Hyperbola (Lecture-02)

Practice Problems

1. Let $\mathrm{C}$ be a curve which is locus of the point of the intersection of lines $\mathrm{x}=2+\mathrm{m}$ and $\mathrm{my}=4-\mathrm{m}$. A circle $(x-2)^{2}+(y+1)^{2}=25$ intersects the curve $C$ at four points $P, Q, R$ and $S$. If $O$ is the centre of curve ’ $\mathrm{C}$ ’ than $\mathrm{OP}^{2}+\mathrm{OQ}^{2}+\mathrm{OR}^{2}+\mathrm{OS}^{2}$ is

(a) 25

(b) 50

(c) $\dfrac{25}{2}$

(d) 100

Show Answer

Solution

$\begin{aligned} & \mathrm{x}-2=\mathrm{m} \\ & \mathrm{y}+1=\dfrac{4}{\mathrm{~m}} \\ & \therefore(\mathrm{x}-2)(\mathrm{y}+1)=4 \\ & \mathrm{XY}=4, \text { where } \mathrm{X}=\mathrm{x}-2 \text { and } \mathrm{Y}=\mathrm{y}+1 \\ & \mathrm{x}-2)^{2}+(\mathrm{y}+1)^{2}=25 \\ & \mathrm{X}^{2}+\mathrm{Y}^{2}=25 \end{aligned}$

$\text { and }(x-2)^{2}+(y+1)^{2}=25$

Curve $\mathrm{C}$ and circle both are concentric.

$\therefore \mathrm{OP}^{2}+\mathrm{OQ}^{2}+\mathrm{OR}^{2}+\mathrm{OS}^{2}=4 \mathrm{r}^{2}$

$\begin{aligned} & =4(25) \\ & =100 \end{aligned}$

Answer (d)

2. If $(5,12)$ and $(24,7)$ are the foci of a hyperbola passing through the origin, then

(a) $\mathrm{e}=\dfrac{\sqrt{386}}{12}$

(b) $\mathrm{e}=\dfrac{\sqrt{386}}{36}$

(c) $\mathrm{LR}=\dfrac{121}{6}$

(d) $\mathrm{LR}=\dfrac{121}{9}$

Show Answer

Solution

$\begin{aligned} & \left|\mathrm{PS} _{1}-\mathrm{S} _{2}\right|=2 \mathrm{a} \quad \mathrm{P}(0,0) \\ & \sqrt{(24-0)^{2}+(7-0)^{2}}-\sqrt{(5-0)^{2}+(12-0)^{2}}=2 \mathrm{a} \\ & 25-13=2 \mathrm{a} \\ & \quad \therefore \mathrm{a}=6 \\ & 2 \mathrm{ae}=\sqrt{(24-5)^{2}+(7-12)^{2}}=\sqrt{386} \\ & \quad \mathrm{e}=\dfrac{\sqrt{386}}{12} \\ & \mathrm{LR}=\dfrac{2 \mathrm{~b}^{2}}{\mathrm{a}}=\dfrac{2 \mathrm{a}^{2}\left(\mathrm{e}^{2}-1\right)}{\mathrm{a}}=2 \times 6\left(\dfrac{386}{144}-1\right)=\dfrac{121}{6} \end{aligned}$

Answer (a,c)

3. If the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$ intersects the hyperbola $\mathrm{xy}=\mathrm{c}^{2}$ in four points $\mathrm{P}\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right), \mathrm{Q}\left(\mathrm{x} _{2}, \mathrm{y} _{2}\right), \mathrm{R}\left(\mathrm{x} _{3}, \mathrm{y} _{3}\right)$, $\mathrm{S}\left(\mathrm{x} _{4}, \mathrm{y} _{4}\right)$ then

(a) $\mathrm{x} _{1}+\mathrm{x} _{2}+\mathrm{x} _{3}+\mathrm{x} _{4}=0$

(b) $\mathrm{y} _{1}+\mathrm{y} _{2}+\mathrm{y} _{3}+\mathrm{y} _{4}=0$

(c) $\mathrm{x} _{1} \mathrm{x} _{2} \mathrm{x} _{3} \mathrm{x} _{4}=\mathrm{c}^{4}$

(d) $\mathrm{y} _{1} \mathrm{y} _{2} \mathrm{y} _{3} \mathrm{y} _{4}=\mathrm{c}^{4}$

Show Answer

Solution

solving $\mathrm{xy}=\mathrm{c}^{2}$ and $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$, we get

$\begin{gathered} \mathrm{x}^{2}+\dfrac{\mathrm{c}^{4}}{\mathrm{x}^{2}}=\mathrm{a}^{2} \\ \mathrm{x}^{4}-\mathrm{a}^{2} \mathrm{x}^{2}+\mathrm{c}^{4}=0 \\ \mathrm{x} _{1}+\mathrm{x} _{2}+\mathrm{x} _{3}+\mathrm{x} _{4}=0 \\ \mathrm{x} _{1} \cdot \mathrm{x} _{2} \cdot \mathrm{x} _{3} \cdot \mathrm{x} _{4}=\mathrm{c}^{4} \\ \text { similarly } \dfrac{\mathrm{c}^{4}}{\mathrm{y}^{2}}+\mathrm{y}^{2}=\mathrm{a}^{2} \\ \mathrm{y}^{4}-\mathrm{a}^{2} \mathrm{y}^{2}+\mathrm{c}^{4}=0 \\ \mathrm{y} _{1}+\mathrm{y} _{2}+\mathrm{y} _{3}+\mathrm{y} _{4}=0 \\ \mathrm{y} _{1} \cdot \mathrm{y} _{2} \cdot \mathrm{y} _{4} \cdot \mathrm{y} _{4}=\mathrm{c}^{4} \\ \end{gathered}$

Answer a, b, c, d

Linked comprehension Type (For problem 4-6)

The vertices of $\triangle \mathrm{ABC}$ lie on a rectangular hyperbola such that the orthocenter of the triangle is $(3,2)$ and the asymptotes of the rectangular hyperbola are parallel to the wordinate axes. The two perpendicular tangents of the hyperbola intersect at the point $(1,1)$.

4. The equation of rectangular hyperbola is

(a) $x y=x+y-1$

(b) $x y=x+y+1$

(c) $2 x y=x+y$

(d) $x y=x+y$

5. The equation of asymptotes is

(a) $(x-1)(y+1)=0$

(b) $(x+1)(y-1)=0$

(c) $(\mathrm{x}-1)(\mathrm{y}-1)=0$

(d) $(x+1)(y+1)=0$

6. Number of real tangents that can be drawn from the point $(1,1)$ to the rectangular hyperbola is

(a) 4

(b) 1

(c) 0

(d) 2

Show Answer

Solution

Perpendicular tangents intersect at the centre of rectangular hyperbola.

Hence centre is $(1,1)$

Equation of asymptotes are $(x-1)(y-1)=0$

Equation of hyperbola is $x y-x-y+1+\lambda=0$

If panes through $(3,1)$, hence $\lambda=-2$

Equation of hyperbola is $\mathrm{xy}-\mathrm{x}-\mathrm{y}-1=0$

  1. Ans b

  2. Ans c

  3. From centre of hyperbola we can drow two real tangents.

Answer (d)

7. True/ False

S1: Number of points from where perpendicular tangents can be drown to the hyperbola $16 x^{2}-9 y^{2}=144$ is infinite.

S2: If distance between two parallel tangents drawn to the hyperbola $\dfrac{x^{2}}{9}-\dfrac{y^{2}}{49}=1$ is 2 then

their slopes is equal to $\pm \dfrac{5}{2}$.

S3: If through the point $(5,0)$ chords are drawn to the hyperbola $\dfrac{x^{2}}{25}-\dfrac{y^{2}}{9}=1$. Then locus of their middle points is also a hyperbola whose length of latus rectum is same as given hyperbola $9 \mathrm{x}^{2}-25 \mathrm{y}^{2}=225$.

S4: If the line $y=m x+\sqrt{a^{2} m^{2}-b^{2}}$ touches the hyperbola $\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1$ at the point $(\operatorname{asec} \theta, b \tan \theta)$ then $\theta=\sin ^{-1}\left(\dfrac{\mathrm{b}}{\mathrm{am}}\right)$.

(a) TTFF

(b) FTTF

(c) FTFT

(d) TFTF

Show Answer

Solution

S1: If $b^{2}>a^{2}$, the radius of director circle is imaginary. Hence there is no pair of tangents at right angle can be drawn to the curve.

S2: $y=m x \pm \sqrt{9 m^{2}-49}$

Now $\left|\dfrac{2 \sqrt{9 \mathrm{~m}^{2}-49}}{\sqrt{1+\mathrm{m}^{2}}}\right|=2 \Rightarrow 9 \mathrm{~m}^{2}-49=1+\mathrm{m}^{2}$

$\Rightarrow \quad 8 \mathrm{~m}^{2}=50$

$\Rightarrow \mathrm{m}= \pm \dfrac{5}{2}$

S3: Let mid point be $(\mathrm{h}, \mathrm{k})$

Equation of chord whose mid point is given is

$\mathrm{T}=\mathrm{S} _{1}$

$\dfrac{\mathrm{xh}}{25}-\dfrac{\mathrm{yk}}{9}-1=\dfrac{\mathrm{b}^{2}}{25}-\dfrac{\mathrm{k}^{2}}{9}-1$

This passes through $(5,0) \dfrac{5 \mathrm{~h}}{25}-0-1=\dfrac{\mathrm{h}^{2}}{25}-\dfrac{\mathrm{K}^{2}}{9}-1$

$45 \mathrm{~h}=9 \mathrm{~h}^{2}-25 \mathrm{k}^{2}$

Locus of (h,k) is $9 x^{2}-45 x-25 y^{2}=0$

$\begin{aligned} & 9\left(x^{2}-5 x+\dfrac{25}{4}-\dfrac{25}{4}\right)-25 y^{2}=0 \\ & 9(x-5 / 2)^{2}-25 y^{2}=\dfrac{225}{4} \end{aligned}$

$\dfrac{(x-5 / 2)^{2}}{\left(\dfrac{25}{4}\right)}-\dfrac{y^{2}}{\left(\dfrac{9}{4}\right)}=1$

Length of latus rectum in not same.

S4: Since $(\operatorname{asec} \theta, b \tan \theta)$ lies on $y=m x+\sqrt{a^{2} m^{2}-b^{2}}$

$\therefore \operatorname{btan} \theta=\mathrm{amsec} \theta+\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2}}$

$(b \tan \theta-a \sec \theta)^{2}=a^{2} m^{2}-b^{2}$

$\mathrm{a}^{2} \mathrm{~m}^{2} \sin ^{2} \theta-$ eabmsin $\theta+\mathrm{b}^{2}=0 \quad(\because \cos \theta \neq 0)$

$(\mathrm{am} \sin \theta-\mathrm{b})^{2}=0$

$\therefore \sin \theta=\dfrac{\mathrm{b}}{\mathrm{am}}$

Hence $\theta=\sin ^{-1}\left(\dfrac{\mathrm{b}}{\mathrm{am}}\right)$

Answer (c)

8. Match the column

Column I Column II
(a) The area of the triangle that a tangent at a point of the hyperbola $\dfrac{x^{2}}{16}-\dfrac{y^{2}}{9}=1$ makes with its asymptotes is (p) 12
(b) If the line $y=3 x+\lambda$ touches the curve $9 x^{2}-5 y^{2}=45$, then $|\lambda|$ is (q) 6
(c) If the chord $\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\mathrm{p}$ of the hyperbola $\dfrac{x^{2}}{16}-\dfrac{y^{2}}{18}=1$ subtends a right angle at the centre, then the diameter of the circle, concentric with the hyperbola, to which the given chord is a tangent is (r) 24
(d) If $\lambda$ be the length of the latus rectum of the hyperbola $16 x^{2}-9 y^{2}+32 x+36 y-164=0$, then $3 \lambda$ is equal to (s) 32
Show Answer

Solution

(a) Equation of tangent at $(a, 0)$ is $x=a$

asymptotes $y=\dfrac{b}{a} x$ & $y=-\dfrac{b}{a} x$

$\text { Area }=2 \times \dfrac{1}{2} \times \mathrm{a} \times \mathrm{b}=4 \times 3=12 {a}$

(b) $y=3 x+\lambda$ touches the curve $9 x^{2}-5 y^{2}=45$

$\begin{aligned} & \text { then } 9 x^2-5(3 x+\lambda)^2=45 \\ & \quad 36 x^2+30 \lambda x+5 \lambda^2+45=0 \text { has equal roots } \\ & \therefore 900 \lambda^2-4 \times 36\left(5 \lambda^2+45\right)=0 \\ & \lambda^2=36 \Rightarrow \lambda= \pm 6 \\ & \text { Hence }|\lambda|=6 \end{aligned}$

(c) The combined equation $\mathrm{OA}$ and $\mathrm{OB}$ we get when we make a homogeneous equation with the help of line and hyperbola

i.e. $18 \mathrm{x}^{2}-16 \mathrm{y}^{2}-288\left(\dfrac{\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha}{\mathrm{p}}\right)^{2}=0$

$9 p^{2} x^{2}-9 p^{2} y^{2}-144\left(x^{2} \cos ^{2} \alpha+y^{2} \sin ^{2} \alpha+2 x y \sin \alpha \cos \alpha\right)=0$

$\left(9 p^{2}-144 \cos ^{2} \alpha\right) x^{2}-288 \sin \alpha \cos \alpha \cdot x y+\left(-144 \sin ^{2} \alpha-8 p^{2}\right) y^{2}=0$

Lines are perpendicular $\Rightarrow 9 p^{2}-144 \cos ^{2} \alpha-8 p^{2}-144 \sin ^{2} \alpha=0$

$\begin{aligned} & \mathrm{p}^{2}=144 \\ & \mathrm{p}= \pm 12 \end{aligned}$

Radius of circle $=12$

$\therefore$ Diameter of circle $=24$

(c) $\rightarrow(\mathrm{r})$

(d) $16 x^{2}+32 x-9 y^{2}+36 y=164$

$16(\mathrm{x}+1)^{2}-9(\mathrm{y}-2)^{2}=144$

$\dfrac{(\mathrm{x}+1)^{2}}{9}-\dfrac{(\mathrm{y}-2)^{2}}{16}=1$

length of latus rectum $=2 \times \dfrac{16}{3}=\dfrac{32}{3}$

$\therefore 3 \lambda=32$

$(d) \rightarrow (s)$

Exercis - 9

1. For a given non zero value of $m$ each of the lines $\dfrac{x}{a}-\dfrac{y}{b}=m$ and $\dfrac{x}{a}+\dfrac{y}{b}=m$ meets the hyperbola $\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1$ at a point. Sum of the ordinates of these points, is

(a) $\dfrac{a\left(1+m^{2}\right)}{m}$

(b) $\dfrac{a+b}{2 m}$

(c) $\dfrac{\mathrm{b}\left(1-\mathrm{m}^{2}\right)}{\mathrm{m}}$

(d) 0

Show Answer Answer: d

2. For which of the hyperbola, we can have more than one pair of perpendicular tangents?

(a) $\dfrac{x^{2}}{4}-\dfrac{y^{2}}{9}=-1$

(b) $\dfrac{x^{2}}{4}-\dfrac{y^{2}}{9}=1$

(c) $x^{2}-y^{2}=9$

(d) $x y=9$

Show Answer Answer: a

3. From point $(2,2)$ tangents are drawn to the hyperbola $\dfrac{x^{2}}{16}-\dfrac{y^{2}}{9}=1$ then point of contact lie in

(a) I & IV quadrants

(b) II & III quadrants

(c) III & IV quadrants

(d) II & III quadrants

Show Answer Answer: c

4. If $(5,12)$ and $(24,7)$ are the foci of a conic passing through the origin then the eccentricity of conic is

(a) $\dfrac{\sqrt{386}}{13}$

(b) $\dfrac{\sqrt{386}}{12}$

(c) $\dfrac{\sqrt{386}}{38}$

(d) $\dfrac{\sqrt{386}}{25}$

Show Answer Answer: c

5. For the hyperbola $9 x^{2}-16 y^{2}-18 x+32 y-151=0$

(a) directrix is $x=\dfrac{21}{5}$

(b) latus rectum $=\dfrac{9}{2}$

(c) eccentricity is $\dfrac{5}{4}$

(d) foci are $(6,1)$ and $(-4,1)$

Show Answer Answer: d

6. Assertion / Reasoning

Statement - 1 If a circle $S=0$ intersects a hyperbola $x y=4$ at four points. Three of then are $(2,2),(4,1)$ and $\left(6, \dfrac{2}{3}\right)$ then coordinates of the fourth point are $\left(\dfrac{1}{4}, 16\right)$.

Statement - 2 If a circle $S=0$ intersects a hyperbola $x y=c^{2}$ at $t _{1}, t _{2}, t _{3}, t _{4}$ then $t _{1} \cdot t _{2} \cdot t _{3} \cdot t _{4}=1$

(a) Statement - 1 is True, Statement - 2 is True, Statement - 2 is a correct explanation for Statement -1

(b) Statement -1 is True, Statement - 2 is True, Statement -2 is NOT a correct explanation for Statement - 1

(c) Statement - 1 is True, Statement - 2 is False.

(d) Statement - 1 is False, statement 2 is True.

Show Answer Answer: d

True/ false

7. S1: Centre of the hyperbola $x^{2}-4 y^{2}-4 x+8 y+4=0$ is $(2,1)$

S2 : If eccentricity of hyperbola $x(y-1)=2$ is $\sqrt{2}$ then eccentricity of its conjugate hyperbola is 2 .

S3 : From point $(2,2)$ tangents are drawn to the hyperbola $\dfrac{x^{2}}{16}-\dfrac{y^{2}}{9}=1$, then point of contact lie in I & IV quadrants.

S4 : Product of the length of perpendiculars drawn from any foci of the hyperbola $x^{2}-4 y^{2}-$ $4 x+8 y+4=0$ to its asymptotes is 4 .

(a) TFTT

(b) TFFT

(c) TTFT

(d) TTTT

Comprehension

For the hyperbola $\dfrac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\dfrac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ the normal at $\mathrm{P}$ meets the transverse axis $\mathrm{A}^{\prime}$ in $\mathrm{D}$ and the conjugate axis $\mathrm{BB}^{\prime}$ in $\mathrm{E}$ and $\mathrm{CF}$ be perpendicular to the normal from the centre.

Show Answer Answer: b

8. $\mathrm{PF} \times \mathrm{PD}=\mathrm{k}(\mathrm{CB})^{2}$, then $\mathrm{k}=$

(a) $\dfrac{1}{2}$

(b) 1

(c) 2

(d) 3

Show Answer Answer: b

9. $\quad \mathrm{PF} \times \mathrm{PE}$ equal to

A program to give wings to girl students

(a) $\mathrm{CA} \times \mathrm{CB}$

(b) $(\mathrm{CB})^{2}$

(c) $(\mathrm{CA})^{2}$

(d) $(\mathrm{CF})^{2}$

Show Answer Answer: c

10. Locus of middle point of $\mathrm{D}$ and $\mathrm{E}$ is a hyperbola of eccentricity

(a) $\sqrt{\mathrm{e}^{2}-1}$

(b) $\dfrac{1}{\sqrt{\mathrm{e}^{2}-1}}$

(c) $\mathrm{e} \sqrt{\mathrm{e}^{2}-1}$

(d) $\dfrac{\mathrm{e}}{\sqrt{\mathrm{e}^{2}-1}}$

Show Answer Answer: d


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ