Coordinate Geometry-i - Straight Line (Lecture-02)

8. Consider the points $\mathrm{A}(0,1)$ and $\mathrm{B}(2,0)$ and $\mathrm{P}$ be a point on the line $4 \mathrm{x}+3 \mathrm{y}+9=0$. Coordinates of $\mathrm{P}$ such that $|\mathrm{PA}-\mathrm{PB}|$ is maximum are

(a) $\left(\dfrac{-12}{5}, \dfrac{17}{5}\right)$

(b) $\left(\dfrac{-18}{5}, \dfrac{13}{5}\right)$

(c) $\left(\dfrac{31}{7}, \dfrac{31}{7}\right)$

(d) $(0,0)$

Show Answer

Solution: $|\mathrm{PA}-\mathrm{PB}| \leq \mathrm{AB}$

Thus |PA-PB| is max. if points A,B,P are collinear. Equation of $A B$ is $y-1=\dfrac{0-1}{2-1}(x-0) \Rightarrow x+2 y-$ $2=0$

Hence solving $x+2 y=2=0$ & $4 x+3 y+9=0$ we get $\left(-\dfrac{84}{5}, \dfrac{13}{5}\right)$

9. A light ray coming along the line $3 x+4 y=5$ gets reflected from the line $a x+b y=1$ and goes along the line $5 x-12 y=10$. Then

(a) $\mathrm{a}=\dfrac{64}{115}, \mathrm{~b}=\dfrac{112}{15}$

(b) $\mathrm{a}=\dfrac{14}{15}, \mathrm{~b}=\dfrac{-8}{115}$

(c) $\mathrm{a}=\dfrac{64}{115}, \mathrm{~b}=\dfrac{-8}{115}$

(d) $\mathrm{a}=\dfrac{64}{15}, \mathrm{~b}=\dfrac{14}{15}$

Show Answer

Solution: $a x+b y=1$ will be one of the bisectors of the lines given $\dfrac{3 \mathrm{x}+4 \mathrm{y}-5}{5}= \pm\left(\dfrac{5 \mathrm{x}-12 \mathrm{y}-10}{13}\right)$

$\Rightarrow 64 x-8 y=115 \quad$ or $\quad 14 x+112 y=15$ On comparing with $a x+b y=1$, we get

$\mathrm{a}=\dfrac{64}{115}, \mathrm{~b}=\dfrac{-8}{115} \quad$ or $\quad \mathrm{a}=\dfrac{14}{15}, \mathrm{~b}=\dfrac{112}{15}$

10. If the point $(a, a)$ is placed in between the lines $|x+y|=4$, then a is

(a) $[-2,0]$

(b) $[0,2]$

(c) $(-2,2)$

(d) $[-2,2]$

Show Answer

Solution: $\mathrm{x}+\mathrm{y}=4$

$\mathrm{x}+\mathrm{y}=-4$

& $\mathrm{pt}(2,2)$ & $(-2,-2)$ lies on these lines

Then pt. (a,a) lies between the lines then $\mathrm{a}>-2$ and $\mathrm{a}<2$ ie. $-2<\mathrm{a}<2$.

11. Consider the family of lines $5x+3y-2+\lambda_{1}(3 x-y-4)=0$ and $x-y+1+\lambda_{2}(2 x-y-2)=0$. The equation of a straight line that belongs to both the families is____________________________.

Show Answer

Solution:

$\begin{gathered} 5x+3 y=2 \\ 3x-y=4 \\ \hline x=1 \\ y=-1 \end{gathered}$

$\begin{gathered} x-y=-1 \\ 2x-y=2 \\ \hline x=3 \\ y=4 \end{gathered}$

Equation of a line belongs to both families passes through A and B is

$\begin{aligned} & y+1=\dfrac{4+1}{3-1}(x-1) \\ & y+1=\dfrac{5}{2}(x-1) \\ & 5 x-2 y-7=0 \end{aligned}$

12. If $\mathrm{x} _{1}, \mathrm{x} _{2}, \mathrm{x} _{3}$ as well as $\mathrm{y} _{1}, \mathrm{y} _{2}, \mathrm{y} _{3}$ are in G.P. with same common ratio then the points $\mathrm{P}\left(\mathrm{x} _{1}\right.$, $\left.\mathrm{y} _{1}\right), \mathrm{Q}\left(\mathrm{x} _{2}, \mathrm{y} _{2}\right)$ and $\mathrm{R}\left(\mathrm{x} _{3}, \mathrm{y} _{3}\right)$

(a) lie on a straight line

(b) lie on an ellipse

(c) lie on a circle

(d) are vertices of a triangle.

Show Answer

Solution: Let $\quad \mathrm{x} _{1}=\mathrm{a}, \mathrm{x} _{2}=\mathrm{ar}, \mathrm{x} _{3}=\mathrm{ar}^{2}$

$\mathrm{y} _{1}=\mathrm{b}, \mathrm{y} _{2}=\mathrm{br}, \mathrm{y} _{3}=\mathrm{br}^{2}$

Now $\dfrac{\mathrm{y} _{2}-\mathrm{y} _{1}}{\mathrm{x} _{2}-\mathrm{x} _{1}}=\dfrac{\mathrm{b}}{\mathrm{a}}$ & $\dfrac{\mathrm{y} _{3}-\mathrm{y} _{2}}{\mathrm{x} _{3}-\mathrm{x} _{2}}=\dfrac{\mathrm{b}}{\mathrm{a}}$

slope of $\mathrm{PQ}=$ slope of $\mathrm{QR}$

Hence pts $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are collinear.

Answer : a

13. A variable straight line is drawn through the point of intersection of the straight lines $\dfrac{x}{a}+\dfrac{y}{b}=1$ and $\dfrac{x}{b}+\dfrac{y}{a}=1$ and meets the coordinate axes at $A$ and $B$, find the locus of the midpoint of $A B$.

Show Answer

Solution: Let mid pt. of $\mathrm{AB}$ be $(\mathrm{h}, \mathrm{k})$.

Intersection pt. of given lines is $\left(\dfrac{a b}{a+b}, \dfrac{a b}{a+b}\right)$

$P$ is mid pt. of $A B \Rightarrow \quad A(2 h, 0)$ & $B(0,2 k)$.

Now A,B and $Q$ are collinear $\Rightarrow\left|\begin{array}{ccc}2 h & 0 & 1 \\ 0 & 2 k & 1 \\ \dfrac{a b}{a+b} & \dfrac{a b}{a+b} & 1\end{array}\right|=0$

$\Rightarrow \quad 4 \mathrm{hk}-\dfrac{2 \mathrm{hab}}{\mathrm{a}+\mathrm{b}}-\dfrac{2 \mathrm{kab}}{\mathrm{a}+\mathrm{b}}=0$

$\Rightarrow \quad 2 \mathrm{xy}(\mathrm{a}+\mathrm{b})=\mathrm{ab}(\mathrm{x}+\mathrm{y})$.

Exercise

1. Orthocenter of triangle with vertices $(0,0),(3,4)$ and $(4,0)$ is

(a) $\left(3, \dfrac{5}{4}\right)$

(b) $(3,12)$

(c) $\left(3, \dfrac{3}{4}\right)$

(d) $(3,9)$

Show Answer Answer: c

2. Area of the triangle formed by the line $x+y=3$ and angle bisectors of the pairs of straight lines $x^{2}-y^{2}+2 y=1$ is

(a) 2 sq.units

(b) 4 sq.units

(c) 6sq.units

(d) 8 sq.units

Show Answer Answer: a

3. Let $\mathrm{O}(0,0), \mathrm{P}(3,4), \mathrm{Q}(6,0)$ be the vertices of the triangle OPQ. The point $\mathrm{R}$ inside the ${ } _{\Delta} \mathrm{OPQ}$ is such that the triangle $\mathrm{OPR}, \mathrm{PQR}, \mathrm{OQR}$ are of equal area. The coordinates of $\mathrm{R}$ are

(a) $\left(\dfrac{4}{3}, 3\right)$

(b) $\left(3, \dfrac{2}{3}\right)$

(c) $\left(3, \dfrac{4}{3}\right)$

(d) $\left(\dfrac{4}{3}, \dfrac{2}{3}\right)$

Show Answer Answer: c

4. Consider three points $\mathrm{P}(-\sin (\beta-\alpha),-\cos \beta), \mathrm{Q}(\cos (\beta-\alpha), \sin \beta)$ and $\mathrm{R}(\cos (\beta-\alpha+\theta)$, $\sin (\beta-\theta))$, where $0<\alpha, \beta, \theta<\dfrac{\pi}{4}$. Then

(a) $\mathrm{P}$ lies on the line segment $\mathrm{RQ}$.

(b) $\mathrm{Q}$ lies on the line segment PR.

(c) $\mathrm{R}$ lies on the line segment $\mathrm{QP}$.

(d) P, Q, R are non-collinear.

Show Answer Answer: d

5. The locus of the orthocenter of the triangle formed by the lines $(1+p) x-p y+p(1+p)=0$, $(1+q) x-q y+(1+q) q=0$ and $y=0$, where $p \neq q$, is

(a) a hyperbola

(b) a parabola

(c) an ellipse

(d) a straight line.

Show Answer Answer: d

6. Let points $\mathrm{A}(1,1)$ and $\mathrm{B}(2,3)$. Coordinates of the point $\mathrm{P}$ such that $|\mathrm{PA}-\mathrm{PB}|$ is minimum are

(a) $\left(2, \dfrac{3}{2}\right)$

(b) $ \left (0, \dfrac{11}{4}\right)$

(c) $(11,3)$

(d) $\left(\dfrac{3}{2}, 0\right)$

Show Answer Answer: b

7. The line $x+7 y=14$ is rotated through an angle $\dfrac{\pi}{4}$ in the anticlock wise direction about the point $(0,2)$. The equation of the line in its new position is

(a) $3 \mathrm{x}-4 \mathrm{y}+8=0$

(b) $3 x-4 y-8=0$

(c) $4 x+3 y+8=0$

(d) None of these

Show Answer Answer: a

8. If one diagonal of a square is the portion of the line $\dfrac{x}{a}+\dfrac{y}{b}=1$ intercepted by the axes, then the extremities of the other diagonal of the square are

(A) $\left(\dfrac{a+b}{2}, \dfrac{a-b}{2}\right)$

(b) $\left(\dfrac{a-b}{2}, \dfrac{a+b}{2}\right)$

(c) $\left(\dfrac{\mathrm{a}-\mathrm{b}}{2}, \dfrac{\mathrm{b}-\mathrm{a}}{2}\right)$

(d) $\left(\dfrac{a+b}{2}, \dfrac{b-a}{2}\right)$

Show Answer Answer: c

9. The image of $\mathrm{P}(\mathrm{a}, \mathrm{b})$ in the line $\mathrm{y}=-\mathrm{x}$ is $\mathrm{Q}$ and the image of $\mathrm{Q}$ in the line $\mathrm{y}=\mathrm{x}$ is $\mathrm{R}$, then the midpoint of PR is

(a) $(\mathrm{a}-\mathrm{b}, \mathrm{b}+\mathrm{a})$

(b) $\left(\dfrac{a+b}{2}, \dfrac{b+a}{2}\right)$

(c) $(\mathrm{a}-\mathrm{b}, \mathrm{b}-\mathrm{a})$

(d) $(0,0)$

Show Answer Answer: d

10. Let $\mathrm{ABC}$ be a triangle. Let $\mathrm{A}$ be the point $(1,2), \mathrm{y}=\mathrm{x}$ is the perpendicular bisector of $\mathrm{AB}$ and $\mathrm{x}-2 \mathrm{y}+1=0$ is the angle bisector of $\angle \mathrm{C}$. If equation of $\mathrm{BC}$ is given by $\mathrm{ax}+\mathrm{by}-5=0$, then $\mathrm{a}+\mathrm{b}$ is

(a) 1

(b) 2

(c) 3

(d) 4

Show Answer Answer: b


Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ