Complex Numbers And Quadratic Equations - Quadratic Equations (Location of Roots) (Lecture-03)

Let $f(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}, \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}, \mathrm{a} \neq 0$ and $\alpha, \beta(\alpha<\beta)$ be the roots of $f(\mathrm{x})=0$. Let $\mathrm{k} _{1}, \mathrm{k} _{2}$ be two real numbers such that $\mathrm{k} _{1}<\mathrm{k} _{2}$

Logarithmic Equations

If we have an equation of the form as $\log _{\mathrm{a}} f(\mathrm{x})=\mathrm{b}$ where $\mathrm{a}>0, \mathrm{a} \neq 1$ can be written as $f(\mathrm{x})=\mathrm{a}^{\mathrm{b}}$ when $f(\mathrm{x})>0$.

Logarithmic Inequalities

For $\mathrm{a}>1$ For $0<\mathrm{a}<1$
$0<\mathrm{x}<\mathrm{y}$ and $\log _{\mathrm{a}} \mathrm{x}<\log _{\mathrm{a}} \mathrm{y}$ are equivalent $0<\mathrm{x}<\mathrm{y}$ and $\log _{\mathrm{a}} \mathrm{x}>\log _{\mathrm{a}} \mathrm{y}$ are equivalent
$\log _{\mathrm{a}} \mathrm{x}<\mathrm{p}$ $\Rightarrow 0<\mathrm{x}<\mathrm{a}^{\mathrm{p}}$ $\log _{\mathrm{a}} \mathrm{x}<\mathrm{p}$ $\Rightarrow \mathrm{x}>\mathrm{a}^{\mathrm{P}}$
$\log _{a} x>p$ $\Rightarrow x>a^{p}$ $\log _{\mathrm{a}} \mathrm{x}>\mathrm{p}$ $\Rightarrow 0<\mathrm{x}<\mathrm{a}^{\mathrm{P}}$

Descartes Rule of signs

The maximum number of positive real roots of a polynomial equation $f(\mathrm{x})=0$ is the number of changes of signs from positive to negative and negative to positive.

The maximum number of negative real roots of a polynomial equation $f(\mathrm{x})=0$ is the number of changed signs from positive to negative and negative to positive in $f(-\mathrm{x})=0$

Solved examples

1. The values of $m$ for which exactly one root of $x^{2}-2 m x+m^{2}-1=0$ lies in the interval $(-2,4)$ is

(a) $(-3,-1) \cup(3,5)$

(b) $(-3,-1)$

(c) $(3,5)$

(d) none

Show Answer

Solution: $\mathrm{D}>0$ $\hspace {2.8 cm} f(-2) f(4)<0$

$\begin{array}{ll} (-2 m)^2-4 \cdot 1 .\left(m^2-1\right)>0 & \left(4+4 m+m^2-1\right)\left(16-8 m+m^2-1\right)<0 \\ 4>0 & \left(m^2+4 m+3\right)\left(m^2-8 m+3\right) \\ \Rightarrow m \in R \ldots \ldots .(1) & (m+1)(m+3)(m-3)(m-5)<0 \\ & \Rightarrow m \in(-3,-1) \cup(3,5)\end{array}$

From $(1)$ and $(2), \mathrm{m} \in(-3,-1) \cup(3,5)$

Answer: a

2. The values of a for which both the rootes of the equation $4 x^{2}-2 x+a=0$ lie in the interval $(-1,1)$ is.

(a) $(-2, \infty)$

(b) $\left(-\infty, \dfrac{1}{4}\right]$

(c) $\left(-2, \dfrac{1}{4}\right]$

(d) none

Show Answer

Solution:

$\begin{array}{lll} \mathrm{D} \geq 0 & \text { a. } f(-1)>0 & \text { a. } f(1)>0 \\ (-2)^2-4 \cdot 4 \cdot \mathrm{a} \geq 0 & 4 \cdot(4+2+\mathrm{a})>0 & 4 \cdot(4-2+\mathrm{a})>0 \\ 4 \mathrm{a}-1 \leq 0 & \mathrm{a}+6>0 & \mathrm{a}>-2 \\ \\ \mathrm{a} \leq \frac{1}{4} \quad-(1) & \mathrm{a}>-6-(2) & \mathrm{a} \in(-2, \infty) \quad-(3) \end{array}$

From (1),(2) and (3), $\mathrm{a} \in\left(-2, \dfrac{1}{4}\right]$

Answer: c

3. The all possible values of a for which one root of the equation $(a-5) x^{2}-2 a x+a-4=0$ is smaller than 1 and the other greater than 2 is

(a) $[5,24)$

(b) $(5,24]$

(c) $(5,24)$

(d) none of these

Show Answer

Solution: $\mathrm{D} \geq 0 \hspace{2.8 cm} (\mathrm{a}-5) f(1)<0 \hspace{2.8 cm}(\mathrm{a}-5) f(2)<0$

$\begin{array}{lll} (-2 a)^2-4(a-5)(a-4) \geq 0 & (a-5)(a-5-2 a+a-4)<0 & (a-5)(4(a-5)-4 a+a-4)<0 \\ \Rightarrow 9 a-20 \geq 0 & (a-5)(-a)<0 & \Rightarrow(a-5)(a-24)<0 \\ \\ a \geq \frac{20}{9}-(1) & a>5 \quad-(2) & \Rightarrow 5<a<24-(3) \end{array}$

From (1), (2), and (3) $a \in(5,24)$

Answer: c

4. If $a, b, c \in R$ and the equation $x^{2}+(a+b) x+c=0$ has no real roots, then

(a) $\mathrm{c}(\mathrm{a}+\mathrm{b}+\mathrm{c})>0$

(b) $\mathrm{c}+(\mathrm{a}+\mathrm{b}+\mathrm{c}) \mathrm{c}>0$

(c) $c-(a+b-c) c>0$

(d) $\mathrm{c}(\mathrm{a}+\mathrm{b}-\mathrm{c})>0$

Show Answer

Solution:

$\begin{array}{ll} f(0)>0 \Rightarrow \mathrm{c}>0 & f(0)<0 \Rightarrow \mathrm{c}>0 \\ f(1)>0 \Rightarrow 1+\mathrm{a}+\mathrm{b}+\mathrm{c}>0 & f(1)<0 \Rightarrow 1+\mathrm{a}+\mathrm{b}+\mathrm{c}<0 \\ f(-1)>0 \Rightarrow 1-(\mathrm{a}+\mathrm{b})+\mathrm{c}>0 & f(-1)<0 \\ \therefore f(0) . f(1)>0 \text { and } f(0) . f(-1)>0 & \Rightarrow 1-(\mathrm{a}+\mathrm{b})+\mathrm{c}<0 \\ \text { gives } \mathrm{b} \text { and } \mathrm{c} & \therefore f(0) f(1)>0 \text { and } f(0) . f(-1)>0 \\ & \text { gives (b) and (c) } \end{array}$

Answer: b and c

EXERCISE

1. The values of a for which $2 x^{2}-2(2 a+1) x+a(a+1)=0$ may have one root less than $a$ and other root greater than a are given by

(a) $1>\mathrm{a}>0$

(b) $-1<\mathrm{a}<0$

(c) $\mathrm{a} \geq 0$

(d) $\mathrm{a}>0$ & $\mathrm{a}<-1$

Show Answer Answer: d

2. The value of a for which the equation $\left(1-a^{2}\right) x^{2}+2 a x-1=0$ has roots belonging to $(0,1)$ is

(a) $\mathrm{a}>\dfrac{1+\sqrt{5}}{2}$

(b) $\mathrm{a}>2$

(c) $\dfrac{1+\sqrt{5}}{2}<\mathrm{a}<2$

(d) $\mathrm{a}>\sqrt{2}$

Show Answer Answer: b

3. If $a, b, c, x, y, z, \in R$ be such that $(a+b+c)^{2}=3\left(a b+b c+c a-x^{2}-y^{2}-z^{2}\right)$, then

(a) $\mathrm{a}=\mathrm{b}=\mathrm{c}=0=\mathrm{x}=\mathrm{y}=\mathrm{z}$

(b) $x=y=z=0, a=b=c$

(c) $\mathrm{a}=\mathrm{b}=\mathrm{c}=0 ; \mathrm{x}=\mathrm{y}=\mathrm{z}$

(d) $x=y=z=a=b=c$

Show Answer Answer: b

4. Number of positive integers $n$ for which $n^{2}+96$ is a perfect square is

(a) 8

(b) 12

(c) 4

(d) infinite

Show Answer Answer: c

5. The curve $y=(\lambda+1) x^{2}+2$ intersects the curve $y=\lambda x+3$ is exactly one point, if $\lambda$ equals

(a) $\{-2,2\}$

(b) $\{1\}$

(c) $\{-2\}$

(d) $\{2\}$

Show Answer Answer: c

6. A quadratic equation whose product of roots $x _{1}$ & $x _{2}$ is equal to 4 and satisfying the relation $\dfrac{\mathrm{x} _{1}}{\mathrm{x} _{1}-1}+\dfrac{\mathrm{x} _{2}}{\mathrm{x} _{2}-1}=2$ is

(a) $x^{2}-2 x+4=0$

(b) $x^{2}+2 x+4=0$

(c) $x^{2}+4 x+4=0$

(d) $x^{2}-4 x+4=0$

Show Answer Answer: a

7. If $a, b, c, d \in R$, then the equation $\left(x^{2}+a x-3 b\right)\left(x^{2}-c x+3 b\right)\left(x^{2}-d x+2 b\right)=0$ has

(a) 6 real roots

(b) at least 2 real roots

(c) 4 real roots

(d) 3 real roots

Show Answer Answer: b

8. Suppose $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are defined as $\mathrm{P}=\mathrm{a}^{2} \mathrm{~b}+\mathrm{ab}^{2}-\mathrm{a}^{2} \mathrm{c}-\mathrm{ac}^{2}, \mathrm{Q}=\mathrm{b}^{2} \mathrm{c}+\mathrm{bc}^{2}-\mathrm{a}^{2} \mathrm{~b}-\mathrm{ab}^{2}$ & $\mathrm{R}=\mathrm{a}^{2} \mathrm{c}+\mathrm{ac}^{2}-\mathrm{b}^{2} \mathrm{c}-$ $\mathrm{bc}^{2}$, where $\mathrm{a}>\mathrm{b}>\mathrm{c}$ and the equation $\mathrm{Px}^{2}+\mathrm{Qx}+\mathrm{R}=0$ has equal roots, then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in

(a) A.P

(b) G.P

(c) H.P

(d) AGP

Show Answer Answer: c

9. If $a(p+q)^{2}+2 a b p q+c=0$ & $a(p+r)^{2}+2 a b p r+c=0(a \neq 0)$ then

(a) $\mathrm{qr}=\mathrm{p}^{2}$

(b) $\mathrm{qr}=\mathrm{p}^{2}+\dfrac{\mathrm{c}}{\mathrm{a}}$

(c) $\mathrm{qr}=-\mathrm{p}^{2}$

(d) none of these

Show Answer Answer: b

10. $x^{2}-x y+y^{2}-4 x-4 y+16=0$ represents

(a) point

(b) a circle

(c) a pair of straight line

(d) none of these

Show Answer Answer: a

11. If the roots of the equation $a x^{2}+b x+c=0$ are of the form $\dfrac{k+1}{k}$ & $\dfrac{k+2}{k+1}$, then $(a+b+c)^{2}$ is equal to

(a) $2 b^{2}-a c$

(b) $\sum \mathrm{a}^{2}$

(c) $b^{2}-4 a c$

(d) $b^{2}-2 a c$

Show Answer Answer: c

12. Read the passage and answer the following questions:-

$\mathrm{a} f(\mu)<0$ is the necessary and sufficient condition for a particular real number $\mu$ to the between the roots of a quadratic equation $f(\mathrm{x})=0$, where $f(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$. Again if $f\left(\mu _{1}\right) f\left(\mu _{2}\right)<0$, then exactly one of the roots will lie between $\mu _{1}$ & $\mu _{2}$

i. If $|\mathrm{b}|>|\mathrm{a}+\mathrm{c}|$, then

(a) One root of $f(\mathrm{x})=0$ is positive, the other is negative.

(b) Exactly one of the roots of $f(x)=0$ lies in $(-1,1)$.

(c) 1 lies between the roots of $f(x)=0$.

(d) Both the roots of $f(\mathrm{x})=0$ are less than 1

ii. If $\mathrm{a}(\mathrm{a}+\mathrm{b}+\mathrm{c})<0<(\mathrm{a}+\mathrm{b}+\mathrm{c}) \mathrm{c}$, then

(a) one root is less than 0 , the other is greater than 1 .

(b) Exactly one of the roots lies in $(0,1)$

(c) Both the roots lie in $(0,1)$

(d) At least one of the roots lies in $(0,1)$

iii. If $(a+b+c) c<0<a(a+b+c)$, then

(a) one root is less than 0 , the other is greater than 1

(b) one root lies in $(-\infty, 0)$ and the other in $(0,1)$

(c) both roots lie in $(0,1)$

(d) one root lies in $(0,1)$ and other in $(1, \infty)$

Show Answer Answer: (i) b (ii) a (iii) b

13. Match the following:-

Column I Column II
(Number of positive integers for which)
a. One root is positive and the other is negative for the equation $(\mathrm{m}-2) \mathrm{x}^{2}-(8-2 \mathrm{~m}) \mathrm{x}-(8-3 \mathrm{~m})=0$ (p) 0
b. Exactly one root of the equation $\mathrm{x}^{2}-\mathrm{m}(2 \mathrm{x}-8)-15=0$ lies in the interval $(0,1)$ (q) infinite
c. The equation $x^{2}+2(m+1) x+9 m-5=0$ has both roots negative (r) 1
d. The equation $\mathrm{x}^{2}+2(\mathrm{~m}-1) \mathrm{x}+\mathrm{m}+5=0$ has both roots lying on either sides of 1 (s) 2
Show Answer Answer: $\mathrm{a} \rightarrow \mathrm{r} ; \mathrm{b} \rightarrow \mathrm{r} ; \mathrm{c} \rightarrow \mathrm{q} ; \mathrm{d} \rightarrow \mathrm{p};$

14. If $\alpha, \beta$ are the roots of $375 x^{2}-25 x-2=0 & S _{n}=\alpha^{n}+\beta^{n}$, then the value of $\dfrac{1}{3\left(\lim _{n \rightarrow \infty} \sum\limits _{r=1}^{n} S _{r}\right)}$ is…..

Show Answer Answer: 4

15. If $x, y, z$ are distinct positive number such that $x+\dfrac{1}{y}=y+\dfrac{1}{z}=z+\dfrac{1}{x}$, then $x y z=$.

Show Answer Answer: 1


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ