Coordinate Geometry-i Circles (Lecture-03)

Example 1

Find the equation of the image of the circle $x^{2}+y^{2}+16 x-24 y+183=0$ by the line mirror $4 x+7 y+13=0$

Show Answer

Solution:

The given circle and line are

$\mathrm{x}^{2}+\mathrm{y}^{2}+16 \mathrm{x}-24 \mathrm{y}+183=0$______________(1) and $4 x+7 y+13=0$ _________________(2)

Centre and radius if the circle are

$(-8,12)$ and $\sqrt{64+144-183}=\sqrt{25}=5$ respectively.

Equation of line $\mathrm{C} _{1} \mathrm{C} _{2}$ is $7 \mathrm{x}-4 \mathrm{y}+\mathrm{k}=0$ it passes through $(-8,12)$

$\therefore-56-48+\mathrm{k}=0$

$\mathrm{k}=104$

Equation of line $\mathrm{C} _{1} \mathrm{C} _{2}$ is $7 \mathrm{x}-4 \mathrm{y}+104=0$

To get the coordinates of M. Solve the equation

(2) & (3)

(2) $\times 4+(3) \times 7$

$16 \mathrm{x}+28 \mathrm{y}+52=0$

$\begin{gathered} 49 x-28 y+728=0 \\ \hline 65 x+780=0 \end{gathered}$

$\mathrm{x}=-12$

put the value of $x$ in (2) we get

$-48+7 y+13=0$

$7 \mathrm{y}=35$

$\mathrm{y}=5$

$\therefore$ coordinate of $\mathrm{M}$ is $(-12,5)$

$M$ is the midpoint of $\mathrm{C} _{1}$ and $\mathrm{C} _{2}$

$\therefore-12=\dfrac{\mathrm{h}-8}{2} \Rightarrow \mathrm{h}=-16$

$5=\dfrac{\mathrm{k}+12}{2} \Rightarrow \mathrm{K}=-2$

$\therefore$ Equation of imaged circle is

$(x+16)^{2}+(y+2)^{2}=25$

$x^{2}+y^{2}+32 x+4 y+235=0$

1. The circle passing through the point $(-1,0)$ and touching the $y$-axis at $(0,2)$ also passes through the point

(a) $\left(\dfrac{-3}{2} 10\right)$

(b) $\left(\dfrac{-5}{2}, 12\right)$

(c) $\left(\dfrac{-3}{2}, \dfrac{5}{2}\right)$

(d) $(-4,0)$

Show Answer

Solution:

Family of circles passing through a point $(0,2)$ and touching line $\mathrm{x}=0$ (y-axis) is

$(x-0)^{2}+(y-2)^{2}+\lambda x=0$

It passes through $(-1,0)$

$\therefore 1+4-\lambda=0$

$\therefore \lambda=5$

$\therefore$ equation of circle is

$\mathrm{x}^{2}+\mathrm{y}^{2}+5 \mathrm{x}-4 \mathrm{y}+4=0$

It also passes through $\mathrm{A}\left(-\mathrm{x} _{1}, 0\right)$

$\therefore \mathrm{x} _{1}^{2}-5 \mathrm{x} _{1}+4=0$

$\left(\mathrm{x} _{1}-4\right)\left(\mathrm{x} _{1}-1\right)=0$

$\mathrm{x} _{1}=4, \mathrm{x} _{1}=1$

$\therefore$ it also passes through $\mathrm{A}(-4,0)$

2. Two parallel chords of a circle of radius 2 are at a distance $\sqrt{3}+1$ apart. If the chords subtend at the centre, angles of $\dfrac{\pi}{\mathrm{k}}$ and $\dfrac{2 \pi}{\mathrm{k}}$, where $\mathrm{k}>0$ then the value of $[\mathrm{k}]$ is.

( $[\mathrm{k}]$ denotes the greatest integer)

Show Answer

Solution:

Let $\dfrac{\pi}{2 \mathrm{k}}=\alpha=\dfrac{1}{2} \angle \mathrm{AOB}=\angle \mathrm{AOM}$

Then $\angle \mathrm{CON}=2 \alpha$

$\operatorname{In} _{\Delta} \mathrm{AOM}$

$\cos \alpha=\dfrac{\mathrm{X}}{2}$

In $\Delta \mathrm{CON}$

$\cos 2 \alpha=\dfrac{\sqrt{3}+1-\mathrm{x}}{2}$

$\cos 2 \alpha=2 \cos ^{2} \alpha-1$

$\cos 2 \alpha=2 \dfrac{x^{2}}{4}-1$

$\therefore \quad \dfrac{\sqrt{3}+1-\mathrm{x}}{2}=\dfrac{\mathrm{x}^{2}}{2}-1$

$\begin{aligned} & \sqrt{3}+1-x=x^{2}-2 \\ & x^{2}+x-\sqrt{3}-3=0 \\ & \therefore \quad x=\dfrac{-1 \pm \sqrt{1+4(3+\sqrt{3})}}{2} \\ & =\dfrac{-1 \pm \sqrt{13+4 \sqrt{3}}}{2} \\ & =\dfrac{-1 \pm(2 \sqrt{3}+1)}{2} \quad\left(\therefore 13+4 \sqrt{3}=(2 \sqrt{3}+1)^{2}\right) \\ & \quad x=\dfrac{-1+2 \sqrt{3}+1}{2} \\ & \quad x=\sqrt{3} \\ & \quad \cos \alpha=\dfrac{\sqrt{3}}{2}=\cos \dfrac{\pi}{6} \\ & \quad \alpha=\dfrac{\pi}{6} \\ & \quad \text { Required angle }=\dfrac{\pi}{k}=2 \alpha=\dfrac{\pi}{3} \end{aligned}$

3. Let $\mathrm{ABC}$ and $\mathrm{AB}^{\prime}$ be two non-congruent triangles with sides $\mathrm{AB}=4, \mathrm{AC}=\mathrm{AC}^{\prime}=2 \sqrt{2}$ and angle $\beta=30^{\circ}$. The absolute value of the difference between the areas of these triangles is

Show Answer

Solution:

Draw circle through $\mathrm{AC} \mathrm{C}^{\prime}$ and $\mathrm{AB}$ intersect the circle at $\mathrm{P}$

$\begin{aligned} & \mathrm{In} _{\Delta} \mathrm{ABD} \\ & =\dfrac{\mathrm{AD}}{\mathrm{AB}}=\sin 30 \\ & \dfrac{\mathrm{AD}}{4}=\dfrac{1}{2} \\ & \therefore \mathrm{AD}=2=\mathrm{DC}=\mathrm{C}^{\prime} \mathrm{D} \end{aligned}$

Difference of areas of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ABC}^{\prime}$ is $\Delta \mathrm{ACC}^{\prime}$

$\therefore \operatorname{ar}\left(\Delta \mathrm{ACC}^{\prime}\right)=\dfrac{1}{2} \times 4 \times 2=4$ sq.u.

4. The centres of two circles $\mathrm{C} _{1}$ and $\mathrm{C} _{2}$ each of unit radius are at a distance of 6 units from each other. Let $\mathrm{P}$ be the mid-point of the line segment joining the centres of $\mathrm{C} _{1}$ and $\mathrm{C} _{2}$ and $\mathrm{C}$ be a circle touching circles $\mathrm{C} _{1}$ and $\mathrm{C} _{2}$ externally. If a common tangents to $\mathrm{C} _{1}$ and $\mathrm{C}$ passing through $\mathrm{P}$ is also a common targent to $\mathrm{C} _{2}$ and $\mathrm{C} _{1}$ then the radius of the circle $\mathrm{C}$ is

Show Answer

Solution:

In $\Delta \mathrm{CPC} _{2}$

$\mathrm{CP}^{2}=\left(\mathrm{CC} _{2}\right)^{2}-\left(\mathrm{C} _{2} \mathrm{P}\right)^{2}$

$\mathrm{k}^{2}=(\mathrm{r}+1)^{2}-9$

$\mathrm{k}^{2}=\mathrm{r}^{2}+2 \mathrm{r}-8$____________________(1)

In $\triangle \mathrm{PQC} _{2}$

$\mathrm{PQ}{ }^{2}=3^{2}-1^{2}$

$=8$

$\therefore$ In ${ } _{\Delta} \mathrm{CPQ}$

$\mathrm{k}^{2}=\mathrm{r}^{2}+8$____________________(2)

From (1) & (2)

$\mathrm{F}^{2}+8=\mathrm{r}^{2}+2 \mathrm{r}-8$

$2 \mathrm{r}=16$

$\therefore \mathrm{r}=8$

5. A straight line through the vertex $\mathrm{P}$ of a triangle $\mathrm{PQR}$ intersects the side $\mathrm{QR}$ at the point $\mathrm{S}$ and the circumcircle of the triangle $\mathrm{PQR}$ at the point $\mathrm{T}$. If $\mathrm{S}$ is not the centre of the circumcircle then

(a) $\dfrac{1}{\mathrm{PS}}+\dfrac{1}{\mathrm{ST}}<\dfrac{2}{\sqrt{\mathrm{QS} . \mathrm{SR}}}$

(b) $\dfrac{1}{\mathrm{PS}}+\dfrac{1}{\mathrm{ST}}>\dfrac{2}{\sqrt{\mathrm{QS} . \mathrm{SR}}}$

(c) $\dfrac{1}{\mathrm{PS}}+\dfrac{1}{\mathrm{ST}}<\dfrac{4}{\mathrm{QR}}$

(d) $\dfrac{1}{\mathrm{PS}}+\dfrac{1}{\mathrm{ST}}>\dfrac{4}{\mathrm{QR}}$

Show Answer

Solution:

Points $\mathrm{P}, \mathrm{Q}, \mathrm{T}, \mathrm{R}$ are concyclic

$\therefore$ PS.ST $=$ QS.SR

$\Rightarrow \dfrac{\mathrm{PS}+\mathrm{ST}}{2} \geq \sqrt{\mathrm{PS} . \mathrm{ST}}(\mathrm{AM} \geq \mathrm{GM})$

$\therefore \mathrm{PT} \geq 2 \sqrt{\mathrm{PS} . \mathrm{ST}}$

and $\dfrac{1}{\mathrm{PS}}+\dfrac{1}{\mathrm{ST}} \geq \dfrac{2}{\sqrt{\mathrm{PSST}}}=\dfrac{2}{\sqrt{\mathrm{QSSR}}}$

Also, $\dfrac{\mathrm{SQ}+\mathrm{SR}}{2} \geq \sqrt{\mathrm{SQ.SR}}$

$\Rightarrow \dfrac{\mathrm{QR}}{2} \geq \sqrt{\mathrm{SQ} . \mathrm{SR}}$

$\Rightarrow \dfrac{1}{\sqrt{\mathrm{SQ} \cdot S R}} \geq \dfrac{2}{\mathrm{QR}}$

$\Rightarrow \dfrac{2}{\sqrt{\mathrm{SQ} \cdot \mathrm{SR}}} \geq \dfrac{4}{\mathrm{QR}}$

$\dfrac{1}{\mathrm{PS}}+\dfrac{1}{\mathrm{ST}} \geq \dfrac{2}{\sqrt{\mathrm{QS} . \mathrm{SR}}} \geq \dfrac{4}{\mathrm{QR}}$

Answer: (d)

6. Let $\mathrm{ABCD}$ be a quadrilateral with area 18 , with side $\mathrm{AB}$ parallel to the side $\mathrm{CD}$ and $A B=2 C D$. Let $A D$ be perpendicular to $A B$ and $C D$. If a circle is drawn inside the quadrilateral $\mathrm{ABCD}$ touching all the sides then its radius is

(a) 3

(b) 2

(c) $3 / 2$

(d) 1 .

Show Answer

Solution:

$\mathrm{ABCD}$ is a trapezium $(\because$ AB parallel to $\mathrm{CD})$

$\therefore \operatorname{ar}(\mathrm{ABCD})=\dfrac{1}{2} \times \mathrm{h}$ (sum of parallel sides)

$=\dfrac{1}{2} \times 2 \mathrm{r}(2 \mathrm{a}+\mathrm{a})$

$18=\mathrm{r} \times 3 \mathrm{a}$

ar $=6$

$\mathrm{CB}$ is a tangent to the circle

$\therefore$ equation of tangent is

$y=\dfrac{-2 r}{a}(x-2 a) \Rightarrow 2 r x+a y-4 a r=0$

It is a tangent to the circle $(x-r)^{2}+(y-r)^{2}=r^{2}$

$\therefore \mathrm{r}=\left|\dfrac{2 \mathrm{r}^{2}+\mathrm{ar}-4 \mathrm{ar}}{\sqrt{4 \mathrm{r}^{2}+\mathrm{a}^{2}}}\right|$

$r \sqrt{4 r^{2}+a^{2}}=2 r^{2}-3 a r$

$\sqrt{4 \mathrm{r}^{2}+\mathrm{a}^{2}}=2 \mathrm{r}-3 \mathrm{a}$

Squaring

$4 r^{2}+a^{2}=4 r^{2}+9 a^{2}-12 a r$

$12 \mathrm{r}=8 \mathrm{a} \Rightarrow 3 \mathrm{r}=2 \mathrm{a}$

ar $=6$

$\mathrm{r}=\dfrac{2 \mathrm{a}}{3}$

$\dfrac{2 \mathrm{a}^{2}}{3}=6$

$\mathrm{a}^{2}=9$

$\mathrm{a}= \pm 3$

$\therefore \mathrm{r}=2$

Answer: (b)

7. The radius of the least circle passing through the point $(8,4)$ and cutting the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=40$ orthogonally is

(a) $\sqrt{5}$

(b) $\sqrt{7}$

(c) $2 \sqrt{5}$

(d) $4 \sqrt{5}$

Show Answer

Solution:

Let the circle be $x^{2}+y^{2}+2 g x+2 f y+c=0$_______________(1)

Given circle is $\mathrm{x}^{2}+\mathrm{y}^{2}=40$__________________________(2)

These two circles are orthogonal

$\therefore \mathrm{c}-40=0 \Rightarrow \mathrm{c}=40$

(1) passes through $(8,4)$

$64+16+16 \mathrm{~g}+8 \mathrm{f}+40=0$

$120+16 \mathrm{~g}+8 \mathrm{f}=0$

$\mathrm{f}+2 \mathrm{~g}+15=0$ or $\mathrm{f}=-(2 \mathrm{~g}+15)$

radius $=\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}$

$=\sqrt{g^{2}+(2 g+15)^{2}-40}$

For least circle radius must be minimum

Let $f(g)=g^{2}+(2 g+15)^{2}-40$ is minimum

$\mathrm{f}^{\prime}(\mathrm{g})=2 \mathrm{~g}+4(2 \mathrm{~g}+15)=0$

$10 \mathrm{~g}=-60$

$\mathrm{g}=-6$

$\mathrm{f}^{\prime \prime}(\mathrm{g})=10>0$ minimum

$\mathrm{f}=-(-12+15)=-3$

Equation of circle is $x^{2}+y^{2}-12 x-6 y+40=0$

radius $=\sqrt{36+9-40}$

$=\sqrt{5}$

Answer: (a)

8. $P$ is a point $(a, b)$ in the first quadrant. If the two circles which pass throngh $P$ and touch both the co-ordinate axes cut at right angles, then

(a) $\mathrm{a}^{2}-6 \mathrm{ab}+\mathrm{b}^{2}=0$

(b) $\mathrm{a}^{2}+2 \mathrm{ab}-\mathrm{b}^{2}=0$

(c) $\mathrm{a}^{2}-4 \mathrm{ab}+\mathrm{b}^{2}=0$

(d) $\mathrm{a}^{2}-8 \mathrm{ab}+\mathrm{b}^{2}=0$

Show Answer

Solution:

Equation of the two circles be

$(\mathrm{x}-\mathrm{r})^{2}+(\mathrm{y}-\mathrm{r})^{2}=\mathrm{r}^{2} \Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{xr}-2 \mathrm{yr}+\mathrm{r}^{2}=0$

These two circles passes through $(\mathrm{a}, \mathrm{b})$

$\therefore(\mathrm{a}-\mathrm{r})^{2}+(\mathrm{b}-\mathrm{r})^{2}=\mathrm{r}^{2}$

$\mathrm{a}^{2}+\mathrm{r}^{2}-2 \mathrm{ar}+\mathrm{b}^{2}+\mathrm{r}^{2}-2 \mathrm{br}-\mathrm{r}^{2}=0$

$\mathrm{r}^{2}-2 \mathrm{r}(\mathrm{a}+\mathrm{b})+\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)=0$

It is a quadratic equation in $\mathrm{r}$

$\therefore \mathrm{r} _{1}+\mathrm{r} _{2}=2(\mathrm{a}+\mathrm{b})$ and $\mathrm{r} _{1} \mathrm{r} _{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$

Condition for orthogonality is

$\begin{aligned} & 2 \mathrm{~g}_1 \mathrm{~g}_2+2 \mathrm{f}_1 \mathrm{f}_2=\mathrm{C}_1+\mathrm{C}_2 \\ & 2 \mathrm{r}_1 \mathrm{r}_2+2 \mathrm{r}_1 \mathrm{r}_2=\mathrm{r}_1{ }^2+\mathrm{r}_2{ }^2 \\ & 4 \mathrm{r}_1 \mathrm{r}_2=\mathrm{r}_1{ }^2+\mathrm{r}_2{ }^2 \\ & 6 \mathrm{r}_1 \mathrm{r}_2=\mathrm{r}_1{ }^2+\mathrm{r}_2{ }^2+2 \mathrm{r}_1 \mathrm{r}_2 \\ & 6 \mathrm{r}_1 \mathrm{r}_2=\left(\mathrm{r}_1+\mathrm{r}_2\right)^2 \\ & 6\left(\mathrm{a}^2+\mathrm{b}^2\right)=4(\mathrm{a}+\mathrm{b})^2 \\ & 6 \mathrm{a}^2+6 \mathrm{~b}^2=4 \mathrm{a}^2+4 \mathrm{~b}^2+8 \mathrm{ab} \\ & 2 \mathrm{a}^2+2 \mathrm{~b}^2-8 \mathrm{ab}=0 \\ & \mathrm{a}^2+\mathrm{b}^2-4 \mathrm{ab}=0 \end{aligned}$

Answer: (c)

9. A circle $S \equiv 0$ passes through the common points of family of circles $x^{2}+y^{2}+\lambda x-4 y+3=0(\lambda \in R)$ and have minimum area then

(a) area of $S \equiv 0$ is $\pi$ sq.u

(b) radius of director circle of $S \equiv 0$ is $\sqrt{2}$

(c) Radius of director circle of $\mathrm{S} \equiv 0$ for $\mathrm{x}$-axis is 1 unit

(d) $\mathrm{S} \equiv 0$ never cuts $|2 \mathrm{x}|=1$

Show Answer

Solution:

$\left(\mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{y}+3\right)+\lambda \mathrm{x}=0$

$\therefore \mathrm{x}=0$ and $\mathrm{y}^{2}-4 \mathrm{y}+3=0$

$(\mathrm{y}-3)(\mathrm{y}-1)=0$

$\mathrm{y}=3,1$

$\therefore(0,3)(0,1)$ are common points.

$\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}=0$

passing through $(0,3) &(0,1)$

$9+6 \mathrm{f}+\mathrm{c}=0$________________________(1)

$1+2 \mathrm{f}+\mathrm{c}=0$________________________(2)

(1) $-(2)$ we get

$8+4 \mathrm{f}=0$

$\mathrm{f}=-2$ and $\mathrm{c}=3$

$\therefore \mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}-4 \mathrm{y}+3=0$

radius $=\sqrt{\mathrm{g}^{2}+4-3}=\sqrt{\mathrm{g}^{2}+1}$

for minimum area radius must be minimum

Since $g^{2}+1$ is positive so $g$ must be zero

$\therefore$ radius $=1$

Area $=\pi \mathrm{r}^{2}=\pi$ sq.u.

Radius of director circle is $\sqrt{2}$ times the radius of the given circle.

$\therefore$ Radius of director circle is $\sqrt{2}$

Answer: (b)

10. Area of part of circle $x^{2}+y^{2}-4 x-6 y+12=0$ above the line $4 x+7 y-29=0$ is $\Delta$, then $[\Delta]=$ [.] is greatest integer function.

Show Answer

Solution

Since line $4 x+7 y-29=0$

passes through the centre $(2,3)$ of the circle

$\therefore \quad$ The line is a diameter of a circle with radius $\sqrt{4+9-12}=1$

$\therefore \quad$ area of semi circle is $=\dfrac{1}{2} \pi \mathrm{r}^{2}$

$\hspace {3 cm}\begin{aligned} & =\dfrac{1}{2} \pi \\ & =\dfrac{3.14}{2}=1.57 \end{aligned}$

Hence $[\Delta]=[1.57]=1$

EXERCISE:

1. The number of common tangents that can be drawn to the circles $x^{2}+y^{2}-4 x-6 y-3=0$ and

(a) 1

(b) 2

(c) 3

(d) 4

Show Answer Answer: c

2. A variable chord is drawn through the origin to the circle $x^{2}+y^{2}-2 a x=0$. The locus of the centre of the circle drawn on this chord as diameter is

(a) $x^{2}+y^{2}+a x=0$

(b) $x^{2}+y^{2}+a y=0$

(c) $x^{2}+y^{2}-a x=0$

(d) $x^{2}+y^{2}-a y=0$

Show Answer Answer: c

3. If $O$ is the origin and $\mathrm{OP}, \mathrm{OQ}$ are distinct tangents to the circle $\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}=0$, the circumcentre of the triangle OPQ is

(a) $(-\mathrm{g},-\mathrm{f})$

(b) $(\mathrm{g}, \mathrm{f})$

(c) $(-\mathrm{f},-\mathrm{g})$

(d) none of these

Show Answer Answer: d

4. Equation of the normal to the circle $x^{2}+y^{2}-4 x+4 y-17=0$ which passes through $(1,1)$ is

(a) $3 x+2 y-5=0$

(b) $3 x+y-4=0$

(c) $3 x+2 y-2=0$

(d) $3 \mathrm{x}-\mathrm{y}-8=0$

Show Answer Answer: b

5. The equation of the circle touching the lines $|y|=x$ at a distance $\sqrt{2}$ unit from the origin is

(a) $x^{2}+y^{2}-4 x+2=0$

(b) $x^{2}+y^{2}+4 x-2=0$

(c) $x^{2}+y^{2}+4 x+2=0$

(d) none of these

Show Answer Answer: a

6. The shortest distance from the point $(2,-7)$ to the circle $x^{2}+y^{2}-14 x-10 y-151=0$ is

(a) 1

(b) 2

(c) 3

(d) 4

Show Answer Answer: b

7. The equation of the image of the circle $(x-3) 2+(y-2) 2=1$ by the mirror $x+y=19$ is

(a) $(x-14)^{2}+(y-13)^{2}=1$

(b) $(x-15)^{2}+(y-14)^{2}=1$

(c) $(x-16)^{2}+(y-15)^{2}=1$

(d) $(x-17)^{2}+(y-16)^{2}=1$

Show Answer Answer: d

8. If $P$ and $Q$ are two points on the circle $x^{2}+y^{2}-4 x-4 y-1$ which are farthest and nearest respectively from the point $(6,5)$, then

(a) $\mathrm{P}=\left(-\dfrac{22}{5}, 3\right)$

(b) $\mathrm{Q}=\left(\dfrac{22}{5}, \dfrac{19}{5}\right)$

(c) $\mathrm{P}=\left(\dfrac{14}{3},-\dfrac{11}{5}\right)$

(d) $\mathrm{Q}=\left(-\dfrac{14}{3},-4\right)$

Show Answer Answer: b

9. A circle of the coaxial system with limiting points $(0,0)$ and $(1,0)$ is

(a) $x^{2}+y^{2}-2 x=0$

(b) $x^{2}+y^{2}-6 x+3=0$

(c) $x^{2}+y^{2}=1$

(d) $x^{2}+y^{2}-2 x+1=0$

Show Answer Answer: d

10. If a variable circle touches externally two given circles, then the locus of the centre of the variable circle is

(a) a straight line

(b) a parabola

(c) an ellipse

(d) a hyperbola

Show Answer Answer: d
PASSAGE

For each natural number $\mathrm{k}$, let $\mathrm{C} _{\mathrm{k}}$ denotes the circle with radius $\mathrm{k}$ units and centre at the origin. On the $\mathrm{C} _{\mathrm{k}}$, a particle moves $\mathrm{k}$ units in the counter clockwise direction. After completing its motion on $\mathrm{C} _{\mathrm{k}}$, the particle moves to $\mathrm{C} _{\mathrm{k}+\ell}$ in some well defined manner, where $\ell>0$. The motion of the particle continues in this manner.

On the basis of above information, answer the following questions:

11. Let $\ell=1$, the particle starts at $(1,0)$. If the particle crossing the positive direction of the $\mathrm{x}$-axis for the first time on the circle $\mathrm{C} _{\mathrm{n}}$, then $\mathrm{n}$ is equal to

(a) 3

(b) 5

(c) 7

(d) 8

Show Answer Answer: c

12. If $\mathrm{k} \in \mathrm{N}$ and $\ell=1$, the particle starts $(-1,0)$ the particle cross $\mathrm{x}$-axis again at

(a) $(3,0)$

(b) $(1,0)$

(c) $(4,0)$

(d) $(2,0)$

Show Answer Answer: c

13. If $\mathrm{k} \in \mathrm{N}$ and $\ell=1$, the particle moves in the radial direction from circle $\mathrm{C} _{\mathrm{k}}$ to $\mathrm{C} _{\mathrm{k}}+1$. If particle starts form the point $(-1,0)$, then

(a) it will cross the + ve $y$-axis at $(0,4)$

(b) it will cross the - ve $y$-axis at $(0,-4)$

(c) it will cross the $+v e y$-axis at $(0,5)$

(d) it will cross the - ve y-axis at $(0,-5)$

Show Answer Answer: c

14. If $\mathrm{k} \in \mathrm{N}$ and $\ell=\mathrm{R}$, particle moves tangentially from the circle $\mathrm{C} _{\mathrm{k}}$ to $\mathrm{C} _{\mathrm{k}+1}$, such that the length of tangent is equal to $k$ units itself. If particle starts form the point $(1,0)$, then

(a) the particle will cross $\mathrm{x}$-axis again at $\mathrm{x}=3$

(b) the particle will cross $x$-axis again at $x=4$

(c) the particle will cross +ve $x$-axis again at $x=2 \sqrt{2}$

(d) the particle will cross +ve $x$-axis again at $x \in(2 \sqrt{2}, 4)$

Show Answer Answer: d

15. Let the particle starts from the point $(2,0)$ and moves $\pi / 2$ units, on circle $\mathrm{C} _{2}$ in the counterclockwise direction, then itn moves on the circle $\mathrm{C} _{3}$ along the tangential path, let this straight line (tangential path traced by particle) intersect the circle $\mathrm{C} _{3}$ at the points. A and B tangents drawn at $\mathrm{A}$ and $\mathrm{B}$ intersect at

(a) $\left(\dfrac{9}{2 \sqrt{2}} ; \dfrac{9}{2 \sqrt{2}}\right)$

(b) $(9 \sqrt{2}, 9 \sqrt{2})$

(c) $(9,9)$

(d) $(\sqrt{2}, \sqrt{2})$

Show Answer Answer: a


Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ