Integral Calculus - Definite Integrals (Lecture-01)

If $f(\mathrm{x})$ is continuous on $[\mathrm{a}, \mathrm{b}]$ and $\mathrm{F}$ is an antiderivative (primitive) of $f$.

i.e. $f(\mathrm{x})=\dfrac{\mathrm{d}}{\mathrm{dx}} \mathrm{F}$, then

$\left.\int _{\mathrm{a}}^{\mathrm{b}} f(\mathrm{x}) \mathrm{dx}=\mathrm{F}(\mathrm{x})\right] _{\mathrm{a}}^{\mathrm{b}}=\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{a})$

Note: $\int _{a}^{a} f(x) d x=0$

Geometrical interpretation of definite integral

If $f(\mathrm{x})>0 \forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}]$, then $\int _{\mathrm{a}}^{\mathrm{b}} f(\mathrm{x}) \mathrm{dx}$ is numerically equal to the area bonded by the curve $\mathrm{y}=f(\mathrm{x})$, the $\mathrm{x}$ - axis and the straight lines $\mathrm{x}$ = $\mathrm{a}$ & $\mathrm{x}$ = $\mathrm{b}$.

Properties of definite integrals

1. $\int _{\mathrm{a}}^{\mathrm{b}} f(\mathrm{x}) \mathrm{dx}=\int _{\mathrm{a}}^{\mathrm{b}} f(\mathrm{t}) \mathrm{dt}$

2. $\int _{\mathrm{a}}^{\mathrm{b}} f(\mathrm{x}) \mathrm{d} \mathrm{x}=-\int _{\mathrm{b}}^{\mathrm{a}} f(\mathrm{x}) \mathrm{d} \mathrm{x}$

3. $\int _{\mathrm{a}}^{\mathrm{b}} f(\mathrm{x}) \mathrm{dx}=\int _{\mathrm{a}}^{\mathrm{c}} f(\mathrm{x}) \mathrm{dx}+\int _{\mathrm{c}}^{\mathrm{b}} f(\mathrm{x}) \mathrm{dx}$ where $\mathrm{c} \in \mathrm{R}$

4. $\int _{\mathrm{a}}^{\mathrm{b}} f(\mathrm{x}) \mathrm{dx}=\int _{\mathrm{a}}^{\mathrm{b}} f(\mathrm{a}-\mathrm{x}) \mathrm{dx}$

5. $\int _{\mathrm{a}}^{\mathrm{b}} f(\mathrm{x}) \mathrm{dx}=\int _{\mathrm{a}}^{\mathrm{b}} f(\mathrm{a}+\mathrm{b}-\mathrm{x}) \mathrm{dx}$

6. $\int _{-a}^a f(\mathrm{x}) \mathrm{d} x=\int _0^{\mathrm{a}}(f(\mathrm{x})+f(-\mathrm{x})) \mathrm{d} \mathrm{x}$ = $\begin{cases}{l} 2 \int _0^a f(\mathrm{x}) \mathrm{d} x \text { if } f(-\mathrm{x})=f(\mathrm{x}) \\ \text { ie. if } f(\mathrm{x}) \text { is even } \\ 0, \text { if } f(-\mathrm{x})=-f(\mathrm{x}) \\ (\text { ie. if } f(\mathrm{x}) \text { is odd }) \end{cases}$.

7. $\int _{\mathrm{a}}^{2 \mathrm{a}} f(\mathrm{x}) \mathrm{dx}=\int _{0}^{\mathrm{a}}(f(\mathrm{x})+f(2 \mathrm{a}-\mathrm{x})) \mathrm{dx}$ = $\begin{cases}2 \int _{0}^{\mathrm{a}} f(\mathrm{x}) \mathrm{dx} \text { if } f(2 \mathrm{a}-\mathrm{x})=f(\mathrm{x}) \\ 0 \quad \text { ,if } f(2 \mathrm{a}-\mathrm{x})=-f(\mathrm{x})\end{cases}$.

8. $\int _{b}^{a} f(x) d x=(b-a) \int _{0}^{1} f((b-a) x+a) d x$

9. If $\mathrm{m}$ & $\mathrm{M}$ be the least and greatest values of $f(\mathrm{x})$ respectively on $[\mathrm{a}, \mathrm{b}]$, then $\mathrm{m}(\mathrm{b}-\mathrm{a}) \leq \int _{\mathrm{a}}^{\mathrm{b}} f(\mathrm{x}) \mathrm{dx} \leq \mathrm{M}$.

10. $\int _{0}^{1} \mathrm{x}^{m}(1-\mathrm{x})^{n} \mathrm{dx}=\dfrac{m ! n !}{(m+n+1) !}$

11. $\int _{\mathrm{a}}^{\mathrm{b}}(f \circ g)(\mathrm{x}) \mathrm{g}^{1}(\mathrm{x}) \mathrm{dx}=\int _{\mathrm{a}}^{\mathrm{b}} f(\mathrm{~g}(\mathrm{x})) \mathrm{g}^{1}(\mathrm{x}) \mathrm{dx}=\int _{\mathrm{g}(\mathrm{a})}^{\mathrm{g}(\mathrm{b})} f(\mathrm{t}) \mathrm{dt}$

12. If $f(\mathrm{x})$ is a periodic function with period $\mathrm{T}$ then

i. $\int _{0}^{\mathrm{nT}} f(\mathrm{x}) \mathrm{dx}=\mathrm{n} \int _{0}^{\mathrm{T}} f(\mathrm{x}) \mathrm{dx} \mathrm{n} \in \mathrm{Z}$

ii. $\int _{a}^{a+n T} f(x) d x=n \int _{a}^{a+T} f(x) d x=n \int _{0}^{T} f(x) d x$

which is independent of a

iii. $\int _{a+n \mathrm{~T}}^{b+n \mathrm{~T}} f(\mathrm{x}) \mathrm{dx}=\int _{\mathrm{a}}^{\mathrm{b}} f(\mathrm{x}) \mathrm{dx} \quad, \mathrm{n} \in \mathrm{Z}$

iv. $\int _{\mathrm{mT}}^{\mathrm{nT}} f(\mathrm{x}) \mathrm{dx}=(\mathrm{n}-\mathrm{m}) \int _{0}^{\mathrm{T}} f(\mathrm{x}) \mathrm{dx}, \mathrm{m}, \mathrm{n} \in \mathrm{Z}$.

v. If $f(\mathrm{t})$ is an odd (even) function periodic with period $\mathrm{T}$, then $\mathrm{F}(\mathrm{x})=\int _{\mathrm{a}}^{\mathrm{x}} f(\mathrm{t}) \mathrm{dt}$ is an even (odd) function with period $\mathrm{T}$.

13. If $f(\mathrm{x}) \leq \mathrm{g}(\mathrm{x})$ on $[\mathrm{a}, \mathrm{b}]$, then $\int _{\mathrm{a}}^{\mathrm{b}} f(\mathrm{x}) \mathrm{dx} \leq \int _{\mathrm{a}}^{\mathrm{b}} \mathrm{g}(\mathrm{x}) \mathrm{dx}$.

Also $\int _{\mathrm{a}}^{\mathrm{b}} f(\mathrm{x}) \mathrm{d} \mathrm{x} \leq \int _{\mathrm{a}}^{\mathrm{b}}|f(\mathrm{x})| \mathrm{d} \mathrm{x}$

14. Leibnitz Rule

i. $\dfrac{\mathrm{d}}{\mathrm{dx}} \int _{\varphi(\mathrm{x})}^{\Psi(\mathrm{x})} f(\mathrm{t}) \mathrm{dt}=f(\Psi(\mathrm{x})) \dfrac{\mathrm{d}}{\mathrm{dx}}(\Psi(\mathrm{x}))-f(\varphi(\mathrm{x})) \dfrac{\mathrm{d}}{\mathrm{dx}}(\varphi(\mathrm{x}))$

ii. $\dfrac{\mathrm{d}}{\mathrm{dx}} \int _{\varphi(\mathrm{x})}^{\Psi(\mathrm{x})} f(\mathrm{x}, \mathrm{t}) \mathrm{dt}=\int _{\varphi(\mathrm{x})}^{\Psi(\mathrm{x})} \dfrac{\partial f(\mathrm{x}, \mathrm{t})}{\partial \mathrm{x}} \mathrm{dt}+\dfrac{\mathrm{d} \Psi(\mathrm{x})}{\mathrm{dx}} f(\mathrm{x}, \Psi(\mathrm{x}))-\dfrac{\mathrm{d} _{\varphi}(\mathrm{x})}{\mathrm{dx}} f(\mathrm{x}, \varphi(\mathrm{x}))$

Reduction Formulae

$\quad\mathrm{I} _{\mathrm{n}}=\int _{0}^{\pi / 2} \sin ^{\mathrm{n}} \mathrm{xdx}=\int _{0}^{\pi / 2} \cos ^{\mathrm{n}} \mathrm{xdx}=\dfrac{\mathrm{n}-1}{\mathrm{n}} \mathrm{I} _{\mathrm{n}-2}, \mathrm{n} \in \mathrm{Z}^{+}$

1. = $\begin{cases}\left(\dfrac{n-1}{n}\right)\left(\dfrac{n-3}{n-2}\right) \ldots \ldots . . \dfrac{1}{2} \cdot \dfrac{\pi}{2}, \text { If } n \text { is even } \\ & \\ \left(\dfrac{n-1}{n}\right)\left(\dfrac{n-3}{n-2}\right) \ldots \ldots \ldots \dfrac{2}{3}, \text { If } n \text { is odd. }\end{cases}$.

2. $\mathrm{I} _{\mathrm{n}}=\int _{0}^{\pi / 4} \tan ^{\mathrm{n}} \mathrm{x} d \mathrm{x} \quad \mathrm{n}>1$,

$\mathrm{I} _{\mathrm{n}}+\mathrm{I} _{\mathrm{n}-2}=\dfrac{1}{\mathrm{n}-1}$

$I _{n}=\dfrac{1}{n-1}-\dfrac{1}{n-3}+\dfrac{1}{n-5}-\dfrac{1}{n-7} \ldots \ldots \ldots \ldots \ldots I _{1} \text { or } I _{0}$

according as $\mathrm{n}$ is odd or even.

$\left(\mathrm{I} _{0}=\dfrac{\pi}{4}, \mathrm{I},=\dfrac{1}{2} \log _{\mathrm{e}} 2=\log _{\mathrm{e}} \sqrt{2}\right)$

iii. $\quad \int _{0}^{\pi / 4}\left(\tan ^{n} x+\tan ^{n-2} x\right) d x=\int _{\pi / 4}^{\pi / 2}\left(\cot ^{n} x+\cot ^{n-2} x\right) d x=\dfrac{1}{n-1}$

Walli’s Formulae.

$\begin{aligned} & I _{m, n}=\int _{0}^{\pi / 2}\left(\sin ^{m} x \cos ^{n} x\right) d x \\ \\ & =\dfrac{m-1}{m+1} I _{m-2, n} \\ \\ & =\dfrac{n-1}{m+1} I _{m, n-2} \text { where } m, n \in Z^{x} \\ \\ & I _{m, n}=\int _{0}^{\pi / 2}\left(\sin ^{m} x \cos ^{n} x\right) d x \\ \\ & =\dfrac{((m-1)(m-3) \ldots \ldots .1 \text { or } 2)((n-1)(n-3) \ldots \ldots . .1 \text { or } 2)}{(m+n)(m+n-2)(m+n-4) \ldots \ldots . .(1 \text { or } 2)} k \end{aligned}$

where $\mathrm{k}=\dfrac{\pi}{2}$ if both $\mathrm{m}$ & $\mathrm{n}$ are even

$\mathrm{k}=1 \quad \text { otherewise. }$

Improper integral

If $f(\mathrm{x})$ is continuous on $[\mathrm{a}, \infty)$ then $\int _{\mathrm{a}}^{\infty} f(\mathrm{x}) \mathrm{dx}=\lim\limits _{\mathrm{b} \rightarrow \infty} \int _{\mathrm{a}}^{\mathrm{b}} f(\mathrm{x}) \mathrm{dx}$ is called an improper integral.

If there exists a finite limit on right side of the above equation, we say the improper integral is convergent, otherwise it is divergent.

Similarity $\int _{-\infty}^{b} f(x) d x=\lim\limits _{\mathrm{a} \rightarrow-\infty} \int _{\mathrm{a}}^{\mathrm{b}} f(\mathrm{x}) \mathrm{dx}$

$\hspace{1.3cm}\int _{-\infty}^{\infty} f(\mathrm{x}) \mathrm{dx}=\int _{-\infty}^{\mathrm{a}} f(\mathrm{x}) \mathrm{dx}+\int _{\mathrm{a}}^{\infty} f(\mathrm{x}) \mathrm{dx}$

Geometrically, for $f(\mathrm{x})>0, \int _{\mathrm{a}}^{\infty} f(\mathrm{x}) \mathrm{dx}$ gives area of the figure bounded by $\mathrm{y}=f(\mathrm{x}), \mathrm{x}-$ axis & $\mathrm{x}=\mathrm{a}$.

Gamma Function

If $n$ is a positive rational number, then the improper integral $\int _{0}^{\infty} e^{-\mathrm{x}} \mathrm{x}^{n-1} \mathrm{dx}, \mathrm{x} \in Q^{+}$ is defined as

Gamma function and is denoted by $\cdot \Gamma \mathrm{n}$

$\therefore \Gamma \mathrm{n}=\int _{0}^{\infty} \mathrm{e}^{-\mathrm{x}} \mathrm{x}^{\mathrm{n}-1} \mathrm{dx}, \mathrm{x} \in \mathrm{Q}^{+}$

Properties

i. $\Gamma \mathrm{n}+1=\mathrm{n} \Gamma \mathrm{n}=\mathrm{n} ! ; \mathrm{n} \in \mathrm{N}$

ii. $\Gamma 1=1$ and $\Gamma 0=\infty, \quad \Gamma _{\dfrac{1}{2}}=\sqrt{\pi}$

iii. $\int _{0}^{\pi / 2} \sin ^{\mathrm{m}} x \cos ^{\mathrm{n}} \mathrm{xdx}=\dfrac{\dfrac{\Gamma _{\mathrm{m}+1}}{2} \dfrac{\Gamma _{\mathrm{n}+1}^{2}}{2}}{2 \dfrac{\sqrt[\mathrm{m}+\mathrm{n}+2]{2}}{2}}$

iv. $\Gamma{\mathrm{n}} \Gamma \mathrm{n}-1$ = $\dfrac{\pi}{\sin \mathrm{n} \pi}, 0<\mathrm{n}<1$.

v. $\Gamma{\mathrm{n}} \Gamma _{\mathrm{m}+\dfrac{1}{2}}=\dfrac{\sqrt{\pi}}{2^{2 \mathrm{~m}-1}} \Gamma 2 \mathrm{~m}$

vi. $\Gamma _{\dfrac{1}{n}} \Gamma _{\dfrac{2}{n}} \Gamma _{\dfrac{3}{n}} \cdots . . \Gamma _{\dfrac{n-1}{n}}=\dfrac{(2 \pi)^{\dfrac{n-1}{2}}}{n^{\dfrac{1}{2}}}$

Beta Function

The Beta function is denoted by $B(m, n)$ where $B(m, n)=\int _{0}^{1} x^{m-1}(1-x)^{n-1} d x, m, n>0$

Properties

$\begin{array}{lll} \text{i. }& B(m, n) & =\int _{0}^{1} x^{m-1}(1-x)^{n-1} d x, m, n>0 \\ \\ & & =\int _{0}^{1} \dfrac{x^{m-1}}{(1+x)^{m+n}} d x \\ \\ & & =\dfrac{\Gamma \mathrm{m} \Gamma \mathrm{n}}{\Gamma(\mathrm{m}+\mathrm{n})} \end{array}$

Integration as limit of a sum

$\int _{0}^{1} f(\mathrm{x}) \mathrm{dx}=\lim \limits _{\mathrm{n} \rightarrow \infty} \dfrac{1}{\mathrm{n}} \sum\limits _{\mathrm{r}=1}^{\mathrm{n}} f\left(\dfrac{\mathrm{r}-1}{\mathrm{n}}\right)=\lim\limits _{\mathrm{n} \rightarrow \infty} \dfrac{1}{\mathrm{n}} \sum\limits _{\mathrm{r}=0}^{\mathrm{n}-1} f\left(\dfrac{\mathrm{r}}{\mathrm{n}}\right)$

Here replace $\dfrac{\mathrm{r}}{\mathrm{n}}$ by $x$

replace $\dfrac{1}{\mathrm{n}}$ by $\mathrm{dx}$

and $\lim\limits _{n \rightarrow \infty} \sum$ by $\int$

Solved Examples

1. If $\int _{0}^{1} \dfrac{e^{t} d t}{t+1}=a$, then $\int _{b-1}^{b} \dfrac{e^{-t} d t}{t-b-1}$ is equal to

(a) $\mathrm{ae}^{-\mathrm{b}}$

(b) $-\mathrm{ae}^{-\mathrm{b}}$

(c) $-b e^{-a}$

(d) $a e^{b}$

Show Answer

Solution: $\int _{b-1}^{b} \dfrac{e^{-t} d t}{t-b-1}$ $\hspace {2 cm}$ $\begin{array}{cl} \text { Put } & t-b=-y \\ & d t=-d y \end{array}$

$\Rightarrow-\int _{1}^{0} \dfrac{\mathrm{e}^{\mathrm{y}-\mathrm{b}}}{-\mathrm{y}-1} \mathrm{dy}=-\int _{0}^{1} \dfrac{\mathrm{e}^{-b} \mathrm{e}^{\mathrm{y}} \mathrm{dy}}{(\mathrm{y}+1)}=-\mathrm{ae}^{-\mathrm{b}}$

Answer: b

2. If $\int _{0}^{\infty} \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{dx}=\dfrac{\sqrt{\pi}}{2}$, then $\int _{0}^{\infty} \mathrm{e}^{-\mathrm{ax}} \mathrm{dx}(\mathrm{a}>0)$ is equal to

(a) $\dfrac{\sqrt{\pi}}{2}$

(b) $\dfrac{\sqrt{\pi}}{2 \mathrm{a}}$

(c) $\dfrac{2 \sqrt{\pi}}{\mathrm{a}}$

(d) $\dfrac{\sqrt{\pi}}{2 \sqrt{\mathrm{a}}}$

Show Answer

Solution: If $\int _{0}^{\infty} \mathrm{e}^{-a x^{2}} \mathrm{dx} ; \quad \quad$ Put $\mathrm{ax}^{2}=\mathrm{t}^{2}$

$\hspace {4 cm}\Rightarrow 2 \mathrm{axdx}=2 \mathrm{tdt}$

$\therefore \int _{0}^{\infty} \dfrac{\mathrm{e}^{-t^{2}} \mathrm{tdt}}{\mathrm{a} \dfrac{\mathrm{t}}{\sqrt{\mathrm{a}}}}=\dfrac{1}{\mathrm{a}} \int _{0}^{\infty} \dfrac{\mathrm{e}^{-\mathrm{t}^{2}} \mathrm{tdt}}{\sqrt{\mathrm{a}} \mathrm{t}}$

$=\dfrac{1}{\sqrt{\mathrm{a}}} \int _{0}^{\infty} \mathrm{e}^{-\mathrm{t}^{2}} \mathrm{dt}=\dfrac{1}{\sqrt{\mathrm{a}}} \int _{0}^{\infty} \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{dx}=\dfrac{\sqrt{\pi}}{2 \sqrt{\mathrm{a}}}$

Answer: d

3. Given $\int _{1}^{2} \mathrm{e}^{\mathrm{x}^{2}} \cdot \mathrm{dx}=\mathrm{a}$, then the value of $\int _{\mathrm{e}}^{\mathrm{e}^{4}} \sqrt{\log _{\mathrm{e}} \mathrm{x}} \mathrm{dx}$ is equal to

(a) $\mathrm{e}^{4}-\mathrm{e}$

(b) $\mathrm{e}^{4}-\mathrm{a}$

(c) $2 \mathrm{e}^{4}-\mathrm{a}$

(d) $2 e^{4}-e-a$

Show Answer

Solution: $\int _{\mathrm{e}}^{\mathrm{e}^{4}} \sqrt{\log _{\mathrm{e}} \mathrm{x}} \mathrm{dx}$; Put $\sqrt{\log _{\mathrm{e}} \mathrm{x}}=\mathrm{t}$

$\Rightarrow \log _{\mathrm{e}} \mathrm{x}=\mathrm{t}^{2} \Rightarrow \mathrm{x}=\mathrm{e}^{\mathrm{t}^{2}} \Rightarrow \mathrm{dx}=\mathrm{e}^{\mathrm{t}^{2}} 2 \mathrm{t} \mathrm{dt}$

$\int \limits _1^2 t\left(e^{t^2} 2 t\right) d t=\left(t \cdot e^{t^2}\right)_1^2-\int_1^2 1 e^{t^2} d t$

$=\left(2 \mathrm{e}^{4}-\mathrm{e}\right)-\int _{1}^{2} \mathrm{e}^{\mathrm{t}^{2}} \mathrm{dt}=2 \mathrm{e}^{4}-\mathrm{e}-\mathrm{a}$

Answer: d

4. $\int _{0}^{1} \dfrac{\sin t . d t}{t+1}=\alpha$, then the value of

$\int _{4 \pi-2}^{4 \pi} \dfrac{\sin \dfrac{\mathrm{t}}{2} \mathrm{dt}}{4 \pi+2-\mathrm{t}}$ is equal to

(a) $\alpha$

(b) $-\alpha$

(c) $\pi \alpha$

(d) $2 \alpha$

Show Answer

Solution: Put $4 \pi-t=2 z$ in the second integral

$=-\mathrm{dt}=2 \mathrm{dz}$

$\therefore-\int _{1}^{0} \dfrac{\sin (2 \pi-\mathrm{z}) 2 \mathrm{dz}}{2(\mathrm{z}+1)}=$

$=\int _{1}^{0} \dfrac{-\sin \mathrm{zdz}}{\mathrm{z}+1}=-\alpha$

Answer: b

5. Let $f$ be a continuous function. Let

$\begin{aligned} I_1=\int _{\sin ^2 t}^{1+\cos ^2 t}x f\{x(2-x)\} d x \text { and } I_2=\int _{\sin ^2 t}^{1+\cos ^2 t} f \{x(2-x)\} d x \text {, then } I_1: I_2= \end{aligned}$

(a) 0

(b) 1

(c) 2

(d) none

Show Answer

Solution: Apply $\int _{a}^{b} f(x) d x=\int _{a}^{b} f(a+b-x) d x$ in $I _{1}$

i.e: Replace $x$ by $1+\cos ^{2} t+\sin ^{2} t-x=2-x$

$\therefore \mathrm{I} _{1}=\int _{\sin ^{2} \mathrm{t}}^{1+\cos ^{2} \mathrm{t}}(2-\mathrm{x}) f\{(2-\mathrm{x})(2-(2-\mathrm{x}))\} \mathrm{dx}$

$.I _{1}=2 \int _{\sin ^{2} t}^{1+\cos ^{2} t} f(x(2-x)) d x-\int _{\sin ^{2} t}^{1+\cos ^{2} t} f(x(2-x)) d x$

$\Rightarrow \quad \mathrm{I} _{1}=2 \mathrm{I} _{2}-\mathrm{I} _{1}$ $2 \mathrm{I} _{1}=2 \mathrm{I} _{2} \Rightarrow \mathrm{I} _{1}=\mathrm{I} _{2}$

Answer: b

6. If $f(\mathrm{x})=\int \dfrac{\log _{\mathrm{e}} \mathrm{xdx}}{1+\mathrm{x}}$, then $f(\mathrm{e})+f\left(\dfrac{1}{\mathrm{e}}\right)$ is equal to

(a) 2

(b) $\dfrac{1}{2}$

(c) 1

(d) none

Show Answer

Solution: $f(x)+f\left(\dfrac{1}{\mathrm{x}}\right)=\int \dfrac{\log _{\mathrm{e}} \mathrm{x}}{1+\mathrm{x}} \mathrm{dx}+\int \dfrac{\log _{\mathrm{e}} \dfrac{1}{\mathrm{x}}}{1+\dfrac{1}{\mathrm{x}}} \mathrm{d}\left(\dfrac{1}{\mathrm{x}}\right)$

$=\int \dfrac{\log _{e} x}{1+x} d x+\int \dfrac{-\log _{e} x}{\dfrac{x+1}{x}}\left(-\dfrac{1}{x^{2}}\right) d x$

$\begin{aligned} & =\int \dfrac{\log _{e} \mathrm{x}}{1+\mathrm{x}} d x+\int \dfrac{\log _{e} \mathrm{x}}{\mathrm{x}(1+\mathrm{x})} \mathrm{dx} \\ \\ & =\int \dfrac{\log _{\mathrm{e}} \mathrm{x}}{1+\mathrm{x}}\left(1+\dfrac{1}{\mathrm{x}}\right) \mathrm{dx} \\ \\ & =\int \dfrac{\log _{\mathrm{e}} \mathrm{x}}{1+\mathrm{x}}\left(\dfrac{1+\mathrm{x}}{\mathrm{x}}\right) \mathrm{dx}=\dfrac{\left(\log _{\mathrm{e}} \mathrm{x}\right)^{2}}{2} \\ \\ & \therefore f(\mathrm{e})+f\left(\dfrac{1}{\mathrm{e}}\right)=\dfrac{\left(\log _{\mathrm{e}} \mathrm{e}\right)^{2}}{2}=\dfrac{1}{2} \end{aligned}$

Answer: b

7. $\int _{0}^{\mathrm{x}} f(\mathrm{t}) \mathrm{dt}=\mathrm{x}+\int _{\mathrm{x}}^{1} \mathrm{t} f(\mathrm{t}) \mathrm{dt}$, then $f(1)$ is equal to

(a) $\dfrac{1}{2}$

(b) 0

(c) 1

(d) $\dfrac{-1}{2}$

Show Answer

Solution: Differentiate both sides w.r.t $\mathrm{x}$

$\Rightarrow f(\mathrm{x})=1+(0-\mathrm{x} f(\mathrm{x})) \Rightarrow f(\mathrm{x})=\dfrac{1}{1+\mathrm{x}}$

$\therefore f(1)=\dfrac{1}{2}$

Answer: a

8. $f(\mathrm{x})=\cos \mathrm{x}-\int _{0}^{y}(\mathrm{x}-\mathrm{t}) f(\mathrm{t}) \mathrm{dt}$, then $f^{\prime \prime}(\mathrm{x})+f(\mathrm{x})$ is equal to

(a) $-\cos x$

(b) $-\sin x$

(c) 0

(d) none of these

Show Answer

Solution: $f(\mathrm{x})=\cos \mathrm{x}-\mathrm{x} \int _{0}^{\mathrm{x}} f(\mathrm{t}) \mathrm{dt}+\int _{0}^{\mathrm{x}} \mathrm{t} f(\mathrm{t}) \mathrm{dt}$

$\therefore f^{\prime}(\mathrm{x})$ = $-\sin \mathrm{x}-\left\{\mathrm{x}(f(\mathrm{x})-0)+\int _{0}^{\mathrm{x}}(\mathrm{t}) \mathrm{dt}\right\}+\{\mathrm{x} f(\mathrm{x})-0\}$

(applying lebnitz rule)

$\begin{aligned} & f^{\prime}(\mathrm{x})=-\sin \mathrm{x}-\mathrm{x} f(\mathrm{x})-\int _{0}^{\mathrm{x}} f(\mathrm{t}) \mathrm{dt}+\mathrm{x} f(\mathrm{x}) \\ & \therefore f^{\prime \prime}(\mathrm{x})=-\cos \mathrm{x}-(f(\mathrm{x}) 1-0) \\ & \Rightarrow f^{\prime \prime}(\mathrm{x})+f(\mathrm{x})=-\cos \mathrm{x} \end{aligned}$

Answer: a

Exercise:

1. Let $\mathrm{I}=\int _{0}^{1} \dfrac{\sin \mathrm{x}}{\sqrt{\mathrm{x}}} \mathrm{dx}$ and $\mathrm{J}=\int _{0}^{1} \dfrac{\cos \mathrm{x}}{\sqrt{\mathrm{x}}} \mathrm{dx}$. Then which one of the following is true?

(a) $\mathrm{I}<\dfrac{2}{3}$ & $\mathrm{~J}>2$

(b) $\mathrm{I}>\dfrac{2}{3}$ & $\mathrm{~J}<2$

(c) $\mathrm{I}>\dfrac{2}{3}$ & $\mathrm{~J}>2$

(d) $\mathrm{I}<\dfrac{2}{3}$ & $\mathrm{~J}<2$

Show Answer Answer: d

2. The equaiton of a curve is $\mathrm{y}=f(\mathrm{x})$. The tangent at $(1, f(1)),(2, f(2))$ & $(3, f(3))$ make angles $\dfrac{\pi}{6}, \dfrac{\pi}{3}$ & $\dfrac{\pi}{4}$ respectively with the positive direction of the $\mathrm{x}-$ axis. Then the value of $\int _{2}^{3} f^{\prime}(\mathrm{x}) f^{\prime \prime}(\mathrm{x}) \mathrm{dx}+\int _{1}^{3} f^{\prime \prime}(\mathrm{x}) \mathrm{dx}=$

(a) $\dfrac{1}{\sqrt{3}}$

(b) $\dfrac{-1}{\sqrt{3}}$

(c) 0

(d) none of these

Show Answer Answer: b

3. $\lim\limits _{\lambda \rightarrow 0}\left(\int _{0}^{1}(1+x)^{\lambda} d x\right)^{1 / \lambda}$ is equal to

(a) $2 \log _{\mathrm{e}} 2$

(b) $\dfrac{4}{\mathrm{e}}$

(c) $\log _{\mathrm{e}}(4 / \mathrm{e})$

(d) $4$

Show Answer Answer: b

4. If $\beta+2 \int _{0}^{1} x^{2} e^{-x^{2}} d x=\int _{0}^{1} e^{-x^{2}} d x$, then the value of $\beta$ is

(a) $e^{-1}$

(b) e

(c) $\dfrac{1}{2} \mathrm{e}$

(d) cannot be determined

Show Answer Answer: a

5.* $\quad$ If $f(a)=\int _{a-1}^{a+1} \dfrac{d x}{1+x^{8}}$, then the value of a for which $f(a)$ attains maximum is

(a) at $\mathrm{a}=0$

(b) at one value of a only

(c) at two values of a, one is $(-1,0)$ and the other is $(0,1)$

(d) at no value of a

Show Answer Answer: a, b

6.* If $I _{1}=\int _{0}^{\pi / 4}(\tan x)^{\cot x} d x, I _{2}=\int _{0}^{\pi / 4}(\cot x)^{\tan x} d x, I _{3}=\int _{0}^{\pi / 4}(\tan x)^{\tan x} d x, I _{4}=\int _{0}^{\pi / 4}(\cot x)^{\cot x} d x$ then

(a) $\mathrm{I} _{1}<\mathrm{I} _{3}$

(b) $\mathrm{I} _{2}<\mathrm{I} _{4}$

(c) $\mathrm{I} _{1}<\mathrm{I} _{4}$

(d) $\mathrm{I} _{3}<\mathrm{I} _{2}$

Show Answer Answer: b, c

7.* If $\mathrm{I}=\int _{0}^{1} \mathrm{e}^{\sin x} \mathrm{dx}$, then

(a) $\mathrm{I}>0$

(b) $\mathrm{I}<\mathrm{e}$

(c) $\quad\mathrm{I}>\mathrm{e}$

(d) $\mathrm{I}>\mathrm{e}^{2}$

Show Answer Answer: a, b

8. If $\int _{0}^{10} f(x) d x=5$, then $\sum\limits _{\mathrm{k}=1}^{10} \int _{0}^{1} f(\mathrm{k}-1+\mathrm{x}) \mathrm{d} \mathrm{x}=$

(a) 50

(b) 20

(c) 5

(d) 0

Show Answer Answer: c

9. The value of the definite integral $\dfrac{\int _{0}^{\pi}(\sqrt[2013]{\cos x}+\sqrt[2013]{\sin x}+\sqrt[2013]{\tan x}) d x}{\int _{0}^{\pi / 2} \sqrt[2013]{\sin x} d x}$ is

(a) 2

(b) 1

(c) $\dfrac{1}{2}$

(d) 0

Show Answer Answer: a

10. The value of $\int _{0}^{\pi} \dfrac{\sin \left(n+\dfrac{1}{2}\right) x}{\sin \dfrac{x}{2}} d x$ is

(a) $\dfrac{\pi}{2}$

(b) 0

(c) $\pi$

(d) $2 \pi$

Show Answer Answer: c

11. The value of $f(x)=\int _{0}^{\sin ^{2} x} \sin ^{-1} \sqrt{t} d t+\int _{0}^{\cos ^{2} x} \cos ^{-1} \sqrt{t} d t$ is

(a) $\dfrac{\pi}{2}$

(b) 1

(c) $\dfrac{\pi}{4}$

(d) none of these

Show Answer Answer: c

12. The value of the definite integral $\int _{0}^{1}\left(1+\mathrm{e}^{-\mathrm{x}^{2}}\right) \mathrm{dx}$ is

(a) -1

(b) 2

(c) $1+\mathrm{e}^{-1}$

(d) none of these

Show Answer Answer: d


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ