfrac{4 \pi}{7}+\sin \dfrac{8 \pi}{7}=$

(a) $\dfrac{\sqrt{7}}{2}$

(b) $\dfrac{-1}{2}$

(c) $\dfrac{1}{8}$

(d) None of these

Show Answer Answer: a

10. If $\alpha _{0}, \alpha _{1}, \alpha _{2}, \ldots \ldots \ldots \ldots . ., \alpha _{n-1}$ be the $n, n^{\text {th }}$ roots of the unity then the value of $\sum\limits _{i=0}^{n-1} \dfrac{\alpha _{i}}{\left(3-\alpha _{i}\right)}$ is equal to

(a) $\dfrac{3}{3^{\mathrm{n}}-1}$

(b) $\dfrac{\mathrm{n}-1}{3^{\mathrm{n}}-1}$

(c) $\dfrac{\mathrm{n}+1}{3^{\mathrm{n}}-1}$

(d) $\dfrac{\mathrm{n}+2}{3^{\mathrm{n}}-1}$

Show Answer Answer: a


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ