Coordinate Geometry-i Straight Line (Lecture-03)

14. Locus of the image of the point $(2,3)$ in the line $(x-2 y+3)+\lambda(2 x-3 y+4)=0$ is

(a) $x^{2}+y^{2}-3 x-4 y-4=0$

(b) $2 x^{2}+2 y^{2}+2 x+4 y-7=0$

(c) $x^{2}+y^{2}-2 x-4 y+4=0$

(d) None

Show Answer

Solution: $\left.\begin{array}{l}x-2 y+3=0 \\ 2 x-3 y+4=0\end{array}\right\} P(1,2)$

Let image be $\mathrm{B}(\mathrm{h}, \mathrm{k})$ then $\mathrm{AP}=\mathrm{BP}$

$\Rightarrow(\mathrm{h}-1)^{2}+(\mathrm{k}-2)^{2}=1^{2}+1^{2}$

$\mathrm{h}^{2}+\mathrm{k}^{2}-2 \mathrm{~h}-4 \mathrm{k}+5=2$

$\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}-4 \mathrm{y}+3=0$

Answer : d

15. If the lines $a x+y+1=0, x+b y+1=0$ and $x+y+c=0 (a, b, c$ being distinct and different from 1$)$ are concurrent, then $\left(\dfrac{1}{1-a}\right)+\dfrac{1}{1-b}+\dfrac{1}{1-c}=$

(a) 0

(b) 1

(c) $\dfrac{1}{a+b+c}$

(d) None

Show Answer

Solution:

$\mathrm{c} _{2} \rightarrow \mathrm{c} _{2}-\mathrm{c} _{1}, \mathrm{c} _{3} \rightarrow \mathrm{c} _{3}-\mathrm{c} _{1}$

$\left|\begin{array}{ccc}\mathrm{a} & 1 & 1 \\ 1 & \mathrm{~b} & 1 \\ 1 & 1 & \mathrm{c}\end{array}\right|=0 \Rightarrow\left|\begin{array}{ccc}\mathrm{a} & 1-\mathrm{a} & 1-\mathrm{a} \\ 1 & \mathrm{~b}-1 & 0 \\ 1 & 0 & \mathrm{c}-1\end{array}\right|=0$

$a(b-1)(c-1)-(1-a)(c-1)+(1-a)(1-b)=0$

divide by $(1-a)(1-b)(1-c)$ we get

$\Rightarrow \quad \dfrac{a}{1-a}+\dfrac{1}{1-b}+\dfrac{1}{1-c}=0$

$\Rightarrow \quad \dfrac{1}{1-\mathrm{a}}+\dfrac{1}{1-\mathrm{b}}+\dfrac{1}{1-\mathrm{c}}=1$

16. The set of values of ’ $b$ ’ for which the origin and the point $(1,1)$ lie on the same side of the st. line $\mathrm{a}^{2} \mathrm{x}+\mathrm{aby}+1=0 \quad \forall \mathrm{a} \in \mathrm{R}, \mathrm{b}>\mathrm{o}$ are

(a) $\mathrm{b} \in[2,4)$

(b) $\mathrm{b} \in(0,2)$

(c) $\mathrm{b} \in[0,2]$

(d) None of these

Show Answer

Solution: $(0,0)$ & $(1,1)$ are on the same side

$0+1>0$ so $\mathrm{a}^{2}+\mathrm{ab}+1>0$

$\Rightarrow \mathrm{D}<0$ i.e

$b^{2}-4<0$

$b^{2}<4$

$-2<b<2$ but $b>0$

$\therefore \mathrm{b} \in(0,2)$

17. Let $P(-1,0), Q(0,0)$ and $R(3,3 \sqrt{3})$ be three points. Then the equation of the bisector of the angle $\mathrm{PQR}$ is

(a) $\dfrac{\sqrt{3}}{2} \mathrm{x}+\mathrm{y}=0$

(b) $x+\sqrt{3} y=0$

(c) $\sqrt{3} \mathrm{x}+\mathrm{y}=0$

(d) $x+\dfrac{\sqrt{3}}{2} y=0$

Show Answer

Solution:

$\dfrac{\sqrt{3}-m}{1+\sqrt{3 m}}=\dfrac{m}{1+0}$

$\begin{aligned} \sqrt{3}-m=m+\sqrt{3} m^{2} \Rightarrow & \sqrt{3} m^{2}+2 m-\sqrt{3}=0 \\ & \sqrt{3} m^{2}+3 m-m-\sqrt{3}=0 \\ & (\sqrt{3} m-1)(3+\sqrt{3})=0 \\ & m=\dfrac{1}{\sqrt{3}},-\sqrt{3} \end{aligned}$

$y=-\sqrt{3} \mathrm{x}$

$\sqrt{3} x+y=0$

18. $\mathrm{OPQR}$ is a square and $\mathrm{M}, \mathrm{N}$ are the mid points of the sides $\mathrm{PQ}$ and $\mathrm{QR}$ respectively. If the ratio of the areas of the square and the triangle OMN is $\lambda: 6$, then $\dfrac{\lambda}{4}$ is equal to

(a) 2

(b) 4

(c) 12

(d) 16

Show Answer

Solution: ar. of square $=a^{2}$

ar of $\Delta \mathrm{OMN}=\dfrac{1}{2}\left|\begin{array}{lll}0 & 0 & 1 \\ \mathrm{a} & \dfrac{\mathrm{a}}{2} & 1 \\ \dfrac{\mathrm{a}}{2} & \mathrm{a} & 1\end{array}\right|=\dfrac{1}{2} \cdot \dfrac{3 \mathrm{a}^{2}}{4}=\dfrac{3 \mathrm{a}^{2}}{8}$

$\dfrac{\mathrm{a}^{2}}{\dfrac{3 \mathrm{a}^{2}}{8}}=\dfrac{\lambda}{6} \Rightarrow \lambda=16$

Answer : b

19. A pair of perpendicular straight lines drawn through the origin form an isoceles triangle with line $2 x+3 y=6$, then area of the triangle so formed is

(a) $\dfrac{36}{13}$

(b) $\dfrac{12}{17}$

(c) $\dfrac{13}{5}$

(d) $\dfrac{17}{13}$

Show Answer Solution: $\mathrm{OM}=\left|\dfrac{-6}{\sqrt{4+9}}\right|=\dfrac{6}{\sqrt{13}}, \mathrm{PQ}=2 \times \dfrac{6}{\sqrt{13}}$, area of $\triangle \mathrm{OPQ}=\dfrac{1}{2} \times \dfrac{2 \times 6}{\sqrt{13}} \times \dfrac{6}{\sqrt{13}}=\dfrac{36}{13}$

20. Match the column

Column I Column II
(a) Two vertices of a triangle are (5,-1) and ( $-2,3)$ if orthocentre is origin then third vertex is (p) $(-4,-7)$
(b) A point on the line $x+y=4$ which lies at a unit distance from the line $4 x+3 y=10$, is (q) $(-7,-11)$
(c) Orthocentre of the triangle made by the lines $x+y-1=0, x-y+3=0,2 x+y=7$ is (r) $(1,-2)$
(d) If a,b,c are in A.P., then lines $a x+b y=c$ are concurrent at (s) $(-1,2)$
Show Answer

Solution:

A-p

B-q

C-s

D-s

Exercise

1. If $t _{1}$ and $t _{2}$ are roots of the equation $t^{2}+\lambda t+1=0$, where $\lambda$ is an arbitrary constant. Then the line joining the points $\left(a t _{1}{ }^{2}, 2 a t _{1}\right)$ & $\left(a t^{2}, 2 a t _{2}\right)$ always passes through a fixed point

(a) $(a, 0)$

(b) $(-a, 0)$

(c) $(0, a)$

(d) $(0,-\mathrm{a})$

Show Answer Answer: b

2. The equation $\mathrm{x}^{3}+\mathrm{y}^{3}=0$ represents

(a) three real straight lines

(b) three points

(c) combined equationof ast. line & a circle

(d) None of these.

Show Answer Answer: d

3. The three lines whose combined equation is $y^{3}-4 x^{2} y=0$ form a triangle which is

(a) isosceles

(b) equilateral

(c) right angled

(d) None of these

$\mathrm{A}(1,3)$ and $\mathrm{C}\left(-\dfrac{2}{5},-\dfrac{2}{5}\right)$ are the vertices of a triangle $\mathrm{ABC}$ and the equation of the angle bisector of $\angle \mathrm{ABC}$ is $\mathrm{x}+\mathrm{y}=2$

Show Answer Answer: d
Comprehension Type

4. Equation of side $\mathrm{BC}$ is

(a) $7 x+3 y=4$

(b) $7 x+3 y+4=0$

(c) $7 x-3 y+4=0$

(d) $7 x-3 y=4$

Show Answer Answer: b

5. Coordinates of vertex $B$ are

(a) $\left(\dfrac{3}{10}, \dfrac{17}{10}\right)$

(b) $\left(\dfrac{17}{10}, \dfrac{3}{10}\right)$

(c) $\left(-\dfrac{5}{2}, \dfrac{9}{2}\right)$

(d) $(1,1)$

Show Answer Answer: c

6. Equation of side $\mathrm{AB}$ is

(a) $3 x+7 y=24$

(b) $3 x+7 y+24=0$

(c) $13 x+7 y+8=0$

(d) $13 x-7 y+8=0$

Show Answer Answer: a

7. Assertion and reasoning Type

Lines $\mathrm{L} _{1} \mathrm{~L} _{2}$ given by $\mathrm{y}-\mathrm{x}=0$ and $2 \mathrm{x}+\mathrm{y}=0$ intersect the line $\mathrm{L} _{3}$ given by $\mathrm{y}+2=0$ at $\mathrm{P}$ and $\mathrm{Q}$, respectively. The bisector of the acute angle between $\mathrm{L} _{1}$ and $\mathrm{L} _{2}$ intersects $\mathrm{L} _{3}$ at $\mathrm{R}$.

Statement 1 : The ratio PR: RQ equals $2 \sqrt{2}: \sqrt{5}$.

Statement 2 : In any triangle, bisector of an angle divides the triangle into two similar triangles.

a Statement 1 is true, Statement 2 is True; Statement 2 is a correct explanation for Statement1.

b Statement 1 is True, Statement 2 is True; Statement 2 is NOT a correct explanation for Statement 1 .

c Statement 1 is True, Statement 2 is False.

d Statement 1 is False, Statement 2 is True.

Show Answer Answer: c

8. Matrix-match

This question contains statements given in two columns which have to be matched. Statements a, b, c, d in column I have to be matched with statements p,q, r, s in column II. If the correct match is a $\rightarrow \mathrm{p}, \mathrm{a} \rightarrow \mathrm{s}, \mathrm{b} \rightarrow \mathrm{q} \mathrm{b} \rightarrow \mathrm{r}, \mathrm{c} \rightarrow \mathrm{p}, \mathrm{c} \rightarrow \mathrm{q}$ and $\mathrm{d} \rightarrow \mathrm{s}$, then the correctly dubbled $4 \times 4$ matrix should be as follows :

Consider the lines given by

$\begin{aligned} & \mathrm{L} _{1}: \mathrm{x}+3 \mathrm{y}-5=0 \\ & \mathrm{~L} _{2}: 3 \mathrm{x}-\mathrm{ky}-1=0 \\ & \mathrm{~L} _{3}: 5 \mathrm{x}+2 \mathrm{y}-12=0 \end{aligned}$

Column I Column II
(a) $\mathrm{L} _{1}, \mathrm{~L} _{2}, \mathrm{~L} _{3}$ are concurrent, if (p) $\mathrm{k}=-9$
(b) One of $\mathrm{L} _{1}, \mathrm{~L} _{2}, \mathrm{~L} _{3}$ is parallel to at least one of the other two, if (q) $k=-6 / 5$
(c) $\mathrm{L} _{1}, \mathrm{~L} _{2}, \mathrm{~L} _{3}$ form a triangle, if (r) $\mathrm{k}=5 / 6$
(d) $\mathrm{L} _{1}, \mathrm{~L} _{2}, \mathrm{~L} _{3}$ do not form a triangle, if (s) $\mathrm{k}=5$

Show Answer Answer: $\begin{aligned} & \mathrm{a} \rightarrow \mathrm{s} \quad \mathrm{c} \rightarrow \mathrm{r} \\ & \mathrm{b} \rightarrow \mathrm{p}, \mathrm{q} \quad \mathrm{d} \rightarrow \mathrm{p}, \mathrm{q}, \mathrm{s}\end{aligned}$


Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ