Coordinate Geometry-i Circles (Lecture-02)

1. Find the equation of the system of circles co-axial with the circles $x^{2}+y^{2}+4 x+2 y+1=0$ and $x^{2}+y^{2}-$ $2 x+6 y-6=0$. Also find the equation of that particular circles whose centre lies on radical axis.

Show Answer

Solution:

Given circles are

$\begin{aligned} & S _{1} \equiv x^{2}+y^{2}+4 x+2 y+1=0 \\ & S _{2} \equiv x^{2}+y^{2}-2 x+6 y-6=0 \\ & S _{1}-S _{2}=0 \\ & 6 x-4 y+7=0 \end{aligned}$

System of co-axial circle is $\mathrm{S} _{1}+\lambda\left(\mathrm{S} _{1}-\mathrm{S} _{2}\right)=0$

$\begin{aligned} & x^{2}+y^{2}+4 x+2 y+1+\lambda(6 x-4 y+7)=0 \\ & x^{2}+y^{2}+2 x(2+3 \lambda)+2 y(1-2 \lambda)+1+7 \lambda=0 \end{aligned}$

Centre of this circle is $(-(2+3 \lambda),-(1-2 \lambda)$

lies on radical axis

$\begin{aligned} & \therefore 6(-2-3 \lambda)+4(1-2 \lambda)+7=0 \\ & -12-18 \lambda+4-8 \lambda+7=0 \\ & -1-26 \lambda=0 \\ & \lambda=\dfrac{-1}{26} \end{aligned}$

$\therefore$ Required particular member of co-axial circle is $26\left(x^{2}+y^{2}\right)+98 x+56 y+19=0$

2. If the circumference of the circle $x^{2}+y^{2}+8 x+8 y-b=0$ is bisected by the circle $x^{2}+y^{2}-2 x+4 y+a=0$ then $a+b$ equal to

(a) 50

(b) 56

(c) -56

(d) -34

Show Answer

Solution: (c)

Equation of radical axis (common chord of these circles) is $10 x+4 y-b-a=0$

Centre of first circle is $(-4,-4)$

Since second circle bisects the first circle

Therefore centre of first circle must lie on common chord.

$\begin{array}{ll} \therefore \quad & 10(-4)+4(-4)-b-a=0 \\ & -40-16-(a+b)=0 \\ \therefore & a+b=-56 \end{array}$

3. The equation of the circle passing through the point of intersection of the circles $x^{2}+y^{2}-4 x-2 y=8$ and $x^{2}+y^{2}-2 x-4 y=8$ and the point $(-1,4)$ is

(a) $x^{2}+y^{2}+4 x+4 y-8=0$

(b) $x^{2}+y^{2}-3 x+4 y+8=0$

(c) $x^{2}+y^{2}+x+y-8=0$

(d) $x^{2}+y^{2}-3 x-3 y-8=0$

Show Answer

Solution: (d)

Equation of any circle passing through the point of intersection of the circles is $\mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{x}-2 \mathrm{y}-8+\lambda\left(\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}-4 \mathrm{y}-8\right)=0$

This circle passes through the point $(-1,4)$

$\begin{array}{ll} \therefore \quad & 1+16+4-8-8+\lambda(1+16+2-16-8)=0 \\ & 5-5 \lambda=0 \\ & \lambda=1 \end{array}$

Required circle is $\mathrm{x}^{2}+\mathrm{y}^{2}-3 \mathrm{x}-3 \mathrm{y}-8=0$

4. If the common chord of the circles $x^{2}+(y-b)^{2}=16$ and $x^{2}+y^{2}=16$ subtends a right angle at the origin then $b=$

(a) 4

(b) $4 \sqrt{2}$

(c) $-4 \sqrt{2}$

(d) 8

Show Answer

Solution:

The equation of common chord is

$\begin{array}{ll} & S-S _{1}=0 \\ & (y-b)^{2}-y^{2}=0 \\ & b^{2}-2 b y=0 \\ & b(b-2 y)=0 \\ \therefore \quad & b=2 y \text { or } 1=\dfrac{2 y}{b} \end{array}$

The combined equation of the straight lines joining the origin to the points of intersection $y=b / 2$

and $x^{2}+y^{2}=16\left(\dfrac{2 y}{b}\right)^{2} \Rightarrow b^{2} x^{2}+\left(b^{2}-64\right) y^{2}=0$

This equation represents a pair of perpendicular lines

$\therefore \quad b^{2}+b^{2}-64=0 \Rightarrow b= \pm 4 \sqrt{2}$

5. Given the circles $x^{2}+y^{2}-4 x-5=0$ and $x^{2}+y^{2}+6 x-2 y+6=0$ Let $P$ be a point $(\alpha, \beta)$ such that the tangents from $\mathrm{P}$ to both the circles are equal. Then

(a) $2 \alpha+10 \beta+11=0$

(b) $2 \alpha-10 \beta+11=0$

(c) $10 \alpha-2 \beta+11=0$

(d) $10 \alpha+2 \beta+11=0$

Show Answer

Solution:

$\mathrm{PT} _{1}=\mathrm{PT} _{2}$

$\sqrt{\alpha^{2}+\beta^{2}-4 \alpha-5}=\sqrt{\alpha^{2}+\beta^{2}+6 \alpha-2 \beta+6}$

Squaring,

$\alpha^{2}+\beta^{2}-4 \alpha-5=\alpha^{2}+\beta^{2}+6 \alpha-2 \beta+6$

$10 \alpha-2 \beta+11=0$

correct option is ‘c’

6. If the circles $x^{2}+y^{2}+2 x+2 k y+6=0$ and $x^{2}+y^{2}+2 k y+k=0$ intersect orthogonaly then $k$ is

(a) 2 or $-3 / 2$

(b) $-2 \mathrm{or}-3 / 2$

(c) 2 or $3 / 2$

(d) $-2 \mathrm{or}3 / 2$

Show Answer

Solution:

Condition for two circles to intersect at right angles is $2 \mathrm{~g} _{1} \mathrm{~g} _{2}+2 \mathrm{f} _{1} \mathrm{f} _{2}=\mathrm{c} _{1}+\mathrm{c} _{2}$

Here two circles are $x^{2}+y^{2}+2 x+2 k y+6=0$ and $x^{2}+y^{2}+2 k y+k=0$

$\mathrm{g} _{1}=1, \mathrm{f} _{1}=\mathrm{kc} _{1}=6$

$\mathrm{g} _{2}=0 \mathrm{f} _{2}=\mathrm{kc} _{2}=\mathrm{k}$

$\begin{array}{ll} \therefore \quad & 0+2 \mathrm{k}^{2}=6+\mathrm{k} \\ & 2 \mathrm{k}^{2}-\mathrm{k}-6=0 \\ & 2 \mathrm{k}^{2}-4 \mathrm{k}+3 \mathrm{k}-6=0 \\ & (2 \mathrm{k}+3)(\mathrm{k}-2)=0 \\ & \mathrm{k}=-3 / 2 \text { or } \mathrm{k}=2 \end{array}$

correct option is ‘a’

7. The distance between the chords of contact of the tangents to the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ from the origin and the point $(\mathrm{g}, \mathrm{f})$ is

(a) $\mathrm{g}^{2}+\mathrm{f}^{2}$

(b) $\dfrac{1}{2}\left(\mathrm{~g}^{2}+\mathrm{f}^{2}+\mathrm{c}\right)$

(c) $\dfrac{1}{2}\left(\dfrac{\mathrm{g}^{2}+\mathrm{f}^{2}+\mathrm{c}}{\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}}}\right)$

(d) $\dfrac{1}{2} \dfrac{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}{\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}}}$

Show Answer

Solution:

Equation of chord of contact to the circle from $\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)$ is

$\mathrm{xx} _{1}+\mathrm{yy} _{1}+\mathrm{g}\left(\mathrm{x}+\mathrm{x} _{1}\right)+\mathrm{f}\left(\mathrm{y}+\mathrm{y} _{1}\right)+\mathrm{c}=0$

From $(0,0)$ $\quad \quad \quad$ is $\mathrm{gx}+\mathrm{fy}+\mathrm{c}=0$……………..(1)

& From $(\mathrm{g}, \mathrm{f})$ $\quad \quad \quad$ is $\mathrm{gx}+\mathrm{fy}+\mathrm{g}(\mathrm{x}+\mathrm{g})+\mathrm{f}(\mathrm{y}+\mathrm{f})+\mathrm{c}=0$

$\hspace {3 cm}\begin{aligned} 2g x+2 f y+g^{2}+f^{2}+c=0 \end{aligned}$

$\hspace {3 cm}\begin{aligned} g x+f y+\left(\dfrac{g^{2}+f^{2}+c}{2}\right)=0……………..(2) \end{aligned}$

Now lines (1) & (2) are parallel

$\therefore \quad$ distance between paralled line is $\left|\dfrac{\mathrm{c} _{1}-\mathrm{c} _{2}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}\right|$

$\therefore \quad\left|\dfrac{-\mathrm{c}+\dfrac{\mathrm{g}^{2}+\mathrm{f}^{2}+\mathrm{c}}{2}}{\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}}}\right|=\dfrac{\dfrac{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}{2}}{\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}}}=\dfrac{1}{2} \dfrac{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}{\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}}}$

correct option is ’d’

EXERCISE:

1. Let $0<\alpha<\dfrac{\pi}{2}$ be a fixed angle. If $\mathrm{P}=(\cos \theta, \sin \theta)$ and $\mathrm{Q}=\cos (\alpha-\theta), \sin (\alpha-\theta) \mathrm{Q}$ obtained form $\mathrm{P}$ by

(a) clockwise rotation around origin through an angle $\alpha$

(b) anti-clockwise rotation around origin through an angle $\alpha$

(c) reflection in the line through origin with slope $\tan \alpha$

(d) reflection in the line through origin with slope $\tan \alpha / 2$

Show Answer Answer: d

2. If the tangent at the point $P$ on the circle $x^{2}+y^{2}+6 x+6 y=2$ meets the straight line $5 x-2 y+6=0$ at a point $\mathrm{Q}$ on the $\mathrm{y}$-axis, then the length of $\mathrm{PQ}$ is

(a) 4

(b) $2 \sqrt{5}$

(c) 5

(d) $3 \sqrt{5}$

Show Answer Answer: c

3. The equations to the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ of a $\triangle \mathrm{ABC}$ are drawn on $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ as diameters. The point of concurrence of the common chord is

(a) centroid of the triangle

(b) orthocenter

(c) circumcentre

(d) incentre

Show Answer Answer: b

4. The number of rational points ( $a$ point $(a, b)$ is rational, if $a$ and $b$ both are rational numbers) on the circumference of a circle having centre $(\pi, \mathrm{e})$ is

(a) at most one

(b) at least two

(c) exactly two

(d) infinite

Show Answer Answer: a

5. The locus of a point such that the tangents drawn from it to the circle $x^{2}+y^{2}-6 x-8 y=0$ are perpendicular to each other is

(a) $\mathrm{x}^{2}+\mathrm{y}^{2}-6 \mathrm{x}-8 \mathrm{y}-25=0$

(b) $x^{2}+y^{2}+6 x-8 y-5=0$

(c) $x^{2}+y^{2}-6 x+8 y-5=0$

(d) $x^{2}+y^{2}-6 x-8 y+25=0$

Show Answer Answer: a

6. If the two circles $x^{2}+y^{2}+2 g x+2 f y=0$ and $x^{2}+y^{2}+2 g _{1} x+2 f _{1} y=0$ touch each other, then

(a) $f _{1} g=f g _{1}$

(b) $\mathrm{ff} _{1}=\mathrm{gg} _{1}$

(c) $\mathrm{f}^{2}+\mathrm{g}^{2}=\mathrm{f} _{1}^{2}+\mathrm{g} _{1}^{2}$

(d) none of these

Show Answer Answer: a

7. The number of integral values of $\lambda$ for which $x 2+y 2+\lambda x+(1-\lambda) y+5=0$ is the equation of a circle whose radius cannot exceed 5 , is

(a) 14

(b) 18

(c) 16

(d) none of these

Show Answer Answer: c

8. The circle $x^{2}+y^{2}+4 x-7 y+12=0$ cuts an intercept on $y$-axis of length

(a) 3

(b) 4

(c) 7

(d) 1

Show Answer Answer: d

9. One of the diameter of the circle $x^{2}+y^{2}-12 x+4 y+6=0$ is given by

(a) $x+y=0$

(b) $x+3 y=0$

(c) $\mathrm{x}=\mathrm{y}$

(d) $3 x+2 y=0$

Show Answer Answer: b

10. The coordinates of the middle point of the chord cut off by $2 x-5 y+18=0$ by the circle $x^{2}+y^{2}-6 x+2 y-54=0$ are

(a) $(1,4)$

(b) $(2,4)$

(c) $(4,1)$

(d) $(1,1)$

Show Answer Answer: a
PASSAGE - 1

Let $A \equiv(a, 0)$ and $B \equiv(-a, 0)$ be two fixed points $\forall a \in(-\infty, 0)$ and $P$ moves on a plane such that $\mathrm{PA}=\mathrm{nPB}(\mathrm{n} \neq 0)$.

On the basis of above information, answer the following questions:

11. If $|\mathrm{n}| \neq 1$, then the locus of a point $\mathrm{P}$ is

(a) a straight line

(b) a circle

(c) a parabola

(d) an ellipse

Show Answer Answer: b

12. If $\mathrm{n}=1$, then the locus of a point $\mathrm{P}$ is

(a) a straight line

(c) a circle

(c) a parabola

(d) a hyperbola

Show Answer Answer: a

13. If $0<\mathrm{n}<1$, then

(a) A lies inside the circle and $\mathrm{B}$ lies outside the circle

(b) A lies outside the circle and $\mathrm{B}$ lies inside the circle

(c) both $\mathrm{A}$ and $\mathrm{B}$ lies on the circle

(d) both $A$ and $B$ lies inside the circle

Show Answer Answer: a

14. If $\mathrm{n}>1$, then

(a) A lies outside the circle and $\mathrm{B}$ lies inside the circle

(b) A lies outside the circle and $B$ lies inside the circle

(c) both $\mathrm{A}$ and $\mathrm{B}$ lies on the circle

(d) both $\mathrm{A}$ and $\mathrm{B}$ lies inside the circle

Show Answer Answer: b

15. If focus of $\mathrm{P}$ is a circle, then the circle

(a) passes through $\mathrm{A}$ and $\mathrm{B}$

(b) never passes through $A$ and $B$

(c) passes through $A$ but does not pass through $B$

(d) passes through $\mathrm{B}$ but does not pass through $\mathrm{A}$

Show Answer Answer: b


Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ